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Sublinear mappings and metric regularity

ALEXANDRU V. BLAGA

ABSTRACT.
The metric regularity is a central concept in variational analysis. This concept is frequently used for the study of solutions to some generalized
equations, to variational inequalities and to parametrized constraints systems. Fundamental theorems of this field are Eckart-Young’s, Robinson-
Ursescu’s and Lyusternyk-Grave’s theorem. They have applications in single valuedness functions theory and also in set-valued mappings theory.
The purpose of this article is to analize the metric regularity property of some sublinear applications.

1. INTRODUCTION

Let X and Y be real Banach spaces with norms both denoted by ‖ · ‖ and closed unit balls BX and BY . Let F be
a mapping from X to Y , by which we will generally mean a set-valued mapping, indicated by F : X ⇒ Y , having
inverse F−1 : Y ⇒ X with x ∈ F−1(y) if and only if y ∈ F (x), and having effective graph, domain and range sets
given respectively by:

gphF = {(x, y)|y ∈ F (x)}, domF = {x|F (x), is nonempty}, rgeF = domF−1.

If F is single-valued we denote it F : X → Y . The terminology of ”generalized equations” has the form y ∈ F (x),
where x is a solution for a given y. We also have F−1(y) nonempty if and only if y ∈ rgeF . It is natural that the
solutions are changed by the restrictions on y.

It is known that the equation Ax = y, where A : Rn → Rn, has unique solution if A is nonsingular. In this case it is
known in what measure does perturbation of A lead to the same property. This result is contained in Eckart-Young
Theoreme (see [4]):

inf
{
‖B‖

∣∣ A+B singular
}
=

1

‖A−1‖
. (1.1)

A similar result is obtained also in the metric regularity domain, or in the case of a continuous linear mappings
F : X → Y for dimY = dimX < ∞. This kind of characterization will be stated in the following paragraphs. If
G : X → Y and y = G(x) then, the Lipschitz module is defined by

lipG(x) := lim sup
x,x′→x
x 6=x′

‖G(x)−G(x′)‖
‖x− x′‖

. (1.2)

The condition for lipG(x) <∞ is equivalent to the fact thatG is Lipschitz continuous around x. WhenG(x) = Ax+a,
which means a continuous linear mapping, it is obvious that lipG(x) = ‖A‖.

2. BACKGROUND IN METRIC REGULARITY

The concept of metric regularity appeared in an indirect way in 1930 at Lyuster-nik and in a context more explicit
in the works of Graves in 1950, evolving in optimization problems in an accelerated way after 1960 (see [5]). By Br(a)
we will understand the closed ball of center a and the radius r, Br(a) = a+ rBX and the distance from the x point to
a set C is denoted

d(x,C) = inf
{
‖x− x′‖

∣∣ x′ ∈ C} .
Definition 2.1. ([4]) A mapping F : X ⇒ Y is metrically regular at x for y if y ∈ F (x) and there exists k ∈ [0,∞)
along with neighborhoods U of x and V of y such that

d(x, F−1(y)) ≤ kd(y, F (x)), (2.3)

for all x ∈ U , y ∈ V .

The infimum of these k’s for which (2.3) holds is the modulus of metric regularity, denoted by regF (x | y). The
absence of metric regularity is denoted as regF (x | y) =∞. The inequality (2.3) has directly use providing an estimate
for how for a point x is from being a solution to the general equation for F and data y. The expression d(y, F (x))
measures the ”residual” when y 6∈ F (x). In the case of F (x) = Ax + a, where A is an n × n matrix and a ∈ Rn, the
modulus of metric regularity is the same for any x ∈ X , regF (x | y) = ‖A−1‖, for A nonsingular.
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Definition 2.2. ([3]) For a multifunction F : X ⇒ Y we say that, F−1 : Y ⇒ X has the Aubin property at y for x,
when there exists k ∈ [0,∞) along with neighborhoods U of x and V of y such that

F−1(y′) ∩ U ⊂ F−1(y) + k‖y′ − y‖BX , for all y, y′ ∈ V. (2.4)

An equivalent characterization with metric regularity is given by Theorem 2.1 ([4]).

