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Shape preserving quadratic interpolation at Greville abscissae

PAUL A. KUPÁN

ABSTRACT.
The paper presents a method to construct a C1 quadratic approximation function that combine the shape preserving properties of the variation
diminishing spline function with the approximation properties of the interpolation function.

1. INTRODUCTION

There are many techniques to built a shape preserving interpolant. To achieve this we use the properties of the
variation diminishing spline function.

We will approximate a given function f : [a, b] → R with a quadratic spline function from the space S3,t ={∑n
j=1 αjNj,3 : αj ∈ R, j = 1, n

}
, where Nj,3(x) = (tj+3 − tj)

[
tj , ..., tj+3; (· − x)

2
+

]
are the quadratic B-spline func-

tions corresponding to the nondecreasing knot sequence (ti)
n+3
i=1 : t1 = t2 = t3 = a < t4 < ... < tn < b = tn+1 =

tn+2 = tn+3.
If we know the interpolation points (xi, yi)

n
i=1

f (xi) = yi, i = 1, n (1.1)

then the n-vector (αi)
n
i=1 can be computed from the linear system

n∑
j=1

αjNj,3(xi) = f (xi) , i = 1, n. (1.2)

The system has exactly one solution if the collocation matrix (Nj,3 (xi))
n
i,j=1 is invertible.

Theorem 1.1. (Schoenberg-Whitney) The matrix (Nj,3 (xi))
n
i,j=1 is invertible if and only if

(Ni,3 (xi)) ̸= 0, i = 1, n,

i.e., if and only if
ti < xi < ti+3, all i = 1, n. (1.3)

The proof of this theorem can be found in [6].
If we choose the vector (αi)

n
i=1 :

αi = f (t∗i ) , i = 1, n, (1.4)
with (t∗i )

n
i=1 a sequence of average points given by

t∗i =
ti+1 + ti+2

2
, i = 1, n, (1.5)

then we obtain the so called variation diminishing spline

V f (x) =
n∑

j=1

αjNj,3(x), x ∈ [a, b], (1.6)

whose shape preserving properties are often used in the Computer Design. The V f approximant is not an interpolant
but rather a smoothing approximant.

Our aim is to obtain a B-spline coefficient sequence (αi)
n
i=1 that fulfil both relations (1.2) and (1.4).

We study the case of monotone (increasing) interpolation data:

y1 < y2 < ... < yn.

It is known that in generally for a given interpolation knots sequence (xi)
n
i=1, it is impossible to find a sequence

(ti)
n+3
i=1 such that xi =

ti+1+ti+2

2 , i = 1, n. We will expand the interpolation points and according to this we construct
the demanded sequence of coefficients.

Theorem 1.2. If the sequence of B-coefficients (αi)
n
i=1 is monotone then the quadratic spline V f given in (1.6) is also monotone.
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Proof. From (1.6) we have:

(V f)
′
(x) =

n∑
j=1

αjN
′
j,3(x).

By derivation the B-spline functions Nj,3

N ′
j,3 (x) = (tj+3 − tj)

[
tj , ..., tj+3;

(
(· − x)

2
+

)′]
=

= 2 (−1)
([
tj+1, ..., tj+3; (· − x)+

]
−
[
tj , ..., tj+2; (· − x)+

])
= 2

(
Nj,2 (x)

tj+2 − tj
− Nj+1,2 (x)

tj+3 − tj+1

)
we obtain

(V f)
′
(x) = 2α1

[
t1, t2, t3; (· − x)+

]
+

n∑
j=2

2 (αj − αj−1)
Nj,2 (x)

tj+2 − tj
−

−2αn

[
tn+1, tn+2, tn+3; (· − x)+

]
= 2

n∑
j=2

(αj − αj−1)
Nj,2 (x)

tj+2 − tj
.

