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Statistical approximation properties of Kantorovich operators based on
q-integers

CRISTINA RADU

ABSTRACT.
In this paper we present two new generalizations of Kantorovich operators based on q-calculus. With the help of Bohman-Korovkin type the-
orem we obtain some statistical approximation properties for these operators. Also, by using the modulus of continuity, the statistical rate of
convergence is established.

1. INTRODUCTION

In 1997 G. Phillips [14] proposed a generalization of the classical Bernstein polynomials based on q-integers. He
estimated the rate of convergence and he obtained a Voronovskaya-type asymptotic formula for the new Bernstein
operators. Then, in 2000 D. Bărbosu [2] constructed the bivariate q-Bernstein operators and established their approx-
imation properties.

Recently, some new q-type generalizations of well known positive linear operators were introduced by several
authors. For instance q-Meyer-König and Zeller operators were studied by T. Trif in [18], O. Doğru , V. Gupta, C.
Orhan and O. Duman in [4], [6], [7]. Also, was established properties for the operators q-Bleimann, Butzer and Hahn
[5] and q-Durrmeyer [3], [10]. On the other hand, the study of the statistical convergence for sequences of positive
linear operators was attempted in the year 2002 by A.D. Gadjiev and C. Orhan (see [9]). In the present paper we
introduce two q-extensions of Kantorovich operators and we investigate their statistical approximation properties.
We also estimate the rate of statistical convergence for these new q-type operators. First of all, we recall the concept
of statistical convergence. A sequence (xn)n is said to be statistically convergent to a number L if for every ε > 0,

δ {n ∈ N : |xn − L| ≥ ε} = 0, where δ (S) := lim
N→∞

1
N

N∑
j=1

χS (j) is the natural density of the set S ⊆ N. Here χS

represents the characteristic function of S. We denote this limit by st− lim
n
xn = L (see [9], [8], [16]).

2. CONSTRUCTION OF THE OPERATORS

There is no general definition of a ”q-analogue”. A q-analogue, also called q-extension or q-generalization of a
mathematical object X is a family of objects X(q), q > 0, (in most situations q ∈ (0, 1)) such that lim

q→1
X(q) = X .

Sometimes q-generalization is not unique. In this study we present two q-extensions of the same operators. Before
introducing the operators, we mention some definitions of q-calculus. For any fixed real number q > 0, we denote
q-integers by [k]q , where

[k]q =

 1− qk

1− q
if q 6= 1,

k if q = 1.

Note that q 7→ [k]q , q > 0, is a continuous function of q. The q-factorial is defined as follows

[k]q! =

{
[1]q · [2]q · . . . · [k]q if k = 1, 2, . . .

1 if k = 0,

and the q-binomial coefficients are given by [
n
k

]
q

=
[n]q!

[k]q! [n− k]q!
.

The q-binomial coefficients are also known as Gaussian polynomials (see [1] p. 35).
The q-derivative of a function f : R→ R is defined by

Dqf (x) =
f(x)− f(qx)

(1− q)x
for any x 6= 0. (2.1)

If f ′(0) exists, then Dq is extended by continuity at x = 0, i.e. Dqf (0) = f ′(0).
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It is easy to verify that

Dqx
n =

{
[n]q x

n−1 if n > 1,

1 if n = 1
(2.2)

and the product rule is

Dq (f(x)g(x)) = Dqf(x)g(qx) + f(x)Dqg(x). (2.3)

The q-analogue of integration, introduced by Thomae [17] is given by

b∫
0

f(x)dqx = (1− q)
∞∑
k=0

bqkf
(
bqk
)

(2.4)

under the hypothesis that the series of the right hand side is convergent and over a general interval [a, b]

b∫
a

f(x)dqx =

b∫
0

f(x)dqx−
a∫

0

f(x)dqx. (2.5)

If f is Riemann integrable on [0, b], then
b∫
0

f(x)dx = lim
q→1−

b∫
0

f(x)dqx.

