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Singularity of a boundary value problem of the elasticity equations in a
polyhedron

ABSTRACT.

In this work we are looking at the study of the regularity of a boundary value problem governed by the Lamé equations in a cylindrical domain.
By studying the longitudinal displacement singularity along an edge and the perpendicular displacement singularity to the same edge, we arrive
to describe the behavior of singular solutions of the Lamé equations in a polyhedron.

1. INTRODUCTION

Let Q2 be a homogeneous, elastic and isotropic medium occupying a bounded domain in R?, limited by straight

polygonal boundary I' which is supposed to be regular, I' = L]J I';, IsNTy = @, Vi # j, where I'; =]S;,5;11], and
i=1

S; are the different corners of Q. w;,0 < w; < 2m, j =0,...,J ]represent the opening of the angle that makes I'; and

I'j41 toward the interior of €2, 7’ and 77 represent the unit outward normal vector and the tangent vector on I';

respectively.

L is the Lamé operator defined by:

Lu = pAu+ (A + p) Vdivu
u, f represents the displacement vector, and external density force respectively. o(u) is the stress tensor given by
Hook’s law using Lamé coefficients A and g (A > 0 and A+ p > 0)
O'(U) = (Uij (u))ij/ where 0ij (U) = QILLEZ'J' (’LL) + )\tr(e(u))éw
where §;; is the Kronecker symbol and ¢, (u) = 1 (0;2; + 8;;) is the linearized tensor of deformation. We will suppose
vo = 57—, where v designate the Poisson coefficient suchas 0 < v < 3.

In the case of a polyhedron, we consider a domain @ of R?, limited by straight polyhedral boundary X. It is
considered a particular edge, denoted A, of X. It is assumed to fix ideas that A is carried by the axis 2 Oz, the
adjacent faces I'g and I',, are carried by the plans {y = 0} and {y = az} respectively. The dihedral so definite has for
measure w toward the interior of Q.

It is indispensable to signal that the results that will be demonstrated in this work are not verified to the corners
neighborhood. That's why, we fixe an opened interval I , whose closure is interior to A. Besides we fixe an neighbor-
hood U of the origin O in Q N {z = 0}, such as U x T does not have any corners of Q. ' = (1,72,13)" = (1,73)" and
7 = (11,79,73)" = (1, 73)" represents the unit outward normal vector and the tangent vector on X respectively.

We consider the corresponding cylinder @ = Q x R which has an edge along 2’ Oz.

For f € L?(Q)’, the problem considered here consists of finding the displacement field u : Q — R3, if possible
in H? (Q)®, satisfying:

Lu+ f=0in@
(P) { (u.n/, (U(u).nl) .7',> =0onXx ’
or equivalent variational form:
(Pv) { Find u € V such as
a(u,v) =£(v), forallv e V
where

4,j=1

a(u,v) = 23: /Uij(u)sij(v)dx, L(v) = i:/fividx,
Q =
vV o= {veHl (Q)%; un =0, in 2} :

It is assumed that u, therefore as f, is to bounded support in the direction of z.
To describe the behavior of u along an edge, it is necessary to introduce, as in P. Grisvard [5], the following three
convolution kernels, in z:
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rv1+v

K r\T =
A (7:2) m[r2+ (1+v)2?
T
Ky 0 (1, 2) m
rv1+v
Kypz(rz) =

Tl tv)r2+ 22

1.1. Singular solutions in a polygon. In B. Benabderrahmane [1] and P. Grisvard [8], found that the solutions of the
problem (P) in a polygonal domain @ (in the case f = 0) are characterized by the following transcendent equation
(1.1) :
sin? aw = sin®w, o # 0, # *1 (1.1)

where Rea € ]0,1].

