A new weighted Erdős-Mordell type inequality

Wei-Dong Jiang

Abstract

A new weighted Erdős-Mordell type inequality involving interior point of a triangle is established. By it's application, some interesting geometric inequalities are derived.

1. Introduction

Throughout the paper we assume $\triangle A B C$ be a triangle, and denote by a, b, c its sides' lengths, by Δ its area. Let P be an interior point. Denote $\Delta_{1}, \Delta_{2}, \Delta_{3}$ the area of $\triangle B P C, \triangle C P A, \triangle A P B$. Denote R_{a}, R_{b}, R_{c} the circumradii of the triangles $B P C, C P A, A P B$. Let R_{1}, R_{2}, R_{3} be the distances from P to A, B, C, and let r_{1}, r_{2}, r_{3} be the distances of P from the sides $A B, B C, C A$. Denote by w_{1}, w_{2}, w_{3} the bisectors of the angles $B P C, C P A, A P B$. Then the following theorem holds.

Theorem 1.1.

$$
\begin{equation*}
R_{1}+R_{2}+R_{3} \geq 2\left(r_{1}+r_{2}+r_{3}\right) \tag{1.1}
\end{equation*}
$$

The inequality (1.1) is sharp: equality holds if and only if the triangle is equilateral and the point P is its center. This is the famous Erdős-Mordell inequality. It was conjectured by Erdős in 1935 [1], and was first proved by Mordell in 1937 [2].

In the paper [3], D.S. Mitrnović at al. noted some generalizations of ErdősMordell inequality in 1989. Among their results is the following three-variable quadratic Erdős-Mordell type inequality:

Theorem 1.2. If x, y, z are three real numbers, then for any point P inside the triangle $A B C$, we have

$$
\begin{equation*}
x^{2} R_{1}+y^{2} R_{2}+z^{2} R_{3} \geq 2\left(y z r_{1}+z x r_{2}+x y r_{3}\right) \tag{1.2}
\end{equation*}
$$

with equality holding if and only if $x=y=z$ and P is the center of equilateral triangle $A B C$.

In this note we give a new weighted Erdős-Mordell type inequality.

2. MAIN RESULT

In order to prove Theorem 2.1 below, we need the following lemma.
Lemma 2.1. For any triangle $A B C$ and $x, y, z \in R$ we have

$$
\begin{equation*}
x^{2} \sin ^{2} A+y^{2} \sin ^{2} B+z^{2} \sin ^{2} C \leq \frac{1}{4}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{z y}{z}\right)^{2} . \tag{2.1}
\end{equation*}
$$

Received: 29.10.2006. In revised form: 21.01.2008.
2000 Mathematics Subject Classification. 26D15.
Key words and phrases. Erdős-Mordell type inequality, geometric inequality, triangle.

Proof. The inequaliyty (2.1) can be obtained from O. Kooi's inequality [4]:

$$
(x+y+z)^{2} R^{2} \geq y z a^{2}+z x b^{2}+x y c^{2}
$$

where R is the circumradius of the triangle $A B C$.
Theorem 2.1. For an arbitrary point P inside $\triangle A B C$, let R_{a}, R_{b}, R_{c} be the circumradii of triangles $B P C, C P A, A P B$, and w_{1}, w_{2}, w_{3} be the bisectors of the angles $B P C, C P A$, $A P B$. If $x>0, y>0, z>0$, then

$$
\begin{equation*}
\frac{x w_{1}}{\sqrt{R_{b} R_{c}}}+\frac{y w_{2}}{\sqrt{R_{c} R_{a}}}+\frac{z w_{3}}{\sqrt{R_{a} R_{b}}} \leq \frac{1}{2}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{x y}{z}\right) \tag{2.2}
\end{equation*}
$$

with equality holding if and only if $x=y=z$ and P is the center of equilateral triangle $A B C$.

Proof. Let $\angle B P C=\alpha, \angle C P A=\beta, \angle A P B=\gamma$. Obviously $0<\alpha, \beta, \gamma<\pi$ and $\alpha+\beta$ $+\gamma=2 \pi$. By using law of sines and bisectors formula we have

$$
\begin{aligned}
& b=2 R_{b} \sin \beta \\
& c=2 R_{c} \sin \gamma \\
& w_{1}=\frac{2 R_{2} R_{3}}{R_{2}+R_{3}} \cos \frac{\alpha}{2} \leq \sqrt{R_{2} R_{3}} \cos \frac{\alpha}{2} \\
& \frac{w_{1}}{\sqrt{R_{b} R_{c}}} \leq \sqrt{\frac{R_{2} R_{3}}{R_{b} R_{c}}} \cos \frac{\alpha}{2} \\
& =2 \sqrt{\frac{R_{2} R_{3} \sin \beta \sin \gamma}{b c}} \cos \frac{\alpha}{2} \\
& =2 \sqrt{\frac{\Delta_{1} \sin \beta \sin \gamma \sin A}{\Delta \sin \alpha}} \cos \frac{\alpha}{2}
\end{aligned}
$$

