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The order of convergence of some families of iterative methods for solving
nonlinear equations

RALUCA ANAMARIA POMIAN

ABSTRACT.
We focus on some families of iterative methods. A few particular cases of these families are: Newton’s method, Halley’s method, Euler’s method,
Osculating parabola method, Chebyshev’s method and others. For each families we started with a definition, we continue with particular cases
and examples. For each these families we get their convergence order. We also obtain for some polynomials the attraction basins of the studied
methods.

1. INTRODUCTION

One of the most important problem in numerical analysis is solving non-linear equation. Let f : C → C be a
differentiable or analytic function. We are interesting to approximate the root z∗ ∈ C of the equation

f(z) = 0 (1.1)

We suppose that f has simple roots, that is, if f(α) = 0, then f ′(α) ̸= 0. In order to obtain approximation of the roots
of the equation (1.1), we shall consider another equation, of the form:

g(z) = z (1.2)

where g : D → D, D = D(z∗, r) = {z ∈ C : |z − z∗| ≤ r, r ∈ R+}.
For approximation of the roots of the equation (1.1) we shall consider an iterative method:

zs+1 = g(zs), z0 ∈ D, s = 0, 1, ... (1.3)

In this paper we would analyse some families of iterative methods used for approximation of the roots of the equation
(1.1). For methods of form (1.3) we are going to present the corresponding attraction basins obtained when we apply
these iterative methods to the polynomials.

Definition 1.1. [1] Let z∗ be an attracting fixed point of g, that is g(z∗) = z∗ and |g′(z∗)| < 1. Its basin of attraction is
the set

A(z∗) = {z ∈ C : gn(z) → z∗ as n→ ∞},
where gn(z) = g(gn−1(z)) is the n-fold iterate of g.

For these iterative methods we would also give the corresponding order of convergence. For proving the conver-
gence of the methods from these families of methods, we would use the next results.

Corollary 1.1. [3] Let z∗ ∈ C be a root of equation (1.1). Let g : D ⊂ C → C be an analytic function such that g(z∗) = z∗

and |g′(z∗)| = α < 1. Then there is a neighborhood U of z∗ in D, such that g|U is a contraction. Moreover, given z0 ∈ U , the
sequence {zs}s≥0 generated by (1.3) converges to z∗.

Proof. For proof see [3]. �

Theorem 1.1. [3] Let g : D ⊂ C → C be an analytic function and let z∗ be a fixed point of g. If g ′(z∗) = g ′′(z∗) = ... = g
(p−1)(z∗) = 0 and g (p)(z∗) ̸= 0, then the sequence {zs}s≥0 generated by (1.3) converges to z∗ with the order of convergence p

and the asymptotic error is |g(p)(z∗)|
p! , that is, lim

s→∞
|zs+1−z∗|
|zs−z∗|p =

|g(p)(z∗)|
p! .

Proof. See [3]. �

For the next theorem we are presenting a new proof.

Theorem 1.2. [5] Let f be a polynomial function of degree nwith n simple roots. Let h be an analytic function in a neighborhood
of the roots of f. Then the iterative method φ(zs) = zs − f(zs)

h(zs)
has the order of convergence p if

h(i)(z∗) = f(i+1)(z∗)
i+1 for i = 0, ..., p− 2, where z∗ is a root of f(z) = 0.

Received: 21.07.2007; In revised form: 10.10.2008.; Accepted:
2000 Mathematics Subject Classification. 74S30, 12D10.
Key words and phrases. Family of iterative methods, attracting fixed point, order of convergence, basin of attraction.

81



82 Raluca Anamaria

Proof. By applying Theorem 1.1 for the iterative function φ(z) we obtain that the method φ(zs) = zs − f(zs)
h(zs)

, s ≥ 0,
has the order of convergence p if
φ′(z∗) = φ′′(z∗) = φ′′′(z∗) = ... = φ(p−1)(z∗) = 0 and φ(p)(z∗) ̸= 0, where z∗ is a root of f(z) = 0.