It is easy to verify that the solutions of the transcendent equation (1.1) are given by

Ozgzgjil,eEN*.
w

Besides they are simple if w # %T, k € Z*, else they are double. By the simple calculations we find that:

*Ifw < g, then u € H? (Q)*;

*Ifw= g, w, it was a simple poles o = 0, £1;

xfw= 3%, then oo = é is a double root.
In the other cases, there is only one simple real root whenw € |7, 22 [{J ] 2F, 27 [; and no solution whenw € | Z, 7.
It is known in B. Benabderrahmane [2] that there are linearly independent functions S, and S; € V,suchas S,,

S ¢ H?(Q)* and LS, LS., € L? () and as the Lamé operator is an isomorphism of

Sp (H2 ()2, Sa, 5;) AV on L2 (Q)°
where the Sp symbol designates the vector space generated by elements that are contained in parentheses that follow.
These functions are given explicitly, in B. Benabderrahmane [2], by S, (r,0) = r*¥,, () such as

[(po — p1)sin (o + 1) w — 2p1 sin(a — 1)w] cos af+

B )= 0 [y 4 poysin (1720 3oy il st 2
—(po+ p1)sin(a+ 1)wsin(a—2)0

where pg =1y (@« —1) — 2, po = v (a+1) + 2.

2. SINGULARITY IN A POLYHEDRON

The behavior of the singular solutions of Lamé equations in a polyhedron is described by the following theorem:

Theorem 2.1. Let w < 2m, u € V. For f € L*(Q)®, there are functions C,, C,,,C, and C;, such as Cy,C., € H*=*(R),
C,.C. € H'= (R) verifying

U, — > (K (r2) *«Co) %%y, (0) —
a, 0<Rea<1 2
, c H* (U xR 1.3
— S (K (r2)* Ca> o, , (6) ( ) (1.3)
a, 0<Rea<1
Uy — > (K x 0 (1,2) x Co) 7% 9 (6) —
a, 0<Rea<1 2
, € H2 (U xR (1.4)
> (K)\,M,g (r, z) * C’a) r®, 9 (0) ( )
a, 0<Rea<1
uz— >, (Kaue(rz)xCp)rev, (0) —
o', 0<Rea’ <1 2
, € H*(U xR (1.5)
> (KA%Z (r,z) * Ca,) ro® . (6) ( )
o', 0<Rea’ <1

where the functions

are given by (1.2) and
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The functions ¥,, , (9) , ¥, ¢ (8) represents the radial part, angular part of ¥,, (#) respectively. The functions ¥/ (6)
are the first singular functions of the Laplace operator in a polygon.

The first sums in (1.3) and (1.4) are extended to all «; Rea € ]0, 1 simple roots of the equation (1.1), while the
second sums are extended to all the double roots of the same equation. In (1.5), the first sums are extended to all
o simple roots of the corresponding transcendent equation to the Laplace operator with the boundary conditions
associated and the second sums are extended to all " double roots of the same equation.

The symbol * represents the convolution in relation to z. The indices 7,0 and z in the relations (1.3), (1.4) and
(1.5) are, respectively, the radial component, angular and longitudinal vector by using cylindrical coordinates.
For more details, we are going to give the similar of the Theorem 2.1, in the following cases:
e Case of simple roots such as 0 < Rear < 1;
e Case of double roots such as 0 < Rea < 1;
e Case of the fissure (w = 2m).

Theorem 2.2. We assume that w € |m, 32 [|J]3E,2x[. Let u € V be a variational solution, is to bounded support in the

direction of z. For all f € L?(Q), there are functions C and C,, such as
CeH"%(R),C, € H*(R) and

Up— Y (K e (r,2) % Co ) 7%, (0) € H? (U x R)
a, 0<a<1

ug — >, (e (r,2)xCa)r®Wq(0) € H? (U x R)
a, 0<a<1

ug — (K p,z (r,2) * C)re cos (£6) € H? (U x R)
where o = X + 1, ¢ € N* are the simple roots of the equation (1.1).
3% o = & is a double root of the equation (1.1). Therefore, it is necessary to modify the result of the
Theorem 2.2 as follows: there are two constants C' and C” such as

For w =

1

C’eHz( ),C € H5 (R) and

— (K (1, z)*C)rﬂI)% (0) € H? (U x R)
ug — (K 0 (1, z)*C)m(I)%e(H) € H? (U x R)

us — (K)\%Z (r,z) * )m cos (23—9) € H*(U xR) .