If the function f is supposed to be monotone then the difference(
f
(
t∗j
)
− f

(
t∗j−1

))
= (αj − αj−1)

preserves the sign for all j = 2, n. It results that the function V f has the same monotonicity as f . �

2. KNOTS SELECTION

Let be a knots sequence (ti)
2n+2
i=1 where each knot is of multiplicity two, excepting the terms at extremities which

have multiplicity three:

t1 = t2 = t3 < t4 = t5 < ... < t2n−2 = t2n−1 < t2n = t2n+1 = t2n+2. (2.7)

More, we take this knots to be equal with the interpolation abscissae xi :

t2i = t2i+1 = xi, i = 1, n.

Then we obtain for the average points (1.5):

t∗2i−1 = xi, (2.8)

t∗2i =
t2i+1 + t2i+2

2
, for all i = 1, n. (2.9)

So (t∗i )
2n−1
i=1 is an extended sequence of the original abscissae (xi)

n
i=1. More, this sequence (t∗i )

2n−1
i=1 satisfy also the

Schoenberg-Whitney condition:
ti < t∗i < ti+3, for all i = 1, 2n− 1. (2.10)

We extend also the sequence of ordinate (yi)
n
i=1 to (y∗i )

2n−1
i=1 :

y∗2i−1 : = yi, i = 1, n, (2.11)

y∗2i : =
1

2
y∗2i−1 +

1

2
y∗2i+1, i = 1, n− 1, (2.12)

and we search a sequence (α∗
i )

2n−1
i=1 such that the variation diminishing spline

V f (x) =
2n−1∑
j=1

α∗
jNj,3(x), (2.13)

with α∗
j = f

(
t∗j
)
, j = 1, 2n− 1, should become an interpolation function, that is

V f (t∗i ) = y∗i , i = 1, 2n− 1.

Lemma 2.1. The collocation matrix (Nj,3 (t
∗
i ))

2n−1
i,j=1, for the knots (ti)

2n+2
i=1 given in (2.7) and the abscissae (t∗i )

2n−1
i=1 given in

(2.8), (2.9) has the following bounded form

(Nj,3 (t
∗
i )) =


1 0 0 0 0 . . . 0
1
4

1
2

1
4 0 0 . . . 0

0 0 1 0 0 . . . 0
0 0 1

4
1
2

1
4 . . . 0

. . . . . . .
0 0 0 0 0 . . . 1

 (2.14)
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and it has the inverse

(Nj,3 (t
∗
i ))

−1
=


1 0 0 0 0 . . . 0

−0.5 2 −0.5 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 −0.5 2 −0.5 . . . 0
. . . . . . .
0 0 0 0 0 . . . 1

 . (2.15)

Proof. If j = 2k + 1, k = 1, n− 1 then

Nj,3(x) = (tj+3 − tj)
[
tj , ..., tj+3; (· − x)

2
+

]
=

= (t2k+4 − t2k+1)
[
t2k+1, t2k+2, t2k+3, t2k+4; (· − x)

2
+

]
=

= (t2k+4 − t2k+1)
[
t2k+1, t2k+2, t2k+3, t2k+4; (· − x)

2
+

]
=

= (t2k+4 − t2k+1)
[
t2k+1, t2k+2, t2k+3, t2k+4; (· − x)

2
+

]
=

=
[
t2k+2, t2k+3, t2k+4; (· − x)

2
+

]
−
[
t2k+1, t2k+2, t2k+3; (· − x)

2
+

]
=

=
1

t2k+4 − t2k+2

([
t2k+3, t2k+4; (· − x)

2
+

]
−
[
t2k+2, t2k+3; (· − x)

2
+

])
−

− 1

t2k+3 − t2k+1

([
t2k+2, t2k+3; (· − x)

2
+

]
−
[
t2k+1, t2k+2; (· − x)

2
+

])
=

=
1

t2k+4 − t2k+2

(
(t2k+4 − x)

2
+ − (t2k+3 − x)

2
+

t2k+4 − t2k+3
+ 2 (t2k+2 − x)+

)
−

− 1

t2k+3 − t2k+1

(
−2 (t2k+2 − x)+ −

(t2k+2 − x)
2
+ − (t2k+1 − x)

2
+

t2k+2 − t2k+1

)
,

and from here for x = t∗2k+1 = t2k+2 = t2k+3 we obtain

N2k+1,3(t
∗
2k+1) =

1

t2k+4 − t2k+2

((
t2k+4 − t∗2k+1

)2
t2k+4 − t2k+3

)
= 1.

