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On the iterative solution of some decomposable nonlinear operator equations

VASILE BERINDE

ABSTRACT.
The aim of this note is to extend a recent result concerning the solvability of a nonlinear equation that can be decomposed under the form Au = Pu,
where one of the two operators A and P has richer properties than the other one.

1. INTRODUCTION

Let (X, d) be a metric space and let A, P : X → X be two nonlinear operators. In order to solve the operator
equation

Au = Pu (1.1)
S. Mukherjee and A. Biswas [16] used a seemingly implicit iterative process given by

Aun+1 = Pun, n = 0, 1, . . . (1.2)

where u0 ∈ X is the initial approximation.
Their main result, obtained basically by a fixed point argument, can be restated as follows.

Theorem 1.1. Let (X, d) be a complete metric space and let A, P : X → X be two operators, A is surjective, and such that the
following conditions are fulfilled
(i) d(Au,Av) ≥ αd(u, v), u, v ∈ X, α > 0;
(ii) d(Pu, Pv) ≤ β

[
d(A−1Pu, u) + d(A−1Pv, v)

]
, u, v ∈ X, β > 0;

(iii) 2β < α.
Then the sequence of iterations {un} starting from u0 ∈ X is uniquely defined by (1.2) and converges to the unique solution

of (1.1).

Equations of the form (1.1) do appear in several applicative contexts, see [25], [12], like, for example, in the case
of finding the solution of semi-linear elliptic boundary value problems. Papers dealing with applications of fixed
point techniques or with iterative methods for approximating fixed points and their applications to solving operator
equations abounds in literature, see for example the following recent journal papers: [4]-[14], [16]-[20], which are
closely related to the topic of the present paper, as well as the very recent monograph [2].

It is easy to notice that, by (i), it results that A is one to one and so, by the assumed surjectivity, it is bijective, hence
invertible. Denoting by A−1 its inverse, the equation (1.1) is equivalent to the next fixed point problem

u = A−1Pu (1.3)

and so, in order to solve the last one, we can use the Picard iteration associated to (1.3), that is, the explicit fixed point
iteration

un+1 = A−1Pun, n = 0, 1, . . . (1.4)
which, under the hypotheses of Theorem 1.1, coincides with (1.2).

In order to prove the convergence of the fixed point iterative method defined by (1.2), the authors of [16] used the
well known Kannan’s fixed point theorem [15].

It is the main aim of this paper to show that assumptions in Theorem 1.1 are too restrictive, on the one hand, and
further to prove some more general results of the same kind that extend Theorem 1.1 to larger classes of nonlinear dis-
continuous operators, on the other hand. Moreover, all these general theorems also provide the rate of convergence
for the method (1.2).

2. AN EXAMPLE

Let X = R be the real axis with the usual distance and A,P : R→ R be given by the following relations: Ax = 1
x ,

for x 6= 0 and A0 = 0; and Px = 0, if x ≤ 2 and Px = −2, if x > 2, respectively.
Then A is bijective, A−1 = A and A−1 is not Lipschitzian, that is, A does not satisfy (i) in Theorem 1.1.
Moreover, A−1 is not continuous but the discontinuos function T = A−1P , which is given by Tx = 0, if x ≤ 2 and

Tx = − 1
2 , if x > 2, fulfills the Kannan’s contractive condition [15]:

d(Tx, Ty) ≤ a [d(x, Tx) + d(y, Ty)] , x, y ∈ R,
with the contraction condition a = d 1

5 , see [2]-[5] for details and other recent developments.
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Condition (ii) in Theorem 1.1 is also satisfied, with β > 4
5 but condition (iii) cannot be checked in this case, because

α simply does not exist.
However, the equation Au = Pu has 0 as its unique solution and the iterative method (1.2) converges to that

solution, for any initial approximation u0 ∈ R.
Indeed, if we take u0 ≤ 2, then u1 = u2 = · · · = 0, while if u0 > 2, then u1 = − 1

2 and then u2 = u3 = · · · = 0. In
both cases, {un} converges to the solution.

So, the previous example shows that assumption (i) in Theorem 1.1 is too restrictive, while (iii) is prohibitive. It
is then the main aim of the next section to extend Theorem 1.1 by considering several more general contractive type
conditions. As expected, each of the next results, contained in Theorems 3.2-4.6 as well as in Corollary 4.1 can be
applied to the operator equation in the example above.

3. MAIN RESULTS

First of all we state a direct extension of Theorem 1.1 by removing assumptions (i) and (iii).