In the case w = 2, we obtain the existence of the functions C' and C" of H= (R) such as

— (K (1,2) % C) 1@y . (0) € H* (U x R)
ug — (K0 (r,2) x C) /1@1 4 (0) € H? (U x R)
ug — (K,\,H,z (r,2) *O/) Vreos(4) e H2(U xR) .

The demonstration is essentially based on the study of the following points:

e Decompose every problem in plane part, v and ug, and in longitudinal part, us.
e Study of the longitudinal displacement singularity along an edge.
e Study of the perpendicular displacement singularity along an edge.

We begin by
2.1. Problem decomposition. We start by studying the Lamé solutions in the tridimensional domain ¢ = €2 x R that
presents an edge along z Oz.
For f € L? (Q)®, let u € V be a variational solution of (P), then we have
a(u,v) = £(v), where

3
a(u,v) = Z /aij(u)aij(v)dxldargdarg

1,j=1 Q

3
v) = Z/fividxldxgdxg )
i=1
Q

The invariance of the problems in relation to z implies the following partial regularity result:

Lemma 2.1. We have , ,
0“u  O0%u 9%u
Z e I?
207" Dyd: " g2 © @’
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Let’s decompose the fields u and f to the plane components and longitudinal component by posing;:

u=(v,u3)’ and f = (g, f3)"

where v and g are vector fields of dimension 2 (also depend of z).
We will use the following notations:

e Ay: Laplace in dimension 2 (variables z1, x2).
e v/2: Gradient in dimension 2 (variables x1, x2).
o Divy: Divergence in dimension 2 (variables z1, z2).

Using these notations the Lamé equations in dimension 3 become
0*v )
<A2v + % 2) + (A +p) V2 (Divgv + ;3>

0%u 0 Oug
<A2U3+ 8 2>+(A+ﬂ)&(DZU2U+a> fd .

Thanks to Lemma 2.1, it can see that

g

0%v ) 0
<A2”+ 92 2) + (A4 p) V2 Divov = g — (A + 1) V2 <au;> eL2(Q)°

2 62u3

o 5 i (1.6)
(A2u3+ 022 > +(A+N)w :fB—()\‘FM)g(DiWU) €L*(Q) .

This formulation has the advantage to decouple v and u3. The the left member in the first equations in (1.6)
concerns the plane components of u, while the right member concerns the longitudinal component.

2.2. Study of the boundary conditions. It is assumed that
77' = (771,772,773)t = (77a773)t and 7 = (7—137_2;7_3)t = (, 73)t
The condition u.n" = 0 becomes usn; = —v.1. As 13 = 0 and 73 = 1 then
u.n/ =0 < v.n = 0 (no condition on u3) .

Concerning the condition on (Z (u) .n/>, we set u = (v,0) + (0,0, u3). Using the relations o;; (u) = 2ue;; (u) +
Atr (e (w)) 045, 4,5 = 1,2, 3, it results

ou ou ou ou
o11 (v,0) = (A + p) 371 + )\a—y27 012 (v,0) = 091 (v,0) = p (8; + a;)
ou ou
013 (v,0) = 031 (v,0) = Maizl, 023 (v,0) = 032 (v,0) = H*a;;
ou ouq ou ou
0'22(1),0) = ()\4’ )87y2+>\ 8 5 033(’[),0) _/L<1+a;>
aU3
011 (0,0,ug) = 022 (0,0, u3) = AEMTM (0,0,u3) = 021 (0,0,u3) =0,
ou ou
013 (0,0,u3) = 031 (0,0, u3) = )\873:3’ 023 (0,0,u3) = 032 (0,0, u3) = )\87;

(9’U,3

033 (Ovoaufi) ()‘+ ) 82

Using the fact that 3 = 0 and 73 = 1, these last relations involve

(0.(0,0) 1) 7 = (0 (0) m) 7+ i () = (o (0) ) 7
(6(0,0,u3).m). T=A— .