Also for x = t∗2k+2 =
t2k+3 + t2k+4

2

N2k+1,3(t
∗
2k+2) =

1

t2k+4 − t2k+2


(
t2k+4 − t2k+3+t2k+4

2

)2
t2k+4 − t2k+3

 =

(
1

2

)2

=
1

4
.

In a similar way we obtain N2k+1,3(t
∗
2k) = 1/4, N2k,3(t

∗
2k) = 1/2, all other values are zero. �

Because the knots (t∗i )
2n−1
i=1 satisfy the Schoenberg-Whitney condition (2.10), there is only one interpolation spline

function; its coefficients will be
(α∗

i )
T
i = (Nj,3 (t

∗
i ))

−1
i,j ·

(
y∗j
)T
j
. (2.16)

Then it results

α∗
i =

{
y∗i , i = 1, 3, ..., 2n− 1

−0.5y∗i−1 + 2y∗i − 0.5y∗i+1, i = 2, 4, ..., 2n− 2
. (2.17)

If we use the relation (2.12) then α∗
i = y∗i , for all i = 1, 2n− 1.

Theorem 2.3. The quadratic variation diminishing spline function (2.13) is a monotone interpolant.

Proof. As we have seen the coefficients (α∗
i )

2n−1
i=1 are obtained from the linear system (2.16) so the V f is an interpola-

tion function. Because α∗
i = y∗i , for all i = 1, 2n− 1, and the sequence (y∗i )

2n−1
i=1 is monotone (increasing), according

to Lemma 1.2, the function V f is monotone. �
This interpolant is of class C0 and that is due to the fact that the third order spline have knots of multiplicity two.

To increase the order of smoothness to C1 we split the interior knots t2i = t2i+1 (= xi) , i = 2, n− 1, and let them
symmetrically back away from the value xi, but not to far, because the sequence (ti)

2n+2
i=1 have to be increasing (see

Figure 1):
t2i = xi − λi · di, t2i+1 = xi + λi · di, i = 2, n− 1, (2.18)

where
di = min (xi − xi−1, xi+1 − xi) (2.19)
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and λ = (λi)
n−1
i=2 , λi ∈

(
0, 1

2

)
.

Lemma 2.2 (Existence). a) If λi → 0 for all i = 2, n− 1, then the collocation matrix (Nj,3 (t
∗
i ))

2n−1
i,j=1, where the knots (ti)

2n+2
i=1

and the abscissae (t∗i )
2n−1
i=1 are given in (2.18) and in (1.5) respectively, tends to the form (2.14).

b) For each i = 2, n− 1 there is a value λi ∈
(
0, 1

2

)
, such that the sequence (α∗

i )
2n−1
i=1 given in (2.16) is monotone.

Proof. a) From the previous construction of the knots (ti)
2n+2
i=1 given in (2.18) we have:

lim
λi→0

(t2i) = lim
λi→0

(t2i+1) = xi for all i = 2, n− 1,

so the sequence (ti)
2n+2
i=1 becomes the knots sequence (2.7) and Lemma 2.1 holds.

b) At the margins of the interval [x1, xn] we have

x1 = t∗1 = t1 = t2 = t3 ⇒ y1 = α∗
1 = y∗1

xn = t∗2n−1 = t2n = t2n+1 = t2n+2 ⇒ yn = α∗
2n−1 = y∗2n−1.