Theorem 3.2. Let (X, d) be a complete metric space and let A, P : X → X be two operators, such that A is bijective and there
exists b ∈ [0, 12 ) for which

d(Tu, Tv) ≤ b [d(Tu, u) + d(Tv, v)] , ∀u, v ∈ X, (3.5)

where we denoted T = A−1P .
Then the sequence of iterations {un} starting from u0 ∈ X is uniquely defined by (1.2) and converges to the unique solution

u∗ of (1.1) with the following error estimate

d(un+i−1, u
∗) ≤ αi

1− α
d(un, un−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.6)

where α = b/(1− b).
Moreover, the rate of convergence of the Picard iteration is linear, that is,

d(un, u
∗) ≤ α · d(un−1, u∗) , n = 1, 2, . . . (3.7)

Proof. The Kannan’s contractive condition (3.5) ensures, see [2], that T has a unique fixed point, say u∗, and that the
Picard iteration associated to T , that is, the iteration (1.2), converges to u∗.

Indeed, let {un}∞n=0 be the Picard iteration defined by (1.2) and starting from u0 ∈ X , arbitrary. Then by (3.5) we
have

d(un, un+1) = d(Tun−1, Tun) ≤ b
[
d(un−1, un) + d(un, un+1)

]
which implies

d(un, un+1) ≤
b

1− b
d(un−1, un) , for all n = 1, 2, . . . (3.8)

Denote α =
b

1− b
. Since 0 ≤ b <

1

2
, it results 0 ≤ α < 1.

Using now (3.8) we obtain by induction

d(un+k, un+k−1) ≤ αkd(un, un−1) , k ∈ N∗ (3.9)

which, for p > i, yields

d(un+p, un+i−1) ≤
αi(1− αp−i+1)

1− α
d(un, un−1) , n, p, i ∈ N∗. (3.10)

Now by letting p→∞ in (3.10) we obtain the desired estimate (3.6).
Again, by (3.5) we have

d(Tu, Tv) ≤ b
[
d(u, Tu) + d(v, Tv)

]
≤ b

{
d(u, Tu) +

[
d(v, u) + d(u, Tu) + d(Tu, Tv)

]}
which implies

d(Tu, Tv) ≤ b

1− b
· d(u, v) + 2b

1− b
d(u, Tu) . (3.11)

Take u := x∗, y := un−1 in (3.11) to obtain the estimate (3.7), that is,

d(un, u
∗) ≤ b

1− b
d(un−1, u

∗) .

�
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Note that the error estimate (3.6), which has been suggested by a result in [19], includes both the classical a priori
and a posteriori error estimates

d(un, u
∗) ≤ αn

1− α
d(u0, u1) , n = 0, 1, 2, . . .

d(un, u
∗) ≤ α

1− α
d(un−1, un) , n = 1, 2, . . .

as particular cases. They are obtained by putting n = 1 and then formally taking i := n in (3.6), respectively by taking
i = 1 in (3.6).

A similar result to that in Theorem 3.2 can be obtained by considering instead of Kannan’s contraction condition
(3.5), a similar but independent condition, i.e., the Chatterjea’s contractive condition [9].

Theorem 3.3. Let (X, d) be a complete metric space and let A, P : X → X be two operators, such that A is bijective and there
exists c ∈ [0, 12 ) for which

d(Tu, Tv) ≤ c [d(Tu, v) + d(Tv, u)] , ∀u, v ∈ X, (3.12)

where we denoted T = A−1P .
Then the sequence of iterations {un} starting from u0 ∈ X is uniquely defined by (1.2) and converges to the unique solution

u∗ of (1.1) with the following error estimates

d(un+i−1, u
∗) ≤ αi

1− α
d(un, un−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.13)

where β = c/(1− c).
Moreover, the convergence of the Picard iteration is linear, that is,

d(un, u
∗) ≤ β · d(un−1, u∗) , n = 1, 2, . . . (3.14)

Proof. Similarly to the proof of the previous theorem, by taking u := un−1 and v := un in (3.12) we have

d(un, un+1) = d(Tun−1, Tun) ≤ c
[
d(un−1, Tun) + d(un, Tun−1)

]
which gives

d(un, un+1) ≤ cd(un−1, Tun) ≤ c
[
d(un−1, un) + d(un, un+1)

]
and so we get

d(un, un+1) ≤
c

1− c
d(un−1, un) , for all n = 1, 2, . . .

The rest of the proof is similar to that of the previous theorem. �

Now we can establish a very general convergence theorem which unify both Theorem 3.2 and Theorem 3.3, on the
one hand, and also includes the well known contraction mapping principle, on the other hand.

Theorem 3.4. Let (X, d) be a complete metric space and let A, P : X → X be two operators, with A is bijective, for which
there exist a ∈ [0, 1), b, c ∈ [0, 12 ) such that for all u, v ∈ X, at least one of the following conditions is true, where we denoted
T = A−1P :
(i) d(Tu, Tv) ≤ ad(u, v);
(ii) d(Tu, Tv) ≤ b [d(Tu, u) + d(Tv, v)] ;
(iii) d(Tu, Tv) ≤ c [d(Tu, v) + d(Tv, u)] .
Then the sequence of iterations {un} starting from u0 ∈ X is uniquely defined by (1.2) and converges to the unique solution u∗

of (1.1) with the following error estimates

d(un+i−1, u
∗) ≤ δi

1− δ
d(un, un−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

where δ = max

{
a,

b

1− b
,

c

1− c

}
.