Theorem 2.1. For a multifunction F : X ⇒ Y , let y ∈ F (x). Then F is metrically regular at x for y if and only if it’s inverse
F−1 : Y ⇒ X has the Aubin property at y for x. The infimum of this k’s is denoted lipF−1(y |x). The two Definition 2.1 and
2.2 are equivalent and

lipF−1(y |x) = regF (x | y). (2.5)

Another way of looking at the regularity modulus, regF (x | y) is by the property of F being linearly open, or
locally surjective at x for y which refers to the existence of k ∈ (0,∞) and a neighborhood O of y so that

F (x+ int krBX) ⊃ [F (x) + int rBY ] ∩O, (2.6)

for all x close to x and r > 0. These two are equivalent to the metric regularity of F at x for y with the same range of
values k, and thus it yields for the regularity modulus a third formula

regF (x | y) = inf{k ∈ (0,∞) | (2.4)holds}.
Again, details can be found in [3]. The general and local regularity criteria are proved in [5].

Corollary 2.1. ([3]) If F ∈ L(X,Y ) (space of continuous linear mappings), then for
(x, y) ∈ gphF we have:

regF (x | y) = inf
{
k ∈ (0,∞)

∣∣ kF (BX) ⊃ intBY
}
= (2.7)

= sup
{
d(0, F−1(y))

∣∣ y ∈ BY
}
.

Proof. Since F is linear, by (2.6) we have:

F (x) + rk intF (BX) ⊃ [F (x) + int rBY ] ∩O
and so it holds kF (BX) ⊃ intBY . On the other hand the relation (2.3) can by written as d(0, F−1(y) − x)≤ kd(y−
F (x), 0). Since F is linear F−1(y) − x = F−1(y−y′), where y′ = F (x) and so d(0, F−1(y − y′)) ≤ k‖y − y′‖, or
d(0, F−1(z)) ≤ k‖z‖, where z is from the neighborhood of O. It also results that the inequality holds for all z ∈ Y . �

Corollary 2.2. ([3]) If dimX = dimY <∞ and F ∈ L(X,Y ), then regF = ‖F−1‖. Moreover regF <∞ if and only if F
is a surjection.

Proof. From relation (2.7) it is obvious that

sup
{
‖F−1(y)‖

∣∣ ‖y‖ ≤ 1
}
= ‖F−1‖ = regF,

so it is the same for all x ∈ X . By the Banach’s open mapping principle we have that F is onto. �

Corollary 2.3. Consider X = Y = Rn, and A ∈ L(X,Y ), (x, y) ∈ gphF . If A has the property of metric regularity at x for
y, the A is noninjective. If A is a square matrix of n order, the equation Ax = y has at least two solutions.

Proof. By continuity, for y ∈ A(x), there exist neighborhoods U of x and V of y such that for all x ∈ U we have
A(x) ∈ V . Consider the neighborhoods in the definition of metric regularity. Thus (2.3) is satisfied for any k > 0,
since d(y,A(x)) = 0. This leads to d(x,A−1(y)) = 0 for x ∈ A−1(y), y ∈ A(x). If we choose y = y we also have the
x 6= x is a solution, which shows that A is not injective. By regA(x | y) = ‖A−1‖ < ∞, we deduce that A is onto
(Corollary 2.2). The system Ax = y, has at least two solutions. Obviously, if A is inversable, then the solution is
unique. �

Theorem 2.2. ([6]). If F : R → R and x ∈ R with F ′(x) 6= 0, then regF (x | y) =
1

|F ′(x)|
, where y = F (x), and if

F ′(x) = 0, the metric regularity property does not hold.

Corollary 2.4. If f : R → R and g : R → R so that reg f(x | y) = reg g(x | y1), for every x ∈ I (interval) with y1 = g(x)
and if f, g are differentiable of I , with non zero derivatives for all x ∈ I , then on the interval I the two functions satisfy
f(x) + εg(x) = constant, where ε ∈ {−1, 1}.

Proof. By reg f(x | y) = reg g(x | y), for all x ∈ I it results that |f ′(x)| = |g′(x)| and from f ′(x) 6= 0, g′(x) 6= 0 we
deduce that on this interval the sign is constant. If f ′(x) > 0, g′(x) > 0 for all x ∈ I it results that f ′(x) = g′(x),
and thus f(x) − g(x) = constant. If f ′(x) < 0, g′(x) < 0 we have the same conclusion, and for the case f ′(x) > 0,
g′(x) < 0, we have f(x) + g(x) = constant. �

Remark 2.1. The same conclusion follows by the Lagrange mean value theorem.
Generally, from regF (x | y) = regG(x | y) we can not get the conclusion that the two functions coincide.