Moreover it is easy to check that q-integral defined by (2.4) is q-antiderivative, i.e.

Dq

x∫
0

f(t)dqt = f(x), x 6= 0. (2.6)

Let α > 0 be fixed. We denote by Tα ([0, b]) the set of all real-valued functions q-integrable on [0, b] for any q ∈ (0, α).
It is obvious that Tα ([0, b]) is a linear space.

We set ei, ei(x) = xi, i ≥ 0. In [14], Phillips defined q-Bernstein polynomials by

Bn (f ; q;x) =

n∑
k=0

[
n
k

]
q

xk (1− x)n−kq f

(
[k]q
[n]q

)
, (2.7)

where (1− x)n−kq :=
∏n−k−1
s=0 (1− qsx) and proved the following identities.

Bn (e0; q;x) = 1, (2.8)

Bn (e1; q;x) = x, (2.9)

Bn (e2; q;x) = x2 +
x(1− x)

[n]q
, (2.10)

for all n ∈ N, q ∈ (0, 1] and x ∈ [0, 1].
Now we are ready to introduce the first q-analogue of Kantorovich operators.

Kn (f ; q;x) = [n+ 1]q

n∑
k=0

[
n
k

]
q

xk (1− x)n−kq

∫ [k+1]q
[n+1]q

q
[k]q

[n+1]q

f(t)dqt, (2.11)

where f ∈ T1 ([0, 1]), n ∈ N, q ∈ (0, 1). Based on (2.1), (2.6), (2.5) and taking into account the fact that

[k + 1]q = q [k]q + 1, (2.12)

it is obvious that Kn, n ∈ N, are positive and linear operators. Furthermore, when q → 1− the operators given by
(2.11) reduce to the classical Kantorovich operators studied in [12].

Remark 2.1. Using the characteristic function of the interval
(
0, 1

[n+1]q

]
, denoted by χ

<n,q>
, the operatorsKn can be expressed

as follows.

Kn (f ; q;x) = [n+ 1]q

n∑
k=0

[
n
k

]
q

xk (1− x)n−kq

∫ 1

0

f(t)χ
<n,q>

(
t− q

[k]q
[n+ 1]q

)
dqt,

for all n ∈ N.
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3. A BOHMAN-KOROVKIN TYPE THEOREM

Let D be a given interval of the real line. We denote by CB (D) the space of all functions f which are continuous
on D and bounded on the entire line. Recall that CB (D) is a Banach space with respect to the sup-norm ‖·‖ given by

‖f‖ := sup
x∈D
|f (x)| , f ∈ CB (D) .

We may assert that CB ([0, 1]) ⊂ T1 ([0, 1]) and the operators Kn, n ∈ N, are well defined for any f ∈ CB ([0, 1]). In [9]
Gadjiev and Orhan proved the following Bohman-Korovkin type statistical approximation theorem.

Theorem A. If the sequence of positive linear operators An : CB ([a, b]) → B ([a, b]) satisfies the conditions st −
lim
n
‖Anei − ei‖ = 0, for i = 0, 1, 2, then for any function f ∈ CB ([a, b]), we have st − lim

n
‖Anf − f‖ = 0, where

B ([a, b]) is the space of all real-valued functions bounded on [a, b].

To obtain our main result we need the next lemma.

Lemma 3.1. For all n ∈ N, x ∈ [0, 1] and for 0 < q < 1, we have

Kn (e0; q;x) = 1, (3.13)

Kn (e1; q;x) =
2 [n]q

[2]q [n+ 1]q
qx+

1

[2]q [n+ 1]q
, (3.14)

Kn (e2; q;x) =
3 [n]q [n− 1]q

[3]q [n+ 1]
2
q

q3x2 +
3 [n]q

[3]q [n+ 1]
2
q

q (1 + q)x+
1

[3]q [n+ 1]
2
q

. (3.15)

Proof. Let q ∈ (0, 1). Using the definition (2.11), the identities (2.2), (2.12) and (2.8) is easy to see that (3.13) holds true.
Taking into account (2.2), (2.12), (2.8) and (2.9), by direct computation, we obtain (3.14) as follows. For the sake of

simplicity we denote by Xn,k,q := xk(1− x)n−kq .