Now, φ′(z∗) = 0 ⇔ 1− f ′(z∗)h(z∗)−f(z∗)h′(z∗)
[h(z∗)]2 = 0 ⇔

⇔ [h(z∗)]2 − f ′(z∗)h(z∗) = 0 ⇔ h(z∗) = f ′(z∗) = f ′(z∗)
1 ,

φ′′(z∗) = 0 ⇔ − 2f(z∗)[h′(z∗)]2

[h(z∗)]3 + 2h′(z∗)f ′(z∗)
[h(z∗)]2 + f(z∗)h′′(z∗)

[h(z∗)]2 − f ′′(z∗)
h(z∗) = 0 ⇔

⇔ 2h′(z∗)f ′(z∗)
[h(z∗)]2 − f ′′(z∗)

h(z∗) = 0 ⇔ h′(z∗) = f ′′(z∗)
2 .

Continuing in this way we obtain

φ(p−1)(z∗) = 0 ⇔ h(p−2)(z∗) = f (p−1)(z∗)
p−1 and

φ(p)(z∗) ̸= 0 ⇔ h(p−1)(z∗) ̸= f (p)(z∗)
p . �

Inspired by the Theorem 1.2 we have the next result.

Theorem 1.3. If q(z∗) = 0 and q′(z∗) = 1, then the iterative method

ψ(zs) = zs −
q(zs)

2
(3− q′(zs)), s ≥ 0, (1.4)

has the order of convergence 3.

Proof. Define h(z) = 2
3−q′(z) , then we get the iterative method

ψ(zs) = zs − q(zs)
2 (3− q′(zs)), s ≥ 0. Now, applying Theorem 1.2, we have the order of convergence 3, since h(z∗) =

2
3−q′(z∗) = q′(z∗) ⇔ q′(z∗) = 1 and

h′(z∗) = 2q′′(z∗)
[3−q′(z∗)]2 = 2q′′(z∗)

4 = q′′(z∗)
2 �

2. SOME FAMILIES OF ITERATIVE METHODS

2.1. Schröder’s family of iterative methods [1], [4]. Let f be an analytic function, and let σ be a positive integer
greater than or equal to two. For each σ ≥ 2, define Schröder’s iterative maps of order σ = 2, 3, ... associated to f by:

Sσ,f (z) = z +
σ−1∑
k=1

[
1

k!
(

1

f ′(z)

d

dz
)(k−1) · 1

f ′(z)
](−f(z))k (2.1)

where Sσ,f is an algorithm of order σ.
Particular cases:
• for σ = 2, S2,f is the Newton’s iterative map of order 2;
The general form of this method is:

zs+1 = zs −
f(zs)

f ′(zs)
, s ≥ 0 (2.2)

For more details about this method see [7], [9].
• for σ = 3, S3,f is the Chebyshev’s method, with the order of convergence 3, the general form of this method is:

zs+1 = zs −
f(zs)

f ′(zs)

(
1 +

1

2

f(zs)f
′′
(zs)

[f ′(zs)2]

)
, s ≥ 0 (2.3)

Regarding to the Theorem 1.3, we have the next result for the Chebyshev’s method (2.3).

Theorem 2.4. Let q(z) = f(z)
f ′(z) , then the iterative (1.4) becomes the Chebyshev method ψ(zs) = zs − f(zs)

f ′(zs)
(1 +

1
2
f(zs)f

′′(zs)
[f ′(zs)]2

), s ≥ 0, which is a third-order convergence iterative method.

Proof. It is easy to see that the conditions of the Theorem 1.3 are satisfied, since:
q(z∗) = f(z∗)

f ′(z∗) = 0 and q′(z∗) = 1− f(z∗)f ′′(z∗)
[f ′(z∗)]2 = 1, thus the order of convergence of the Chebyshev’s method (2.3) is