For the interior abscissae t∗2, ..., t
∗
2n−2

lim
(
α∗
2j−1

)
= y∗2j−1, j = 2, n− 1,

and

lim

(
1

4
α∗
2j−1 +

1

2
α∗
2j +

1

4
α∗
2j+1

)
= y∗2j , j = 1, n− 1, if all λi → 0.

It results

lim

(
1

2
α∗
2j

)
= y∗2j −

1

4

(
y∗2j−1 + y∗2j+1

)
=

1

2
y∗2j , j = 1, n− 1.

It follows that for each y∗j , j = 1, 2n− 1 there exist a vicinity denoted by Vy∗
j
, such that α∗

j ∈ Vy∗
j
. Because the sequence

(y∗i )
2n−1
i=1 is strictly increasing it follows that there are the values λi ∈

(
0, 1

2

)
, i = 2, n− 1, such that the vicinities Vy∗

j
,

j = 1, 2n− 1 become disjoint. For this values the sequence (α∗
i )

2n−1
i=1 (2.16) becomes increasing. �

To obtain the values λi we will use an iteration method: we start with the initial value λi =
1
3 for all i = 2, n− 1,

and decrease this value if it is necessary.
However, to obtain a monotone sequence (α∗

i )
2n−1
i=1 we must not modify all the values λi, i = 2, n− 1. We focus on

how to remove a nonmonotone term of this sequence.
Suppose that α∗

2p = f
(
t∗2p
)

is the first coefficient that does not respect the monotonicity of the sequence (α∗
i )

2n−1
i=1 ,

i.e. α∗
2p < α∗

2p−1.
In this case we will decrease the magnitudes of λp and λp+1. That affects only four knots t2p, t2p+1, t2p+2, t2p+3 and

five abscissae: t∗2p−2, t
∗
2p−1, t

∗
2p, t

∗
2p+1, t

∗
2p+2 (actually only three t∗2p−2, t

∗
2p, t

∗
2p+2 the other two remains unchanged).

This implies the change of seven B-spline functions: Nj,3, j = 2p− 3, 2p+ 3. So we expect changes in seven columns
of the collocation matrix.

Theorem 2.4. a) The collocation matrix becomes:

(Nj,3 (t
∗
i ))=



2p−3 2p−2 2p−1 2p 2p+1 2p+2 2p+3

. . .
⋄ ⋄ 0 0 0 0 0 0 0 0 0
⋄ ⋄ ⋄ 0 0 0 0 0 0 0 0
0 ⋄ ∗ ∗ 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1

4
1
2

1
4 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗ 0 0
0 0 0 0 0 0 0 ∗ ∗ ⋄ 0
0 0 0 0 0 0 0 0 ⋄ ⋄ ⋄

. . .


as λp → 0 and λp+1 → 0. We are denoted with ∗ the nonzero values, and with ⋄ the values that does not changed during the
iteration.

b) There are values λp ∈
(
0, 1

2

)
and λp+1 ∈

(
0, 1

2

)
such that the coefficients α∗

2p−1, α∗
2p, α∗

2p+1 fulfil the inequalities
α∗
2p−1 < α∗

2p < α∗
2p+1.
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Proof. a) If λp → 0 and λp+1 → 0 then, t2p, t2p+1 tend to xp and t2p+2, t2p+3 tend to xp+1, so the value of the entries
follows as in the Lemma 2.1.

b) From the interpolation conditions
2n−1∑
j=1

α∗
jNj,3(t

∗
i ) = y∗i , i = 1, 2n− 1 (2.20)

when i = 2p− 1, 2p, 2p+ 1, we obtain

lim
λp,λp+1→0

(
α∗
2p−1

)
= y∗2p−1,

lim
λp,λp+1→0

(
1

4
α∗
2p−1 +

1

2
α∗
2p +

1

4
α∗
2p+1

)
= y∗2p, (2.21)

lim
λp,λp+1→0

(
α∗
2p+1

)
= y∗2p+1.

