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Some convergence results for two new iteration processes in uniformly
convex Banach space
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ABSTRACT.
In this paper, following the concepts in [7, 9], we shall establish some convergence results for nonexpansive operators in a uniformly convex Banach
space. Two new iteration processes will be considered for this purpose. Our results improve, generalize and extend those of [5, 8, 9, 10, 13, 14].

1. INTRODUCTION

Suppose that A = (ank) is an infinite, lower triangular, regular row-stochastic matrix, E a closed convex subset of
a Banach space and T a continuous mapping of E into itself and x1 ∈ E. Then, the general Mann iteration process
M(x1, A, T ) which was introduced in Mann [10] is defined by

vn =

n∑
k=1

ankxk, xn+1 = Tvn, n = 1, 2, · · · , (1.1)

If A is the identity matrix, then each sequence of M(x1, A, T ) becomes the sequence of Picard iterates of T at x1. It
was established in [10] that if either of the sequences {xn} and {vn} converges, then the other also converges to the
same point, and their common limit is a fixed point of T.

In [7, 9], it is said that the matrix A is segmenting for the Mann process if
an+1,k = (1− an+1,n+1)ank for k ≤ n. In this case, vn+1 lies on the segment joining vn and Tvn :

vn+1 = (1− dn)vn + dnTvn, n = 1, 2, · · · , (1.2)

where dn = an+1,n+1.
A segmenting matrix is determined by its sequence of diagonal elements. Some authors including [5, 13, 14] have

investigated the case dn = λ, 0 < λ < 1, while Mann [10] approximated the fixed points of continuous functions on
a closed interval of the real line using the segmenting matrix determined by dn = 1

n ∀ n. Dotson [8] considered the
case when dn is bounded away from 0 and 1. Groetsch [9] generalized the results of [5, 8, 10, 13, 14] in a uniformly
convex Banach space by employing (2) and assuming that A is a segmenting matrix for which

∞∑
n=1

dn(1− dn) =∞.

We shall give another definition of a segmenting matrix in the next section with a view to generalizing and ex-
tending Groetsch [9] and others mentioned earlier in this paper.

2. PRELIMINARIES

We shall introduce and employ the following iteration processes: Let E be a Banach space, Ti : E → E (i =
0, 1, · · · , k) selfmaps of E and x0 ∈ E. Then, define the sequence {xn}∞n=0 by

xn+1 = αn,0xn +
∑k
i=1 αn,iTiyn,

∑k
i=0 = 1, n = 0, 1, 2...,

yn =
∑s
j=0 βn,jTjxn,

∑s
j=0 βn,j = 1

}
(1.3)

k ≥ s, αn, i ≥ 0, αn, 0 6= 0, βn, j ≥ 0, βn, 0 6= 0, αn, i, βn, j ∈ [0, 1], where k and s are fixed integers and T0 is an
identity operator. If s = 0 in (3), we also obtain the following interesting iteration process in a Banach space:

xn+1 =

k∑
i=0

αn, i Tixn,

k∑
i=0

αn, i = 1, n = 0, 1, 2, ..., (1.4)

αn, i ≥ 0, αn, 0 6= 0, αn, i ∈ [0, 1], where k is a fixed integer and T0 is an identity operator.
(i) If s = 0, k = 1 in (3), then we have yn = βn, 0 xn = xn, βn, 0 = 1 and

xn+1 = (1− αn, 1)xn + αn, 1T1xn,
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which is the usual Mann iteration process with
1∑
i=0

αn, i = 1, αn, 1 = αn.

(ii) Also, if s = k = 1, in (3), we get

xn+1 = (1− αn, 1)xn + αn, 1T1yn
yn = (1− βn, 1)xn + βn, 1T1xn,

}
which is the usual Ishikawa iteration process with

1∑
i=0

αn, i =

1∑
i=0

βn, i = 1, αn, 1 = αn, βn, 1 = βn.

(iii) If s = 0, αn, i = αi and Ti = T i in (3), then we obtain the usual Kirk’s iteration process

xn+1 =

k∑
i=0

αi T
ixn,

k∑
i=0

αi = 1, n = 0, 1, 2, · · · , (1.5)

with yn = βn, 0 xn = xn, since βn, 0 = 1.
Eqn. (4) is also a generalization of Picard, Schaefer, Mann and the Kirk’s iteration processes. See Berinde [1, 2] for

detail on the various already existing fixed point iteration processes.
In this paper, we shall establish some convergence results for nonexpansive operators in a uniformly convex

Banach space using the newly introduced iteration processes defined in (3) and (4). We shall assume that A is a
segmenting matrix such that

∞∑
n=0

αn, 0(1− αn, 0) =∞.

Our results improve, generalize and extend those of [5, 8, 9, 10, 13, 14].

Lemma 2.1. (Groetsch [9]): Let X be a uniformly convex Banach space and let x, y ∈ X. If ||x|| ≤ 1, ||y|| ≤ 1 and
||x− y|| ≥ ε > 0, then ||λx+ (1− λ)y|| ≤ 1− 2λ(1− λ)δ(ε) for 0 ≤ λ < 1.