Kn (e1; q;x) =
[n+ 1]q
[2]q

n∑
k=0

[
n
k

]
q

Xn,k,q

(
[k + 1]

2
q

[n+ 1]
2
q

− q2
[k]

2
q

[n+ 1]
2
q

)

=
1

[2]q [n+ 1]q

n∑
k=0

[
n
k

]
q

Xn,k,q

(
[k + 1]q + q [k]q

)
=

1

[2]q [n+ 1]q

n∑
k=0

[
n
k

]
q

Xn,k,q

(
2q [k]q + 1

)
=

2 [n]q
[2]q [n+ 1]q

qBn (e1; q;x) +
1

[2]q [n+ 1]q
Bn (e0; q;x)

=
2 [n]q

[2]q [n+ 1]q
qx+

1

[2]q [n+ 1]q
.

A similar calculus reveals:

Kn (e2; q;x) =
[n+ 1]q
[3]q

n∑
k=0

[
n
k

]
q

Xn,k,q

(
[k + 1]

3
q

[n+ 1]
3
q

− q3
[k]

3
q

[n+ 1]
3
q

)

=
1

[3]q [n+ 1]
2
q

n∑
k=0

[
n
k

]
q

Xn,k,q

(
[k + 1]

2
q + q [k]q [k + 1]q + q2 [k]

2
q

)
=

1

[3]q [n+ 1]
2
q

n∑
k=0

[
n
k

]
q

Xn,k,q

(
3q2 [k]

2
q + 3q [k]q + 1

)
=

3 [n]
2
q

[3]q [n+ 1]
2
q

q2Bn (e2; q;x) +
3 [n]q

[3]q [n+ 1]
2
q

qBn (e1; q;x)

+
1

[3]q [n+ 1]
2
q

Bn (e0; q;x)

=
3 [n]q [n− 1]q

[3]q [n+ 1]
2
q

q3x2 +
3 [n]q

[3]q [n+ 1]
2
q

q (1 + q)x+
1

[3]q [n+ 1]
2
q

.

�
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Further on, we consider a sequence (qn)n, qn ∈ (0, 1), such that

st− lim
n
qn = 1. (3.16)

We present the main result for the operators Kn given by (2.11).

Theorem 3.1. Let (qn)n be a sequence satisfying (3.16). Then, for all f ∈ CB ([0, 1]), we have st−lim
n
‖Kn (f ; qn; ·)− f‖ = 0.

Proof. It is clear that
st− lim

n
‖Kn (e0; qn; ·)− e0‖ = 0. (3.17)

From (3.14) and the relations

[n]q ≤ [n+ 1]q , [n]q = 1 + q + q2 + . . .+ qn−1, (3.18)

we get

|Kn (e1; qn; ·)− e1| ≤

∣∣∣∣∣ 2 [n]qn
[2]qn [n+ 1]qn

qn − 1

∣∣∣∣∣+ 1

[2]qn [n+ 1]qn

=

∣∣∣(2− [2]qn

)
[n]qn qn − [2]qn

∣∣∣
[2]qn [n+ 1]qn

+
1

[2]qn [n+ 1]qn

≤
qn(1− qn) [n]qn
[2]qn [n+ 1]qn

+
1 + [2]qn

[2]qn [n+ 1]qn
.

