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About generalization in mathematics (III).
On the inclusion and exclusion principle

GHEORGHE MICLĂUŞ

ABSTRACT. Let A1, A2, ...,An be finite sets and m (Ai) denote the number of elements of the set
Ai. In this paper we obtain a formula of type ”the inclusion and exclusion principle” (Boole-Sylvester)
for finding out the number of elements of the set A1ΔA2Δ...ΔAn where AΔB = (A\B) ∪ (B\A) is
”the symmetric difference of the sets A and B”:

m (A1ΔA2Δ...ΔAn) =

=
n∑

i=1

m (Ai) − 2
∑

1≤i<j≤n

m (Ai ∩ Aj) + 22
∑

1≤i<j<k≤n

m (Ai ∩ Aj ∩ Ak) − ...+

+ (−1)n−1 · 2n−1m

(
n⋂

i=1

Ai

)

We will start from a simple problem which we will generalize in many stages, putting in evidence
the importance of inductive judgment.

1. A PROBLEM

Problem 1.1. Determine the number of the natural numbers not null, smaller or
equal with 1000 that are multiples of 2 or 3 or 5, but are not multiples of 2 · 3 or 2 · 5
or 3 · 5 only if they are multiples of 2 · 3 · 5.

Solution. We note with A the set of the multiples of 2, with B the set of multi-
ples of 3 and with C the set of multiples of 5 (which are not null and are smaller or
equal with 1000). Then the searched number is

m (A)+m (B)+m (C)−2m (A ∩ B)−2m (A ∩ C)−2m (B ∩ C)+4m (A ∩ B ∩ C) .

We have:

m (A) =
[
1000

2

]
= 500, m (B) =

[
1000

3

]
= 333, m (C) =

[
1000

5

]
= 200,

m (A ∩ B) =
[
1000

6

]
= 166, m (A ∩ C) =

[
1000
10

]
= 100,

m (B ∩ C) =
[
1000
15

]
= 66, m (A ∩ B ∩ C) =

[
1000
30

]
= 33.

From here it follows that the searched number is:

500 + 333 + 200 − 2 · 166 − 2 · 100 − 2 · 66 + 4 · 33 = 501
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Remark 1.1. This number could be obtained by writing the numbers from 1 at 1000
and eliminating the numbers that don’t correspond.

2. A FIRST GENERALIZATION

An extension of the Problem 1.1. is the following

Problem 2.1. Let A, B, C be finite sets. Find out the number of elements which
belong to A or to B or to C or to A and B and C, but does not belong only to A and
B or to A and C or to B and C.

Solution. The searched number is given by the formula

m (A)+m (B)+m (C)−2m (A ∩ B)−2m (A ∩ C)−2m (B ∩ C)+4m (A ∩ B ∩ C) .

But this expression can be limited to m (AΔBΔC) .
Indeed, we have

m (AΔB) = m (A) + m (B) − 2m (A ∩ B) .

If we use the property of distributivity of the intersection face to the symmetric
difference:

(AΔB) ∩ C = (A ∩ C)Δ (B ∩ C)
we obtain

m (AΔBΔC) = m (AΔB) ΔC) = m (AΔB) + m (C) − 2m ((AΔB) ∩ C) =

= m (A) + m (B) − 2m (A ∩ B) + m (C) − 2m ((A ∩ C) Δ (B ∩ C)) =

= m (A)+m (B)+m (C)−2m (A ∩ B)−2m (A ∩ C)−2m (B ∩ C)+4m (A ∩ B ∩ C)
This finding leads us to the generalization of this problem.

3. THE SECOND GENERALIZATION

Theorem 3.1. Let A1, A2, ..., An be finite sets. Then we have:

m (A1ΔA2Δ...ΔAn) =

=
n∑

i=1

m (Ai) − 2
∑

1≤i<j≤n

m (Ai ∩ Aj) + 22
∑

1≤i<j<k≤n

m (Ai ∩ Aj ∩ Ak) − ...+

+ (−1)n−1 · 2n−1m

(
n⋂

i=1

Ai

)
(3.1)

Proof. We will prove through induction.
For n = 2 we have:

m (A1ΔA2) = m (A1) + m (A2) − 2m (A1 ∩ A2)

Suppose the sentence is true for p and we will prove that it is true for p + 1, too.
We have

m (A1ΔA2Δ...ΔAp+1) = m ((A1ΔA2Δ...ΔAp)ΔAp+1) = m (A1ΔA2Δ...ΔAp)+

+m (Ap+1) − 2m ((A1ΔA2Δ...ΔAp) ∩ Ap+1) .
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Using the hypothesis of induction and distributive law of intersection face to the
symmetric difference, we obtain

m (A1ΔA2Δ...ΔAp+1) =

=
p∑

i=1

m (Ai) − 2
∑

1≤i<j≤p

m (Ai ∩ Aj) + 22
∑

1≤i<j<k≤p

m (Ai ∩ Aj ∩ Ak) − ...+

+ (−1)p−1 2p−1m

(
p⋂

i=1

Ai

)
+ m (Ap+1)−

−2m ((A1 ∩ Ap+1)Δ (A2 ∩ Ap+1)Δ...Δ (Ap ∩ Ap+1))]