3. �
Example 2.1. In Figure 2.1 (a) and Figure 2.1 (b) we show the fractal pictures that appear when we apply the Newton’s
iterative method and the Chebyshev’s iterative method to find the roots of the polynomial p(z) = z3 − z2 + z − 1.
The roots of p are 1, −i and i. We take a rectangle R = [−1.5; 1.5] × [−2.5; 2.5], 150 points, a limit of 10 iterations
and we assign a gray level to each point (x0, y0) ∈ R according to the root at which the iterative methods starting
from z0 = x0 + y0 · i converge to the roots. We make the gray level lighter or darker according to the number of
iterations needed to reach the root with tolerance 10−3 in a maximum of 10 iterations. We also mark with Black the
points (x0, y0) ∈ R for which the corresponding iterative methods starting in z0 = x0 + y0 · i do not reach any root
with tolerance 10−3 in a maximum of 10 iterations, these are the points for which the methods do not converge. In
this way, we may distinguish the attraction basins by their colors. The region A(α) constitutes the basin of attraction
of the root α (α = 1, i,−i). See Annex.
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2.2. König’s family of iterative methods [2]. Let f be an analytic function, and let σ be a positive integer greater
than or equal to two. For each σ ≥ 2, define König’s iterative maps of order σ = 2, 3, ... associated to f by:

Kσ,f (z) = z + (σ − 1)
( 1
f(z) )

(σ−2)

( 1
f(z) )

(σ−1)
, (2.4)

where Kσ,f is an algorithm of order σ.
Particular cases:
• for σ = 2, K2,f is the Newton’s iterative map of order 2;
• for σ = 3, K3,f is the Halley’s method;
The general form of this method is:

zs+1 = Hf (zs) = zs −
1

f ′ (zs)
f(zs)

− f ′′ (zs)

2f ′ (zs)

, s ≥ 0 (2.5)

Based on the Theorem 1.2, we have the next result for the method (2.5).

Theorem 2.5. If f is twice continuously differentiable function with only simple roots and z∗ is a root of the equation (1.1),
then the Halley’s iterative method (2.5) has the order of convergence 3 and the asymptotic error is∣∣∣∣∣14

[
f ′′(z∗)

f ′(z∗)

]2
− 1

6

f ′′′(z∗)

f ′(z∗)

∣∣∣∣∣
Proof. It is easy to see that Hf (z

∗) = z∗, and H ′
f (z

∗) = H ′′
f (z

∗) = 0. Now to see that H ′′′
f (z∗) ̸= 0, in general, we have

that function h(z) = f ′(z)
(
1− 1

2
f ′′(z)f(z)
[f ′(z)]2

)
satisfies the relations: h(z∗) = f ′(z∗), h′(z∗) = f ′′(z∗)

2 and

h′′(z∗)= 1
2
[f ′′(z∗)]2

f ′(z∗) ̸= f ′′′(z∗)
3 , then by the Theorem 1.2 we obtain that the order of convergence for the Halley’s method

is 3. The asymptotic error is follow from the Theorem 1.1 by considered the function φ(z) = z − f(z)
h(z) , that is∣∣∣φ′′′(z∗)

3!

∣∣∣ = ∣∣∣∣14 [ f ′′(z∗)
f ′(z∗)

]2
− 1

6
f ′′′(z∗)
f ′(z∗)

∣∣∣∣ . �

Example 2.2. In Figure 2.2 (a) and Figure 2.2 (b) we show the fractal pictures that appear when we apply the Newton’s
iterative method and the Halley’s iterative method to find the roots of the polynomial p(z) = z3 − 8z2 + z − 8. The
roots of p are 8, −i and i. We take a rectangle R = [−9.5; 15.5] × [−9.5; 15.5], 212 points, a limit of 15 iterations and
we assign a gray level to each point (x0, y0) ∈ R according to the root at which the iterative methods starting from
z0 = x0 + y0 · i converge to the roots. We make the gray level lighter or darker according to the number of iterations
needed to reach the root with tolerance 10−3 in a maximum of 15 iterations. We also mark with Black the points
(x0, y0) ∈ R for which the corresponding iterative methods starting in z0 = x0 + y0 · i do not reach any root with
tolerance 10−3 in a maximum of 15 iterations, these are the points for which the methods do not converge. In this
way, we may distinguish the attraction basins by their colors. The region A(α) constitutes the basin of attraction of
the root α (α = 8, i,−i). See Annex.