10 Alexandru V. Blaga

Example 2.1. If F,G : R→ R, F (x) = ax+ b, G(x) = ax+ c, where b 6= c, then regF (x | y) =
1

|a|
= regG(x | y).

Theorem 2.3. (Robinson-Ursescu [3]). For a mapping F :X ⇒ Y and (x | y)∈gphF , if F has a closed convex graph, then
F is metrically regulated at x for y if and only if y ∈ int rgeF .

Remark 2.2. Consider X = Rn, Y = R and F (x) = f(x) + R+, where f : Rn → R ∪ {+∞} and R+ = [0,∞).
Suppose f is a l.s.c. proper convex function. We have F−1(α) =

{
x ∈ Rn

∣∣ f(x) ≤ α} ≡ lev≤αf and gphF = epi f ,
so convex and closed. According to the Theorem 2.3, F is metrically regular at x ∈ dom f for y = f(x), if and only
if f(x) ∈ int rgeF = (inf f,+∞). In other words if and only if there exists a point x0 ∈ Rn, such that f(x0) < f(x)
(Slater constraint qualification [1]).

For n = 1, we have that at points of extreme of a function f where f is differentiable too, function f does not have
the metric regularity property. In the points of minimum, it does not have the metric regularity property for convex
functions, and similarly, in the points of maximum for concave functions.

If f : R→ R, f ′(x) = 0 and y = f(x), then on a neighborhood V of x and U of y we have:

d(x, f−1(y)) =
1

|f ′(c)|
d(y, f(x)), x ∈ V, y ∈ U,

c lies between x and f−1(y).

The metric regularity module is reg f(x) =
1

|f ′(x)|
, so the function does not satisfy the metric regularity property on

x.

3. APPLICATIONS OF THE METRIC REGULARITY PRINCIPLE

Results characterizing the norm on a Hilbert spaces, Minkovski’s function pY , and the support function of a set
σC , are given in this paragraph.

Let H be a Hilbert space, with the scalar product 〈·, ·〉 and the norm generated by h : H → R, h(x) = 〈x, x〉 = ‖x‖2.
For a ∈ H\{0} the Fréchét differential of this function on a, is given by

Dh(a)x =

{
2 〈a, x〉 , when K = R
2 Re 〈a, x〉 , when K = C. (3.8)

For a Fréchét differential mapping, we have the following result:

Theorem 3.4. (Lyusternik-Graves [3]). For any continuous Fréchét differentiable mapping F : X → Y and for any (x, y) ∈
gphF , one has

regF (x | y) = regDF (x). (3.9)

Thus F is metrically regular at x for y = F (x) if and only if DF (x) is surjective.

The same result is expressed in [2] and [7].

Application 3.1. If h : Rn → R, h(x) = 〈x, x〉 = ‖x‖2, then

regh(a | y) = regDh(a)(y) = h(a) = 〈a | a〉 = ‖a‖2 =

n∑
1

a2i .

Since Dh(a) ∈ L(Rn,R), then from (2.7) we have:

regDh(a) = ‖Dh−1(a)‖ = sup
{
‖Dh−1(a)(y)‖

∣∣ |y| ≤ 1
}
.

If a = Dh−1(a)(y) it results

Dh(a)(a) = y ⇒
n∑
1

ai · ai = y

where a = (a1, a2, . . . , an), a = (a1, a2, . . . , an) and a 6= 0 ∈ Rn. For y = 0 we have
n∑
1

ai · ai = 0. Since a 6= 0,

exists j, i ∈ {1, 2, . . . , n} such that aj , ai 6= 0. Consider a =

(
0, 0, . . . ,

m

ai
, . . . ,

−m
aj

, . . . , 0

)
, and 〈a, a〉 = 0, ‖a‖ =

m

(
1

a2i
+

1

a2j

)1/2

⇒ ‖D−1h(a)‖ = ∞ = regh(a | y), so function h does not have the metric regularity property. If