3. THE MAIN RESULTS

Theorem 3.1. Let E be a convex subset of a uniformly convex Banach space X and Ti : E → E (i = 0, 1, 2, · · · , k) non-
expansive mappings with at least a common fixed point. Let {xn}∞n=0 be the sequence defined by (3). Then, the sequence{
(I − T ji )xn

}∞
n=0

, for each j ∈ N, 1 ≤ j ≤ k, converges to 0 ∈ E for each i such that
∑∞
n=0 αn, 0(1− αn, 0) =∞.

Proof. If p is a common fixed point of Ti for each i, then

||xn+1 − p|| = ||αn, 0xn +

k∑
i=1

αn, iTiyn −
k∑
i=0

αn, iTip|| ≤

≤ αn, 0||xn − p||+
k∑
i=1

αn, i||yn − p|| =

= αn, 0||xn − p||+
k∑
i=1

αn, i||
s∑
j=0

βn, jTjxn −
s∑
j=0

βn, jTjp|| =

≤ αn, 0||xn − p||+
k∑
i=1

αn, i

s∑
j=0

βn, j ||Tjxn − Tjp|| ≤

≤ αn, 0||xn − p||+
k∑
i=1

αn, i

s∑
j=0

βn, j ||xn − p|| =

=

k∑
i=0

αn, i||xn − p|| = ||xn − p||.

Now,

||(I − T ji )xn|| = ||xn − T ji xn|| ≤ ||xn − p||+ ||p− T
j
i xn||

= ||xn − p||+ ||T ji p− T
j
i xn|| ≤ 2||xn − p||.
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Suppose on the contrary that
{
(I − T j)xn

}∞
n=0

does not converge to 0. Since

||xn − T ji xn|| ≤ 2||xn − p||,

we may assume that there is an a > 0, a ∈ (0, 1) such that ||xn − p|| ≥ a, for any n. If
{
(I − T j)xn

}∞
n=0

does not
converge to 0, then there is an ε > 0 such that

||xn − T ji xn|| ≥ ε, ∀ n.

Let

b = 2δ

(
ε

||x0 − p||

)
, xn =

xn − p
||xn − p||

and

zn =

∑k
i=1 αn, i(Tiyn − Tip)
(1− αn, 0)||xn − p||

Then, we have

||xn|| ≤
||xn − p||
||xn − p||

= 1

and

||zn|| ≤
∑k
i=1 αn, i||Tiyn − Tip||
(1− αn, 0)||xn − p||

≤

≤
∑k
i=1 αn, i||yn − p||

(1− αn, 0)||xn − p||
≤

≤
∑k
i=1 αn, i

∑s
j=0 βn, j ||xn − p||

(1− αn, 0)||xn − p||
=

=

∑k
i=1 αn, i||xn − p||

(1− αn, 0)||xn − p||
= 1,

since
k∑
i=1

αn, i = 1− αn, 0.

Hence, we have from (3) that

||xn+1 − p|| = ||αn, 0xn +
∑k
i=1 αn, iTiyn −

∑k
i=0 αn, iTip|| =

= ||(||xn − p||)[αn, 0 (xn−p)
||xn−p|| + (1− αn, 0)

∑k
i=1 αn, i(Tiyn−Tip)

(1−αn, 0)||xn−p|| ]||
≤ ||xn − p|| ||αn, 0xn + (1− αn, 0)zn||.

(3.6)

Using Lemma 2.1 in (6) yields

||xn+1 − p|| ≤ [1− αn, 0(1− αn, 0)b]||xn − p||
= ||xn − p|| − bαn, 0(1− αn, 0)||xn − p||
≤ ||xn−1 − p|| − bαn−1, 0(1− αn−1, 0)||xn−1 − p|| − bαn, 0(1− αn, 0)||xn − p||

Repeating this process inductively leads to

a ≤ ||xn+1 − p|| ≤
≤ ||x0 − p|| − b[α0, 0(1− α0, 0)||x0 − p||+ α1, 0(1− α1, 0)||x1 − p||+ · · ·

...+ αn, 0(1− αn, 0)||xn − p|| ]

= ||x0 − p|| − b
n∑
r=0

αr, 0(1− αr, 0)||xr − p||

≤ ||x0 − p|| − ab
n∑
r=0

αr, 0(1− αr, 0)

Therefore, we obtain

a[1 + b

n∑
r=0

αr, 0(1− αr, 0)] ≤ ||x0 − p||,

from which it follows that

a ≤ ||x0 − p||
1 + b

∑n
r=0 αr, 0(1− αr, 0)

→ 0 as n→∞,
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leading to a contradiction. Therefore, we have a = 0. Hence,

lim
n→∞

||xn − T ji xn|| = 0,

for each i. �

Remark 3.1. Theorem 3.1 is a generalization of the results of [5, 8, 9, 10, 13, 14].

Theorem 3.2. Let E be a convex subset of a uniformly convex Banach space X and Ti : E → E (i = 0, 1, 2, · · · , k) non-
expansive mappings with at least a common fixed point. Let {xn}∞n=0 be the sequence defined by (4). Then, the sequence{
(I − T ji )xn

}∞
n=0

, for each j ∈ N, 1 ≤ j ≤ k, converges to 0 ∈ E for each i such that

∞∑
n=0

αn, 0(1− αn, 0) =∞.

Proof. The proof of this theorem is similar to that of Theorem 3.1. �

Remark 3.2. Theorem 3.3 is also a generalization of the results of [5, 8, 9, 10, 13, 14].
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