2.3. Laguerre’s family of iterative methods [6]. Let f be an analytic function in some complex domain D with a
simple or multiple zero z∗ . For each υ (̸= 0, 1) define Laguerre’s iterative maps associated to f by:

Lυ,f (z) = z − υf(z)

f ′(z)±
√
(υ − 1)2[f ′(z)]2 − υ(υ − 1)f(z)f ′′(z)

(2.6)

We can obtain some well-known methods by a suitable choice of the parameter υ:
• for υ = 0, L0,f (z) is the Halley’s iterative map;
• for υ = 1, L1,f (z) is the Newton’s iterative map;
• for υ = 2, L2,f (z) is the Euler’s iterative map, which has third order;
The general form of the Euler’s method is:

zs+1 = zs −
2f(zs)

f ′(zs) +
√

[f ′(zs)]2 − 2f(zs)f
′′(zs)

, s ≥ 0. (2.7)

For approximation of the roots of the equation (1.1) we shall also consider the iterative Laguerre method:

zs+1 = Ln,f (zs) = zs −
n[f(zs)/f

′(zs)]

1 + (n− 1)
√
1− n

n−1Lf (zs)
, Lf (zs) =

f(zs)f
′′(zs)

[f ′(zs)]2
, (2.8)

υ = n = deg(f), n ≥ 2, generated by the Laguerre iteration function Ln,f .
Because the Laguerre method doesn’t have ”the problem of the initial value” the method converges no matter

what initial value we have chosen. That is with exception of the roots of f ′. This fact makes the method to be the
most recommended method for determination of the approximation roots of the function f .
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Based on the Theorem 1.2, in our next result we would analyse the convergence of the sequence {zs}s≥0 given by
(2.8).

Theorem 2.6. Let z∗ be a root of a polynomial f of degree n with simple roots. Let

l(z) = f(z)
f ′(z) and h(z) =

1+(n−1)
√

1− n
n−1 (1−l′(z))

n . Then the iterative Laguerre method

Ln,l(zs) = zs − l(zs)

1+(n−1)
√

1− n
n−1

(1−l′(zs))

n

= zs − l(zs)
h(zs)

has the order of convergence 3.

Proof. Let z∗ be a root of f . We have: h(z∗) = 1 = l′(z∗)
1 , because

l′(z∗) = 1− f(z∗)f ′′(z∗)
[f ′(z∗)]2 = 1; h′(z∗) = l′′(z∗)

2
√

1− n
n−1 (1−l′(z∗))

= l′′(z∗)
2 and

h′′(z∗) = − n[l′′(z∗)]2

4(n−1)[1− n
n−1 (1−l′(z∗))]

3
2
+ l′′′(z∗)

2
√

1− n
n−1 (1−l′(z∗))

̸= l′′′(z∗)
3 .

Thus the function h satisfies the condition of the Theorem 1.2, and because of that the convergence order of Laguerre
method is three. �

Example 2.3. In Figure 2.3, we show the fractal picture that appear when we apply the L3,p iterative method to find
the roots of the cubic polynomial
p(z) = z3 − z2 + z − 1. The roots of p are 1, −i and i.
We take a rectangle R = [−1.5; 1.5]× [−2.5; 2.5], 150 points, a limit of 10 iterations and we assign a gray level to each
point (x0, y0) ∈ R according to the root at which the L3,p iterative method starting from z0 = x0 + y0 · i converges
to the roots. We make the gray level lighter or darker according to the number of iterations needed to reach the root
with tolerance 10−3 in a maximum of 10 iterations. We also mark with Black the points (x0, y0) ∈ R for which the
corresponding iterative method starting in z0 = x0 + y0 · i does not reach any root with tolerance 10−3 in a maximum
of 10 iterations, these are the points for which the method does not converge. In this way, we may distinguish the
attraction basins by their colors. The region A(α) constitutes the basin of attraction of the root α (α = 1, i,−i). See
Annex.

2.4. Hansen-Patrick’s family of iterative methods [8]. This family can be obtain quite easily from Laguerre’s method
by a choice of the parameter υ, substituting υ = 1

α + 1. Let f be an analytic function in some complex domain, and
let α be a complex parameter. For each α ( ̸= −1) define Hansen-Patrick’s iterative maps of order 3 associated to f by:

HPα,f (z) = z − (α+ 1)f(z)

αf ′(z)±
√
[f ′ (z)]2 − (α+ 1)f(z)f ′′(z)

(2.9)

Particular cases:
• for α = 0, HP0,f (z) is the Ostrowski iterative map;
The general form of the Ostrowski method is:

zs+1 = zs −
1√

1− f ′′ (zs)f(zs)

[f ′ (zs)]2

· f(zs)
f ′(zs)

, s ≥ 0 (2.10)

Regarding to the Theorem 1.2, we have the next result for the Ostrowski method (2.10).