ai 6= 0 and ak = 0, for k 6= i, consider a = (0, 0, . . . ,m, 0, . . . , 0), ak = m, m > 0, and ‖a‖ = m ⇒ ‖Dh−1(a)‖ = ∞ =
regh(a | y), so function h does have not the metric regularity property.
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Definition 3.3. ([4]) A mapping F : X ⇒ Y is positively homogeneous when
0 ∈ F (0) and F (λx) ⊃ λF (x) for λ > 0, or equivalently, when gphF is a cone in X × Y . It is sublinear when,
in addition F (x+ x′) ⊃ F (x) + F (x′), or equivalently, when gphF is a convex cone in X × Y . It it obvious that if F
is positively homogeneous, then F−1 is also homogeneous, and mutual.

Definition 3.4. ([10]) When X is a vector space over K, a mapping p : X → R is positively homogeneous if p(x) =
λp(x), for all λ > 0, x ∈ X , and sublinear when it is positively homogeneous and in addition p(x+ y) ≤ p(x) + p(y).

Definition 3.5. ([3]) For a positively homogeneous mapping F : X ⇒ Y the inner norm, is respectively ‖F‖− =
sup
x∈BX

inf
y∈F (x)

‖y‖. Inner norm can be applied to F−1, ‖F−1‖− = sup
y∈BY

inf
x∈F−1(y)

‖x‖.

Theorem 3.5. ([3]) If sublinear mapping F : X ⇒ Y and (x, y) ∈ gphF , then regF (x | y) ≤ regF (0 | 0) = ‖F−1‖−. So
F is metrically regulated everywhere if F is regulated from 0 to 0. In this case regF (0 | 0) = inf{k ∈ (0,∞)|F (x+ krBX) ⊃
F (x) + rBY , for all x ∈ X, r > 0} <∞. The least equality holds, if and only if F is a onto.

Proof. We will use for regF (x | y) the definition given in (2.6). From the positive homogeneous mapping we have
F (kBX) ⊃ intBY , if we choose (x | y) = (0 | 0).

On the other hand F (x + krBX) ⊃ F (x) + rF (kBX) ⊃ y + int rBY , where (x , y) ∈ gphF , which means
regF (x | y) ≤ regF (0 | 0) where (x , y) ∈ gphF . Since regF (0 | 0) = inf{k ∈ (0,∞)|F (kBX) ⊃ BY } and

‖F−1‖−= sup
y∈BY

inf
x∈F−1(y)

‖x‖ = inf{k ∈ (0,∞)|y ∈ BY it results F−1(y) ∩ kBX 6= φ}

so regF (0 | 0) = ‖F−1‖−. Now applying Theorem 2.3 (Robinson-Ursescu) we deduce that in fact regF (0 | 0) < ∞,
even more this inequality is equivalent toF ’s surjectivity. Next we will deduce a property of surjectivity Minkowsky’s
function on a convex absorbent set. We remind that if X is a vector space over K, Y ⊂ X is called absorbent if for
each x ∈ X there exists α > 0, with x ∈ αY . �

Definition 3.6. ([10]) If Y ⊂ X , Y is absorbent, the mapping pY : X → R defined by pY (x) = inf{α > 0|x ∈ αY },
x ∈ X is called Minkowsky’s function.

Proposition 3.1. ([10]) If Y ⊂ X is absorbent and convex, then
a) pY is positive and positive homogeneous;
b) Y ⊂ {x ∈ X | pY (x) ≤ 1};
c) {x ∈ X | pY (x) < 1} ⊂ Y ;
d) pY is sublinear.

Corollary 3.5. We have reg pY (x | y) ≤ reg pY (0 | 0) = 1, for Y = BX , and pY is onto.

Proof. By 2.1 Definition we have
d(x, p−1Y (z)) ≤ kd(pY (x), z).

Consider U = BX , V = (−1, 1), neighborhoods of O in X and 0 in R. For x ∈ U , z ∈ V we have d(x, y) ≤
kd(pY (x), pY (y)) where p−1Y (z) = y, so z = pY (y). By z ∈ V we deduce that pY (y) ≤ 1 which implies y ∈ Y due to
Proposition 3.1 c). We have

‖x− y‖ ≤ k|pY (x)− pY (y)| ≤ k,
as pY (x), pY (y) ∈ [0, 1].