Because

$$
\begin{aligned}
& \sqrt{\sin \beta \sin \gamma} \leq \frac{1}{2}(\sin \beta+\sin \gamma) \\
& =\sin \frac{\beta+\gamma}{2} \cos \frac{\beta-\gamma}{2} \leq \sin \frac{\alpha}{2} \\
& \sqrt{\frac{\sin \beta \sin \gamma}{\sin \alpha}} \cos \frac{\alpha}{2} \leq \frac{1}{2} \sqrt{\sin \alpha}
\end{aligned}
$$

we have

$$
\begin{equation*}
\frac{w_{1}}{\sqrt{R_{b} R_{c}}} \leq \sqrt{\frac{\Delta_{1}}{\Delta} \sin A \sin \alpha} \tag{2.3}
\end{equation*}
$$

Let $A^{\prime}=\pi-\alpha, B^{\prime}=\pi-\beta, C^{\prime}=\pi-\gamma$, then
$\sqrt{\sin A \sin \alpha}=\sqrt{\sin A \sin A^{\prime}} \leq \frac{1}{2}\left(\sin A+\sin A^{\prime}\right)=\sin \frac{A+A^{\prime}}{2} \cos \frac{A-A^{\prime}}{2} \leq \sin \frac{A+A^{\prime}}{2}$
From (2.3) and (2.4) we have

$$
\begin{equation*}
\frac{x w_{1}}{\sqrt{R_{b} R_{c}}} \leq \sqrt{\frac{\Delta_{1}}{\Delta}} x \sin \frac{A+A^{\prime}}{2} \tag{2.5}
\end{equation*}
$$

By using the same method we have

$$
\begin{align*}
& \frac{y w_{2}}{\sqrt{R_{c} R_{a}}} \leq \sqrt{\frac{\Delta_{2}}{\Delta}} y \sin \frac{B+B^{\prime}}{2} \tag{2.6}\\
& \frac{x w_{3}}{\sqrt{R_{a} R_{b}}} \leq \sqrt{\frac{\Delta_{3}}{\Delta}} z \sin \frac{C+C^{\prime}}{2} \tag{2.7}
\end{align*}
$$

Combining (2.5), (2.6), (2.7) and by Cauchy's inequality we have

$$
\begin{aligned}
& \frac{x w_{1}}{\sqrt{R_{b} R_{c}}}+\frac{y w_{2}}{\sqrt{R_{c} R_{a}}}+\frac{x w_{3}}{\sqrt{R_{a} R_{b}}} \\
& \leq \sqrt{\frac{\Delta_{1}}{\Delta}} x \sin \frac{A+A^{\prime}}{2}+\sqrt{\frac{\Delta_{2}}{\Delta}} y \sin \frac{B+B^{\prime}}{2}+\sqrt{\frac{\Delta_{3}}{\Delta}} z \sin \frac{C+C^{\prime}}{2} \\
& \leq \sqrt{\left(\frac{\Delta_{1}}{\Delta}+\frac{\Delta_{2}}{\Delta}+\frac{\Delta_{3}}{\Delta}\right)\left(x^{2} \sin ^{2} \frac{A+A^{\prime}}{2}+y^{2} \sin ^{2} \frac{B+B^{\prime}}{2}+z^{2} \sin ^{2} \frac{C+C^{\prime}}{2}\right)} \\
& =\sqrt{\left.x^{2} \sin ^{2} \frac{A+A^{\prime}}{2}+y^{2} \sin ^{2} \frac{B+B^{\prime}}{2}+z^{2} \sin ^{2} \frac{C+C^{\prime}}{2}\right)}
\end{aligned}
$$

Let

$$
\theta=\frac{A+A^{\prime}}{2}, \phi=\frac{B+B^{\prime}}{2}, \varphi=\frac{C+C^{\prime}}{2} .
$$

Obviously $0<\theta, \phi, \varphi<\pi$ and $\theta+\phi+\varphi=\pi$, so θ, ϕ, φ can be angles of a triangle $A_{1} B_{1} C_{1}$. Applying Lemma 2.1 for the triangle $A_{1} B_{1} C_{1}$ we obtain

$$
x^{2} \sin ^{2} \theta+y^{2} \sin ^{2} \phi+z^{2} \sin ^{2} \varphi \leq \frac{1}{4}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{z y}{z}\right)^{2}
$$

with equality holding if and only if $x=y=z$ and P is the center of equilateral triangle $A B C$. The proof of Theorem 2.1 is completed.