Using (2.12), we obtain that

lim
λp,λp+1→0

(
1

2
α∗
2p +

1

4

(
α∗
2p−1 + α∗

2p+1

))
= y∗2p =

1

2

(
y∗2p−1 + y∗2p+1

)
,

so limλp,λp+1→0

(
α∗
2p

)
= 1

2

(
y∗2p−1 + y∗2p+1

)
= y∗2p.

It follows that there are values λp ∈
(
0, 1

2

)
and λp+1 ∈

(
0, 1

2

)
, such that each α∗

k fit to a vecinity of y∗k, k =
2p− 1, 2p, 2p+ 1 of radius δ/2, where

δ = min
(∣∣y∗2p − y∗2p−1

∣∣ , ∣∣y∗2p+1 − y∗2p
∣∣) .

Because the sequence (y∗i )
2n−1
i=1 is strictly monotone we obtain the desired statement. �

The case α∗
2p+1 < α∗

2p can be treated in the same way. We use an iterative procedure to determine the demanded
sequence (α∗

i )
2n−1
i=1 .

The pseudocode of the algorithm looks as follows.
Start with the initial values λi =

1
3 , for all i = 2, n− 1.

Compute the knots and abscissae using the relations (2.18), (1.5).
Solve the linear system (2.20) where y∗i are given in (2.11) and (2.12).
while α∗

2p < α∗
2p−1

λp = 1
2λp and λp+1 = 1

2λp+1;
recompute the values t2p, t2p+1, t2p+2, t2p+3 and t∗2p−2, t

∗
2p, t

∗
2p+2;

refresh the 7×7 submatrix of the collocation matrix and solve the linear system (2.20);
end.
As we have seen the ordinate y∗i was chosen as the average of the original interpolation ordinates. To obtain a

visually more pleasant approximation function we will take into consideration also the convexity of data. So we
keep the relation (2.11), and instead of (2.12) we choose:

y∗2i :=


(
2y∗2i−1+ y∗2i+1

)
/3 if (Pi−1, Pi, Pi+1) , (Pi, Pi+1, Pi+2) are convex,(

y∗2i−1+ 2y∗2i+1

)
/3 if (Pi−1, Pi, Pi+1) , (Pi, Pi+1, Pi+2) are concave,(

y∗2i−1+ y∗2i+1

)
/2 else,

(2.22)

i = 2, n− 2, where Pi = (xi, yi).
For the ordinate y∗2 , y

∗
2n−2, we take:

y∗2 :=

{
(2y∗1 + y∗3) /3 if (P1, P2, P3) are convex,
(y∗1 + y∗3) /2 if (P1, P2, P3) are concave, (2.23)

and

y∗2n−2 :=

{ (
y∗2n−3 + y∗2n−1

)
/2 if (Pn−2, Pn−1, Pn) are convex,(

y∗2n−3 + 2y∗2n−1

)
/3 if (Pn−2, Pn−1, Pn) are concave. (2.24)

Lemma 2.3. If (Pi−1, Pi, Pi+1) , (Pi, Pi+1, Pi+2) are convex (concave) then the interpolation point (t∗2i, y
∗
2i) and Pi, Pi+1 are

also convex (concave), i = 2, n− 2, and the conditions of Theorem 2.4 are satisfied.

Proof. Assume that (Pi−1, Pi, Pi+1) , (Pi, Pi+1, Pi+2) are convex. Assume also that the initial values λi := 1
3 , i =

2, n− 1. Then from (2.18) it results

xi < t2i+1 ≤ 2

3
xi +

1

3
xi+1

1

3
xi +

2

3
xi+1 ≤ t2i+2 < xi+1
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FIGURE 1.

so
2

3
xi +

1

3
xi+1 <

t2i+1 + t2i+2

2
= t∗2i <

1

3
xi +

2

3
xi+1.

From (2.22) it follows that (t∗2i, y
∗
2i) ∈ |MN , where M =

(
1− 1

3

)
Pi +

1
3Pi+1.