Hence, we have

‖Kn (e1; qn; ·)− e1‖ ≤ (1− qn)qn +
2

[n]qn
≤ 2

(
(1− qn)qn +

1

[n]qn

)
. (3.19)

Since st− lim
n
qn = 1 we conclude st− lim

n

1
[n]qn

= 0 and st− lim
n

(1− qn) qn = 0.
For a given ε > 0, let us define the following sets

A := {n ∈ N : ‖Kn (e1; qn; ·)− e1‖ ≥ ε} , A1 :=
{
n ∈ N : (1− qn)qn ≥

ε

4

}
,

A2 :=

{
n ∈ N :

1

[n]qn
≥ ε

4

}
.

Based on (3.19) we have ‖Kn (e1; qn; ·)− e1‖ < 2
(
ε
4 + ε

4

)
= ε for all n ∈ N \ (A1 ∪A2). This implies A ⊆ A1 ∪ A2

and δ (A) ≤ δ (A1) + δ (A2) = 0.
Consequently, we get

st− lim
n
‖Kn (e1; qn; ·)− e1‖ = 0. (3.20)

According to (3.15) and (3.18) we can write

|Kn (e2; qn; ·)− e2| ≤

∣∣∣∣∣3 [n]qn [n− 1]qn

[3]qn [n+ 1]
2
qn

q3n − 1

∣∣∣∣∣+ 3 [n]qn qn(1 + qn) + 1

[3]qn [n+ 1]
2
qn

<

∣∣∣3 [n]qn ([n]qn − 1
)
q2n − [3]qn [n]

2
qn
q2n − 2 [3]qn [n]qn qn − [3]qn

∣∣∣
[3]qn [n+ 1]

2
qn

+
3

[n]qn
+

1

[n+ 1]
2
qn

<
[n]

2
qn
q2n

(
3− [3]qn

)
[3]qn [n+ 1]

2
qn

+
[n]qn qn

(
3qn + 2 [3]qn

)
[3]qn [n+ 1]

2
qn

+
3

[n]qn
+

2

[n+ 1]
2
qn

<
(
3− [3]qn

)
+

8

[n]qn
+

2

[n]
2
qn

,

which implies

‖Kn (e2; qn; ·)− e2‖ ≤ 8

((
3− [3]qn

)
+

1

[n]qn
+

1

[n]
2
qn

)
. (3.21)

Since the sequence qn satisfies (3.16) we have st− lim
n

(
3− [3]qn

)
= 0 and

st− lim
n

1
[n]2qn

= 0. At this moment we define the following sets

B := {n ∈ N : ‖Kn (e2; qn; ·)− e2‖ ≥ ε} , B1 :=
{
n ∈ N :

(
3− [3]qn

)
≥ ε

24

}
,
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B2 :=

{
n ∈ N :

1

[n]qn
≥ ε

24

}
, B3 :=

{
n ∈ N :

1

[n]
2
qn

≥ ε

24

}
.

By using (3.21) we obtain B ⊆ B1 ∪B2 ∪B3.
Hence, we have δ (B) ≤ δ (B1) + δ (B2) + δ (B3) = 0, which implies

st− lim
n
‖Kn (e2; qn; ·)− e2‖ = 0. (3.22)

Finally, using (3.17), (3.20) and (3.22), the proof follows from Theorem A. �

Corollary 3.1. Let A = (ajn) be a non-negative regular summability matrix and let (qn)n be a sequence satisfying (3.16). For
all f ∈ CB ([0, 1]) one has

stA − lim
n
‖Kn (f ; qn; ·)− f‖ = 0.

Replacing statistical convergence by uniform convergence we obtain the next result.

Corollary 3.2. Let (qn)n be a sequence satisfying lim
n
qn = 1. For all f ∈ CB ([0, 1]), we have lim

n
‖Kn (f ; qn; ·)− f‖ = 0.

4. ANOTHER q-EXTENSION OF KANTOROVICH OPERATORS

We define the second q-generalization of Kantorovich operators as follows.