Theorem 2.7. Let f be a polynomial of degree n with n simple roots. Let
l(z) = f(z)

f ′(z) and h(z) =
√
l′(z). Then the Ostrowski iterative method

φ(zs) = zs − l(zs)
h(zs)

has the order of convergence 3.

Proof. Let z∗ be a root of f , we have:
h(z∗) = 1 = l′(z∗)

1 , since l′(z∗) = 1− f(z∗)f ′′(z∗)
[f ′(z∗)]2 = 1;

h′(z∗) =
(√

1− f(z∗)f ′′(z∗)
[f ′(z∗)]2

)′
=

− f′′(z∗)

f′(z∗)
+

2f(z∗)[f′′(z∗)]2

[f′(z∗)]3
− f(z∗)f′′′(z∗)

[f′(z∗)]2

2

√
1− f(z∗)f′′(z∗)

[f′(z∗)]2

= l′′(z∗)
2 and

h′′(z∗) = 5
4

[
f ′′(z∗)
f ′(z∗)

]
− f ′′′(z∗)

f ′(z∗) ̸= l′′′(z∗)
3 . Thus function h satisfies the condition of the Theorem 1.2, so the convergence

order of Ostrowski method is three. �

• for α = 1, HP1,f (z) is the Osculating parabola method of which the order of convergence is three.
The general form of the Osculating parabola method is:

zs+1 = zs −
2

1 +

√
1− 2 f ′′ (zs)f(zs)

[f ′ (zs)]2

· f(zs)
f ′(zs)

, s ≥ 0 (2.11)

• for α = ∞, we obtain the Newton’s iterative map;



The order of convergence of some families of iterative methods for solving nonlinear equations 85

Example 2.4. In Figure 2.4 (a) and Figure 2.4 (b) we show the fractal pictures that appear when we apply the
Ostrowski iterative method and the Osculating parabola iterative method to find the roots of the polynomial
p(z) = z3 − 3.5z2 + 5z − 3. The roots of p are 1 − i, 1 + i and 1.5. We take a rectangle R = [−2.5; 2.5] × [−2.5; 2.5],
200 points, a limit of 10 iterations and we assign a gray level to each point (x0, y0) ∈ R according to the root at which
the iterative methods starting from z0 = x0 + y0 · i converge to the roots. We make the gray level lighter or darker
according to the number of iterations needed to reach the root with tolerance 10−3 in a maximum of 10 iterations. We
also mark with Black the points (x0, y0) ∈ R for which the corresponding iterative methods starting in z0 = x0+ y0 · i
do not reach any root with tolerance 10−3 in a maximum of 10 iterations, these are the points for which the methods
do not converge. In this way, we distinguish the attraction basins by their colors. The region A(α) constitutes the
basin of attraction of the root α (α = 1.5, 1 + i, 1− i). See Annex.

3. ANNEX

In this section we explain how the Figures of this paper were generated. First, we define function f and its
derivatives. We use a procedure that identifies which root of f has been approximated with a tolerance of 10−3, if
any. We define the iterative methods, that is, the different zs+1 = g(zs), s ≥ 0. We define an algorithm to see if a root
is reached in a maximum of limit iterations. We use a limit of 10-15 iterations and the complex rectangle R. Finally,
we define the procedure to paint the figures according the strategy described in the each example. A gray level is
used to identify the attraction basins of each root. To assign the intensity of a gray level of a point, we take into
account the number of iterations used to reach the root when the iterative method starts at that point. The points for
which the iterative method does not reach any root (with the desired tolerance in the maximum of iterations) are
pictured as black.

Figure 2.1 (a) Newton’s method Figure 2.1 (b) Chebyshev’s method

Figure 2.2 (a) Newton’s method Figure 2.2 (b) Halley’s method

Figure 2.3 L3,p method

Figure 2.4 (a) Ostrowski method Figure 2.4 (b) Osculating parabola method
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