In fact that, for x = O ∈ BX and z = 1 imply p−1Y (1) = y, pY (y) = 1, so y ∈ Y is necessary so that k ≥ 1, that is
reg pY (0 | 0) = 1. Due to Theorem 3.5 pY is onto. �

Next for C nonempty, closed and convex, from a real local convex space, we define

σC : X∗ → R ∪ {+∞}, σC(f) = sup{f(c)|c ∈ C}
called support function. In the case of C ⊂ r cl(BX) we have

|σC(f2)− σC(f1)| ≤ r‖f2 − f1‖ (3.10)

for all f1, f2 ∈ X∗ is checked, where X∗ is the dual space ([9]). The relation (3.10) expresses Lipschitz property with
the constant r, so the continuity of σC .

Corollary 3.6. From the metric regularity property, we have regσC(f | y) =
1

r
, where (f, y) ∈ gphσC , C ⊂ r · cl (BX).

Proof. By the metric regularity property we have

d(f, σ−1C (y)) = inf
{
‖f − g‖ | g ∈ σ−1C (y)

}
.

If σC(f) = α, then
d(y, α) = d(σC(g), σC(f)) = |σC(f)− σC(g)| ≤ r‖f − g‖.

We have ‖f − g‖ ≤ 1 ‖f − g‖ ≤ k · r‖f − g‖, for k ≥
1

r
. Choosing k ≥

1

r
the relation d(f, σ−1C (y)) ≤ k · d(y, σC(f)) is

verified. �
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Remark 3.3. We also use in the theorem statement the concept of local closedness for a set at a point, meaning that
there exists neighborhood of the point which has a closed intersection with the set.

For a set-valued mapping F : X ⇒ Y which is regulated on (x, y) ∈ gphF , we have a result of its perturbation,
given by:

Theorem 3.6. ([3]) Consider a set-valued mapping F : X ⇒ Y , (x , y) ∈ gphF and gphF locally closed, and a mapping
G : X → Y . If regF (x | y) < K <∞ and lipG(x) < λ < K−1, then

reg (F +G)(x | y +G(x)) <
K

1− λ ·K
.

The following result is also demonstrated.

Theorem 3.7. ([4]) If F : X ⇒ Y is locally closed on (x , y) ∈ gphF , then

inf
G:X→Y

{
lipG(x)

∣∣F +G is not metrically regulated from x on y +G(x)
}
≥

≥
1

regF (x | y)
.

Definition 3.7. ([8]) If g :X→Y recall that g is strict differentiable at x∈ int dom g with a strict derivative mapping
Dg(x) ∈ L(X,Y ) if lip (g −Dg(x))(x) = 0.

Proposition 3.2. ([4]) If F (x) = f(x) +K, where f : X → Y is strict differentiable on x, and K ⊂ Y is a closed convex cone
and y ∈ F (x), y = f(x), then

inf
G:X→Y
G(x)=0

{
lipG(x)

∣∣F +G is not metrically regulated from x on y
}
=

=
1

regF (x | y)
.

Definition 3.8. ([4]) If F0 : X ⇒ Y and F = F0 + G, G : X → Y with G(x) = 0 = lipG(x), then F0 is a strict
approximation of the first order of F on x.

In some cases it involves F0’s metric regularity.

Proposition 3.3. ([4]) If F0 : X ⇒ Y is a strict approximation of the first order of F : X ⇒ Y on x, and gphF is
locally closed on (x | y) ∈ gphF , then F is metrically regulated from x on y if and only if F0 is regulated at x to y, and
regF (x | y) = regF0(x | y).

Remark 3.4. We consider the cases in which F = f + M , where f : X → Y is continuous, and M : X ⇒ Y
has a closed graph and y ∈ F (x). If f is strict differentiable on x, then regF (x | y) = reg (f0 + M)(x | y), where
f0(x) = f(x) +Df(x)(x− x).

In particular case, when F = f , we have that F0(x) = F (x) +DF (x)(x− x) is an approximation of the first order
for F on x, and regF (x | y) = regDF (x | y).
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[9] Mureşan, M., Smooth analysis and applications, Ed. Risoprint, Cluj-Napoca, 2001 (in Romanian)

[10] Muntean, I., Functional analysis. Special chapters, Univ. ”Babeş-Bolyai”, Cluj-Napoca, 1990 (in Romanian)
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