Kn (f ; q;x) = [n+ 1]q

n∑
k=0

[
n
k

]
q

(
x

q

)k
(1− x)n−kq

∫ [k+1]q
[n+1]q

[k]q
[n+1]q

f(t)dqt, (4.23)

for all f ∈ T1 ([0, 1]), n ∈ N, q ∈ (0, 1).
It is obvious that Kn, n ∈ N, are linear positive linear and converge to the classical Kantorovich operators for

q → 1−.

Lemma 4.2. For all n ∈ N, x ∈ [0, 1] and 0 < q < 1, we have

Kn (e0; q;x) = 1, (4.24)

Kn (e1; q;x) =
[n]q

[n+ 1]q
x+

1

[2]q [n+ 1]q
, (4.25)

Kn (e2; q;x) =
[n]

2
q

[n+ 1]
2
q

x2 +
[n]q

[n+ 1]
2
q

x (1− x)+

+
(2q + 1)

[3]q

[n]q

[n+ 1]
2
q

x+
1

[3]q [n+ 1]
2
q

. (4.26)

Proof. By using (2.8), (2.9), (2.10), and the identities

[k + 1]q − [k]q = qk,

b∫
a

xjdqx =
1

[j + 1]q

(
bj+1 − aj+1

)
,

(4.24)-(4.26) can be easily proven in a similar manner as (3.13)-(3.15). �

Theorem 4.2. Let (qn)n be a sequence satisfying (3.16). Then, for all f ∈ CB ([0, 1]), we have st− lim
n
‖Kn (f ; qn; ·)− f‖ = 0.

Proof. Using the same method as in Theorem 3.1, the proof follows by Lemma 4.2 and Theorem A. �

The relation between the derivative of classical Bernstein polynomials and Kantorovich operators is well-known
(see [13] p. 30). In what follows we prove that a q-analogue of this relation exists between q-Bernstein operators (2.7)
and q-generalization defined by (4.23).

In order to give our next result we need the following theorem ([11], p. 73).

Theorem B. If F is any anti q-derivative of a function f , namely DqF = f , continuous at x = 0, then
a∫
0

f(x)dqx =

F (a)− F (0).

Theorem 4.3. For any real function F continuous at x = 0, n ∈ N, q ∈ (0, 1), we have

DqBn+1 (F ; q;x) = Kn (f ; q; qx) , where f (x) = DqF (x) .
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Proof. Using the equality (1− x)nq =
n∑
k=0

qk(k−1)/2
[
n
k

]
q

xk (see [15], p. 336) and the product rule (2.3) in q-calculus

we get
Dq (1− x)n−k+1

q = − [n− k + 1]q (1− qx)
n−k
q .

From (2.7), (2.3) and the above relation we obtain

DqBn+1 (F ; q;x) =

n+1∑
k=0

[
n+ 1
k

]
q

[k]q x
k−1 (1− qx)n−k+1

q F

(
[k]q

[n+ 1]q

)

−
n+1∑
k=0

[
n+ 1
k

]
q

[n− k + 1]q x
k (1− qx)n−kq F

(
[k]q

[n+ 1]q

)

= [n+ 1]q

n∑
k=0

[
n
k

]
q

xk (1− qx)n−kq F

(
[k + 1]q
[n+ 1]q

)

− [n+ 1]q

n∑
k=0

[
n
k

]
q

xk (1− qx)n−kq F

(
[k]q

[n+ 1]q

)
.

Based on Theorem B we can write

DqBn+1 (F ; q;x) = [n+ 1]q

n∑
k=0

[
n
k

]
q

xk (1− qx)n−kq

∫ [k+1]q
[n+1]q

0

f(t)dqt

− [n+ 1]q

n∑
k=0

[
n
k

]
q

xk (1− qx)n−kq

∫ [k]q
[n+1]q

0

f(t)dqt

= [n+ 1]q

n∑
k=0

[
n
k

]
q

xk (1− qx)n−kq

∫ [k+1]q
[n+1]q

[k]q
[n+1]q

f(t)dqt

= Kn (f ; q; qx) .
�

5. RATES OF STATISTICAL CONVERGENCE

In this section, using the modulus of continuity, we prove a theorem for the rate of statistical convergence of the
operators Kn defined by (4.23).