According to the hypothesis of induction we have:

m((A1 ∩ Ap+1)Δ (A2 ∩ Ap+1)Δ...Δ (Ap ∩ Ap+1)) =

=
p∑

i=1

m (Ai ∩ Ap+1) − 2
∑

1≤i<j≤p

m (Ai ∩ Aj ∩ Ap+1)

+... + (−1)p−1 2p−1m

(
p⋂

i=1

(Ai ∩ Ap+1)

)
.

Using the idempotence of intersection we have:

(Ai ∩ Ap+1) ∩ (Aj ∩ Ap+1) = (Ai ∩ Aj ∩ Ap+1), ...,
p⋂

i=1

(Ai ∩ Ap+1) =
p+1⋂
i=1

Ai.

Regrouping the terms we obtain

m (A1ΔA2Δ...ΔApΔAp+1) =

=
p+1∑
i=1

m (Ai) − 2
∑

1≤i<j≤p+1

m (Ai ∩ Aj) + 22
∑

1≤i<j<k≤n

m (Ai ∩ Aj ∩ Ak) − ...+

... + (−1)p · 2pm

(
p+1⋂
i=1

Ai

)

�

So ”the inclusion and exclusion principle” for the symmetric difference, formula
(3.1) is proved.

From this theorem we deduce that if an element belongs to the symmetric dif-
ference of n sets, then the maximum number of sets to which it belongs is and odd
number.

We will prove this property directly in the next theorem.

Theorem 3.2. Let A1, A2, ..., An be sets. If x ∈ A1ΔA2Δ...ΔAn then the biggest
number of sets to which x belongs is an odd number.
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Proof. We will prove through induction after n.
For n = 2 we have that if : x ∈ A1ΔA2 then x ∈ A1 or x ∈ A2, but it does not

belong to A1 ∩ A2 because

A1ΔA2 = (A1 ∪ A2) \ (A1 ∩ A2)

Suppose the sentence is true for k and we will prove that it is true for k + 1, too. If

x ∈ A1ΔA2Δ...ΔAkΔAk+1

then
x ∈ (A1ΔA2Δ...ΔAk)ΔAk+1.

Hence we have
x ∈ (A1ΔA2Δ...ΔAk) ∪ Ak+1

and
x /∈ (A1ΔA2Δ...ΔAk) ∩ Ak.

We obtain that x ∈ A1ΔA2Δ...ΔAk or x ∈ Ak+1. If x ∈ A1ΔA2Δ...ΔAk then from
the induction hypothesis the maximum number of sets to which x belongs is odd.
If x ∈ Ak+1 the theorem is proved �

4. PARTICULAR CASES

Problem 4.1. Let p1, p2, ..., pk be prime natural numbers, n ∈ N, pi < n, i =
1, k; k > 3. Find the number of all non zero natural numbers, smaller or equal
with n, which have divisors of the form

pi1 · pi2 · . . . · piq , q ≤ k

in which the maximum number of prime numbers can be only an odd number.

Solution. We note with Ai the set of pi multiples smaller or equal with n.Then
the requested numbers can belong to maximum to an odd number of Ai sets.

From Theorem 3.2 it follows that the searched number is given by
m (A1ΔA2Δ...ΔAn) .

For n = 1000 and p1 = 2, p2 = 3, p3 = 5 we obtain Problem 1.1.

5. THE THIRD GENERALIZATION

Let A be a bounded subset of R
2, measurable and we note with m (A) its mea-

sure. For example A can be a rectangular surface and m (A) its area. The following
properties are known.

Lemma 5.1. ([1]) If A and B are bounded and measurable sets in R
2, then the sets

A\B, A ∪ B, A ∩ B are also measurable in R
2.

From here it follows if A and B are bounded and measurable sets in R
2, then

AΔB is a bounded and measurable set, because

AΔB = (A\B) ∪ (B\A)

Using these properties we can extended Theorem 3.1. at n measurable sets in
plane.
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Theorem 5.1. If A1, A2, ..., An are bounded and measurable in R
2 then

m (A1ΔA2Δ...ΔAn) =

=
n∑

i=1

m (Ai) − 2
∑

1≤i<j≤n

m (Ai ∩ Aj) + 22
∑

1≤i<j<k≤n

m (Ai ∩ Aj ∩ Ak) − ...

+ (−1)n−1 · 2n−1m

(
n⋂

i=1

Ai

)

The proof is the same as for Theorem 3.1.
In the next figure we illustrate these properties for five sets.

Remark 5.1. Obviously, we could continue the extension in other spaces with dif-
ferent types of measures, but we stop here at elementary mathematics.
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