3. SOME APPLICATIONS

In this section we give some applications of Theorem 2.1.
Noticed $r_{1} \leq w_{1}$ etc., we have

$$
\begin{equation*}
\frac{x r_{1}}{\sqrt{R_{b} R_{c}}}+\frac{y r_{2}}{\sqrt{R_{c} R_{a}}}+\frac{z r_{3}}{\sqrt{R_{a} R_{b}}} \leq \frac{1}{2}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{x y}{z}\right) \tag{3.1}
\end{equation*}
$$

By using AM-GM inequality we have $\sqrt{R_{b} R_{b}} \leq \frac{1}{2}\left(R_{b}+R_{b}\right)$, then from (3.1) we have

$$
\begin{equation*}
\frac{x r_{1}}{R_{b}+R_{c}}+\frac{y r_{2}}{R_{c}+R_{a}}+\frac{z r_{3}}{R_{a}+R_{b}} \leq \frac{1}{4}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{x y}{z}\right) \tag{3.2}
\end{equation*}
$$

By the same way of (3.2), the following inequality holds

$$
\begin{equation*}
\frac{x w_{1}}{R_{b}+R_{c}}+\frac{y w_{2}}{R_{c}+R_{a}}+\frac{z w_{3}}{R_{a}+R_{b}} \leq \frac{1}{4}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{x y}{z}\right) \tag{3.3}
\end{equation*}
$$

Let $x=y=z=1$ in (3.2), then

$$
\begin{equation*}
\frac{r_{1}}{R_{b}+R_{c}}+\frac{r_{2}}{R_{c}+R_{a}}+\frac{r_{3}}{R_{a}+R_{b}} \leq \frac{3}{4} \tag{3.4}
\end{equation*}
$$

In fact (3.4) was conjectured by Jian Liu in [5] and here we obtained a proof.
Theorem 3.1. If $x>0, y>0, z>0$, then

$$
\begin{equation*}
x^{2} R_{a}+y^{2} R_{b}+z^{2} R_{c} \geq 2\left(y z w_{1}+z x w_{2}+x y w_{3}\right) \tag{3.5}
\end{equation*}
$$

Proof. Alter $x \rightarrow x^{\prime} \sqrt{R_{b} R_{c}}, y \rightarrow y^{\prime} \sqrt{R_{c} R_{a}}, z \rightarrow z^{\prime} \sqrt{R_{a} R_{b}}(x, y, z>0)$ in (2.2) we obtain

$$
\begin{equation*}
x^{\prime} w_{1}+y^{\prime} w_{2}+z^{\prime} w_{3} \leq \frac{1}{2}\left(\frac{y^{\prime} z^{\prime}}{x^{\prime}} R_{a}+\frac{z^{\prime} x^{\prime}}{y^{\prime}} R_{b}+\frac{x^{\prime} y^{\prime}}{z^{\prime}} R_{c}\right) \tag{3.6}
\end{equation*}
$$

and then let $\frac{y^{\prime} z^{\prime}}{x^{\prime}}=x^{2}, \frac{z^{\prime} x^{\prime}}{y^{\prime}}=y^{2}, \frac{x^{\prime} y^{\prime}}{z^{\prime}}=z^{2}$ in (3.6), then (3.5) is obtained
Inequality (3.5) is similar to (1.2) that was conjectured by Jian Liu in [6]. Obviously,

$$
\begin{equation*}
x^{2} R_{a}+y^{2} R_{b}+z^{2} R_{c} \geq 2\left(y z r_{1}+z x r_{2}+x y r_{3}\right) \tag{3.7}
\end{equation*}
$$

Let $x=y=z=1$ in (3.5) and (3.7), then we have

$$
\begin{equation*}
R_{a}+R_{b}+R_{c} \geq 2\left(w_{1}+w_{2}+w_{3}\right) \tag{3.8}
\end{equation*}
$$

and also

$$
\begin{equation*}
R_{a}+R_{b}+R_{c} \geq 2\left(r_{1}+r_{2}+r_{3}\right) \tag{3.9}
\end{equation*}
$$

Inequality (3.9) is similar to (1.1).
Let $x=y=z=1$ in (2.2) and by AM-GM inequality we have

$$
\begin{equation*}
R_{a} R_{b} R_{c} \geq 8 w_{1} w_{2} w_{3} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{a} R_{b} R_{c} \geq 8 r_{1} r_{2} r_{3} \tag{3.11}
\end{equation*}
$$

Let $x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}$ in (3.7), then we have

$$
\begin{equation*}
\frac{R_{a}}{a^{2}}+\frac{R_{b}}{b^{2}}+\frac{R_{c}}{c^{2}} \geq \frac{1}{R} . \tag{3.12}
\end{equation*}
$$

References

[1] Erdős, P., Problem 3740. Amer. Math. Monthly, 42 (1935), 396
[2] Mordell L.J., Barrow, D.F., Solution 3740, Amer. Math. Monthly. 44(1937), 252-254
[3] D.S. Mitrinovic̀, J.E. Pečarć and V. Voloneć, Recent Advances in Geometric Inequalities, Dordrecht Netherlands Kluwer, 1989
[4] Bottema O. et al. Geometric Inequalities, Groningen Wolters-Noordhoff, 1969
[5] Jian Liu, A hundred unsolved Triangle inequality problems, Geometric inequalities in China, Nanjing Jiangsu Education Press, 1996
[6] Jian Liu, Two Applications of A Geometric Inequality, Journal of Kaifeng University, 1(2004), 88-91

```
Weihai Vocational College
Weihai 264200
Shandong Provikce, P.R.CHINA.
E-mail address: jackjwd@163.com
```