The concave case follows in the same way. Analogous idea is used for the interpolation points
(t∗2, y

∗
2) ,
(
t∗2n−2, y

∗
2n−2

)
.

It remains also to prove that for such a convex combination of (y∗i )
2n−1
i=1 the sequence (α∗

i )
2n−1
i=1 could be made mono-

tone if we use the previous method.
From (2.21) we obtain in limit:

lim
λp,λp+1→0

(
1

2
α∗
2p +

1

4

(
y∗2p−1 + y∗2p+1

))
= y∗2p = (1− β) y∗2p−1 + βy∗2p+1, β ∈ [1/3, 2/3] ,

then
lim

λp,λp+1→0

(
α∗
2p

)
= (1− (2β − 1/2)) y∗2p−1 + (2β − 1/2) y∗2p+1 ∈

(
y∗2p−1, y

∗
2p+1

)
.

So, there are disjoint vecinities U, V,W of

y∗2p−1, (1− (2β − 1/2)) y∗2p−1 + (2β − 1/2) y∗2p+1, y
∗
2p+1

such that: α∗
2p−1∈U , α∗

2p∈ V , α∗
2p+1∈ W . Then results α∗

2p−1< α∗
2p< α∗

2p+1. �

Theorem 2.5. The following error bound hold for the interpolation function V f

||f − V f || = max
a≤x≤b

|f (x)− V f (x)| ≤ 2ω (f, ||t||) ,

where ||t|| = maxi ∆ti is the meshsize of the knots (ti)i, and ω is the modulus of continuity.

Proof. If x̂ ∈ [tk, tk+1] then

|f (x̂)− V f (x̂)| =

∣∣∣∣∣∣f (x̂)−
k∑

j=k−2

f
(
t∗j
)
Nj,3(x̂)

∣∣∣∣∣∣ ≤
≤

k∑
j=k−2

∣∣f (x̂)− f
(
t∗j
)∣∣Nj,3(x̂) ≤

≤ max{
∣∣f (x̂)− f

(
t∗j
)∣∣ : k − 2 ≤ j ≤ k} ≤

≤ max{|f (u)− f (v)| : u, v ∈
[
t∗k−2, tj+1

]
or u, v ∈ [tj , t

∗
k]} ≤

≤ ω

(
f,

3

2
||t||
)

≤
[
1 +

3

2

]
ω (f, ||t||) .

Then ||f − V f || ≤ 2ω (f, ||t||) . �

3. NUMERICAL EXAMPLES

We present the results of our algorithm on two data samples. First, we use the data from [4]:
xi −2 −1 −0.3 −0.2
yi 0.25 1 1/0.09 25
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FIGURE 2.

where y = f (x) = 1/x2.
In Figure 2a and 2b respectively we have used the average ordinate given in (2.11), (2.12) and (2.22), (2.23), (2.24).

In the first case, we needed two iterations, λ =
(

1
3·22 ,

1
3·22
)

to obtain the monotone C1 interpolant. In the second case
there was no iteration, λ =

(
1
3 ,

1
3

)
.

The interpolation function in Figure 2b is not convex, but, using the convex preserving properties of the varia-
tion diminishing spline function, for adequate interpolation ordinate, it could be built in the same way a convex
interpolation function.

For the next data from [3],

xi 7.99 8.09 8.19 8.7 9.2 10.
yi 0 2.7642e− 5 4.3749e− 2 0.16918 0.46942 0.9437

...

12. 15. 20.
0.99863 0.999919 0.999994

that is much more restrictive, we have used for y∗2i the relations (2.22), (2.23), (2.24).

8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

FIGURE 3.

The C1 quadratic monotone interpolation function is represented in Figure 3 and the λ tension vector in this case

is: λ =

(
1

3 · 29
,
1

3
,
1

3
,
1

3
,
1

3
,

1

3 · 23
,

1

3 · 22

)
.
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