Let D be a real interval and f ∈ C (D). Then the modulus of continuity of f , denoted by ωf (δ) is defined as

ωf (δ) := sup
{∣∣∣f (x′)− f (x′′)∣∣∣ : x′ , x′′ ∈ D, ∣∣∣x′ − x′′ ∣∣∣ ≤ δ} , δ > 0.

It is known that for a function f ∈ C (D), we have lim
δ→0+

ωf (δ) = 0 and, for any δ > 0,

∣∣∣f (x′)− f (x′′)∣∣∣ ≤

∣∣∣x′ − x′′∣∣∣

δ
+ 1

ωf (δ) . (5.27)

Theorem 5.4. Let (qn)n be a sequence satisfying (3.16). For all f ∈ C ([0, 1]), we have ‖Kn (f ; qn; ·)− f‖ ≤ 2ωf (δn) , where

δ2n =

(
1−

[n]qn
[n+ 1]qn

)2

+
2 [n]qn − 1

[3]qn [n+ 1]
2
qn

. (5.28)

Proof. For all f ∈ C ([0, 1]) and 0 ≤ a < b ≤ 1 we have

∣∣∣∣∣ b∫a f(x)dqx
∣∣∣∣∣ ≤ b∫

a

|f(x)| dqx. We denote by Yn,k,qn(x) :=[
n
k

]
qn

(
x
qn

)k
(1− x)n−kqn . Using property (5.27), the above relation and Cauchy inequality for linear positive opera-

tors, we get

|Kn (f ; qn;x)− f (x)| =

∣∣∣∣∣∣[n+ 1]qn

n∑
k=0

Yn,k,qn(x)

∫ [k+1]qn
[n+1]qn

[k]qn
[n+1]qn

f(t)− f(x)dqnt

∣∣∣∣∣∣
≤ [n+ 1]qn

n∑
k=0

Yn,k,qn(x)

∫ [k+1]qn
[n+1]qn

[k]qn
[n+1]qn

|f(t)− f(x)| dqnt
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≤
{
1

δ
Kn (|t− x| ; qn;x) + 1

}
ωf (δ)

≤
{
1

δ

(
Kn
(
(t− x)2 ; qn;x

)) 1
2

+ 1

}
ωf (δ) .

From (4.24)-(4.26) we obtain

Kn
(
(t− x)2 ; qn;x

)
= Kn (e2; qn;x)− 2xKn (e1; qn;x) + x2Kn (e0; qn;x)

≤ x2

(
1−

[n]qn
[n+ 1]qn

)2

+ x(1− x)
[n]qn

[n+ 1]
2
qn

+
x

[n+ 1]qn

(
(2qn + 1) [n]qn
[3]qn [n+ 1]qn

− 2

[2]qn

)
+

1

[3]qn [n+ 1]
2
qn

<

(
1−

[n]qn
[n+ 1]qn

)2

+
[n]qn

4 [n+ 1]
2
qn

+
[n]qn − 1

[3]qn [n+ 1]
2
qn

<

(
1−

[n]qn
[n+ 1]qn

)2

+
2 [n]qn − 1

[3]qn [n+ 1]
2
qn

.

The last inequality yields

‖Kn (f ; qn; ·)− f‖ ≤

1

δ

(1− [n]qn
[n+ 1]qn

)2

+
2 [n]qn − 1

[3]qn [n+ 1]
2
qn

 1
2

+ 1

ωf (δ) .

Choosing δ := δn as in (5.28) the proof is finished. �

Since (qn)n satisfies (3.16), the sequence (δn)n is statistically null, which yields that st− lim
n
ωf (δn) = 0. Therefore,

Theorem 5.4 gives the rate of statistical convergence of Kn (f ; qn; ·) to f .
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