Moreover, the convergence of the Picard iteration is linear, that is,

d(un, u
∗) ≤ δ · d(un−1, u∗) , n = 1, 2, . . . (3.15)

Proof. We use basically the arguments used to prove the previous two theorems. �

If we are working in a normed linear space, then the equation (1.1) may be replaced by a non-homogeneous
equation of the form

Au = Pu+ v,

where v ∈ X is given, in such a way that all results established in the present section for (1.1) could be correspond-
ingly adapted to the new setting.
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Remark 3.1. If condition (i) in Theorem 3.4 holds, for all u, v ∈ X , then we get the classical mapping contraction
principle, which can be applied directly to the operator equations in [8], [11], [13] and [18].

If condition (ii) in Theorem 3.4 holds, for all u, v ∈ X , then we get the Kan-
nan’s fixed point theorem [15], while if condition (iii) in Theorem 3.4 holds, for all
u, v ∈ X , then we get the Chatterjea’s fixed point theorem [9], both of these classical results being completed
in Theorem 3.4 with the a priori and a posteriori error estimates, taken from the recent paper [5], but here in a new
condensed form inspired by a result in [19].

4. CONVERGENCE RESULTS IN THE CLASS OF ALMOST CONTRACTIONS

All convergence theorems given in the previous section could be further unified in a single and general result,
adapted from [4], see also [3]. The proofs are similar to the ones given in the papers [2] and [4].

Definition 4.1. [4] Let (X, d) be a metric space. A map T : X → X is called almost contraction or (δ, L)-almost
contraction if there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (4.16)

Remark 4.1. Due to the symmetry of the distance, the almost contraction condition (4.16) implicitly includes the
following dual one

d(Tx, Ty) ≤ δ · d(x, y) + L · d(x, Ty) , for all x, y ∈ X , (4.17)
obtained from (4.16) by formally replacing d(Tx, Ty) and d(x, y) by d(Ty, Tx) and d(y, x), respectively, and then
interchanging x and y.

Consequently, in order to check the almost contractiveness of T , it is necessary to check both (4.16) and (4.17).
It is quite easy to show that any mapping satisfying the assumptions in Theorem 3.4 is an almost contraction, see

[5] and [2]. For other examples of single-valued almost contractions, see [4] and [1].

We state now the first unifying result of all convergence theorems in the previous section.

Theorem 4.5. Let (X, d) be a complete metric space and let A,P : X → X be two operators, such that A is bijective and
T = A−1P is a (δ, L)-almost contraction.

Then the sequence of iterations {un} starting from u0 ∈ X is uniquely defined by (1.2) and converges to a solution u∗ of
(1.1) with the following error estimate

d(un+i−1, u
∗) ≤ δi

1− δ
d(un, un−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

Note that, although all the convergence theorems in Section 3 actually forces the uniqueness of the solution and all
these results are included in Theorem 4.5, however, under the assumptions of Theorem 4.5 we do not have generally
a unique solution, as shown by Example 1 in [4], in terms of fixed points. But, as we have shown there, it is possible
to force the uniqueness of the solution, by imposing an additional contractive condition, quite similar to (4.16), as
shown by the next theorem.

Theorem 4.6. Let (X, d) be a complete metric space and let A,P : X → X be two operators, such that A is bijective and
T = A−1P is a (δ, L)-almost contraction for which there exist θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θ · d(x, y) + L1 · d(x, Tx) , for all x, y ∈ X . (4.18)

Then the sequence of iterations {un} starting from u0 ∈ X is uniquely defined by (1.2) and converges to the unique solution u∗

of (1.1) with the error estimate

d(un+i−1, u
∗) ≤ δi

1− δ
d(un, un−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

Moreover, the rate of convergence of the Picard iteration is linear, that is,

d(un, u
∗) ≤ δ · d(un−1, u∗) , n = 1, 2, . . .

Another alternative contractive condition that implies uniqueness of fixed points of almost contractions has been
given in the very recent paper of Babu et al. [1]. By using it in the actual context we get the next result.

Corollary 4.1. Let (X, d) be a complete metric space and let A,P : X → X be two operators, such that A is bijective and
T = A−1P is a (δ, L)-strict almost contraction, that is, there exist θ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ θ · d(x, y) + L ·max{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, (4.19)

for all x, y ∈ X . Then the sequence of iterations {un} starting from u0 ∈ X is uniquely defined by (1.2) and converges to the
unique solution u∗ of (1.1) with the error estimate

d(un+i−1, u
∗) ≤ θi

1− θ
d(un, un−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .
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Moreover, the rate of convergence of the Picard iteration is linear, that is,

d(un, u
∗) ≤ θ · d(un−1, u∗) , n = 1, 2, . . .
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