Therefore, we have the conditions that must verify by each components of u = (v, u3) for the considered boundary
conditions:

u.n/ = 0 < v.n = 0 and no condition on ug

(Z(u).n/>.7'l:0(:><2(v) 77) T——/\aal;"g’zo.
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2.3. Study of the longitudinal displacement along an edge. In (1.6) the second equation is none other than the
Laplace equation in @), using a change of scale in z. By posing

z= )\‘4‘2#2
we obtain ,
0 . Ous 0“us
A A+2u)— (D — | =u A =u .
p Do uz + (A + M)8z< 100 + 82) M 2U3+Ma(z,)2 B AUz

This result attached to the results of the preceding paragraph permits us, for the longitudinal displacement part,
to deduce the following problem:

Auz = f3inQ
(1) % =hono
on

where h € H=2 (U x R), thanks to Lemma 2.1.
The study of this problem is already made by P. Grisvard [10]. The application of results of P. Grisvard [9], con-
cerning the Laplace equations, gives after change of scale in z the following decomposition of u3:

us— > (Kapuz(r,2)«C)r*0, () € H* (Q)

o, 0<Rea<1

where C € H'= (R) and the functions ¥, (9) are the first singular functions of the problem (P;), which are given,
see P. Grisvard [8], by ¥, (6) = cos af where K ,, , (, z) represents the kernel of the Laplace operator. This establishes
the part of the Theorem 2.2 that concerns the longitudinal part us.

2.4. Study of the perpendicular displacement singularity along an edge. We analyze the behavior of v from the
first equation of (1.6):

0% ‘ dug 2 /3
1% A2U+@ + (A + 1) V2 Divgv = g — (A + p) V2 B €L (Q) .

To simplify we note h the second member of this equation. Using the partial Fourier transformation in z, we see
that the previous equation amounts to the following problem which is governed by the Lamé system resolving:
Lo — ul®%=nh.
Concerning the boundary conditions, we can see that the conditions remain unaltered, we will be able to have the

same conditions but non homogeneous. However by subtracting v to a field u € H? (Q)? verifying the same condi-
tions to limits that v, consequently the field w = v —u verifies the homogeneous conditions. To simplify the notations,
we will note this field again by v.

The uniqueness of the variational solution implies that v € D, where

Dy = {u € sp <H2 ()%, Sa, S;),‘ (u.n/, (a(u).n) .’7'/) =0, on E}
therefore

U= AR + § Coz%a

a, 0<Rea<1

where U € H? (Q)2 and C, € R, for all ¢ € R. Moreover, according B. Benabderrahmane [2], we have the following
inequalities:

C1oml 2y + ¢ PRl gy + IRl gy < C|[A]
> |t <clfp

a, 0<Rea<1

L2(Q)?

L2(Q)?
From where it comes that o € H? (Q)* and Co€ H'- (R). Besides the following decomposition:

U= AR + § Coz%a

a, 0<Rea<1

which is equivalent by proceeding the inverse Fourier transformation, taking account the fact that m = f./g\, to

Vpr = ('UR)T + Z (K)\,;L,'r‘ (7", Z) * CO&) (Sa)r

a, 0<Rea<1

vg = (vr)g+ D (Ko (r2)*Ca)(Sa)g
a, 0<Rea<1
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because

—ric|
K (1,¢) = eViFs and Ko (r,¢) = e "l¢l

and by definition

—rl¢|

(Sa), = V= (Sa), and (Sa)y = ¢ (Sa),

This establishes the first two inclusions of the Theorem 2.2.

(1]
(2]
(3]
(4]
(5]
6]
(7]

(8]
(9]
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