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Sensitivity analysis of the energy functional

JÚLIA SALAMON

ABSTRACT.
In the present work a numerical method is developed for the determination of the J ∈ (0,∞) interval in the three critical points theorem. The
critical surfaces are also approximated.

1. INTRODUCTION

Let us consider the following elliptic type partial differential equation with a boundary condition:

(Pλ)

{
−△u = λf (u) , x ∈ Ω
u|∂Ω = 0

where Ω ⊂ Rn is a compact set.
The problem (Pλ) is a simplified form of certain stationary waves in the nonlinear Schrödinger equation [8], where

the potential energy is zero, and the nonlinear term f is a perturbation, which satisfies the conditions in the three
critical points theorem (Theorem 1.1). Under these conditions (Pλ) is a resonant problem.

We assign an energy functional Eλ : H1
0 (Ω) → R to this problem defined on Sobolev space H1

0 (Ω) given by:

Eλ (u) =
1

2
∥u∥2H1

0
− λ

∫
Ω

F (u (x)) dx

where

F (s) =

∫ s

0

f (x) dx.

We know that Eλ is a continuous derivable and the critical points of Eλ are the weak solutions to the problem (Pλ)
[6].

The numerical calculation of the critical points is based on a special case of the three critical points theorem [7]:

Theorem 1.1. Let Ω ⊆ Rn be an open bounded set, with a smooth boundary, and f : R → R a continuous function with
supx∈R

∫ x

0
f (t) dt > 0. Assume that there are a, q, s, γ, with q < n+2

n−2 (if n > 2), s < 2 and γ > 2, such that

|f (x)| ≤ a (1 + |x|q) ∀x ∈ R,∫ x

0

f (t) dt ≤ a (1 + |x|s) ∀x ∈ R

and

lim sup
x→0

∫ x

0
f (t) dt

|x|γ
< +∞.

Then there exists an open interval J ⊆ [0,+∞[ such that for each λ ∈ J the problem (Pλ) has at least three distinct weak
solutions in H1

0 (Ω).

In the present work a numerical method is developed for the determination of the J ⊂ (0,∞) interval for concrete
problems.

2. THE NUMERICAL METHOD

The basic idea of this method is to search the λ value for which the chosen u surface will be a critical surface for
the Eλ energy functional.

The Eλ (u) is a functional of type

Eλ (u) =

∫
Ω

L (u (x) ,∇u (x)) dx,

where L is the Lagrangian function of Eλ, defined as

L =
1

2
(∇u)

2 − λF (u) .
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Since Ω is a compact set and u ∈ H1
0 (Ω) it follows that L is of class C1. Then there is a number δ > 0 such that the

composed function L (v (x) ,∇v (x)) is defined for all x ∈ Ω and for all v ∈ C1 (Ω,R) with ∥v − u∥C1(Ω) < δ. Thus the
integral

Eλ (v) =

∫
Ω

L (v (x) ,∇v (x)) dx

can be formed for all v ∈ C1 (Ω,R) with ∥v − u∥C1(Ω) < δ. Consequently, the function

Φ(t) := Eλ (u+ tφ)

is defined for each φ ∈ C1 (Ω,R) and for |t| < t0, where t0 is some positive number less than δ/ ∥φ∥C1(Ω). Moreover,
Φ is of class C1 on (−t0, t0), whence the first variation δEλ (u, φ) of Eλ at u in direction φ is well defined by

δEλ (u, φ) = Φ′ (0) .

The critical points of the functional Eλ are the solutions of the relation

δEλ (u, φ) = 0 for all φ ∈ C∞
c (Ω,R) ,

which implies that
δEλ (u, φ) = 0 for all φ ∈ C1

0 (Ω,R) . (2.1)

Since L and u are of class C1, it holds that

δEλ (u, φ) = dEλ (u, φ) = DEλ (u)φ for all φ ∈ C1
0 (Ω,R) , (2.2)

where DEλ (u) is the Fréchet derivative of Eλ at u and dEλ (u, φ) is the Gâteaux derivative of Eλ at u and direction
φ. Thus, if u is a critical point of Eλ, by relations (2.1) and (2.2) we can conclude that

Eλ (u+ tφ)− Eλ (u) = tdEλ (u, φ) + o(t) = o(t) for all φ ∈ C1
0 (Ω,R) .

Moreover, for t < |t0| with sufficiently small value t0 = t0 (φ) > 0 we have

Eλ (u+ tφ)− Eλ (u) ∼= 0 for all φ ∈ C1
0 (Ω,R) .

by resolving the previous equation, we obtain

λ =
1

2

∥u+ tφ∥2 − ∥u∥2∫
Ω

[F (u (x) + tφ (x))− F (u (x))] dx
(2.3)

By using formula (2.3), we calculate the value of λ where u is a critical surface for Eλ.
We consider a compact set Ω in R2, and a sublinear function f = f (u).

The algorithm of determination of λ:

Step 1: We take a grid with step h on Ω. We consider the values of the surfaces in the intersections: u (xi, yj) =
ui,j

Step 2: We approximate u with cubic spline surfaces where (xi, yj , ui,j) are the control points.
Step 3: We approximate (∇u)i,j in the interior of Ω by using the following formulas of approximations at second

degree (
∂u

∂x

)
i,j

≈ ui+1,j − ui−1,j

2h
,

(
∂u

∂y

)
i,j

≈ ui,j+1 − ui,j−1

2h
,

and at the margin by using(
∂u

∂x

)
i,j

≈ ui±1,j ∓ ui,j

±h
,

(
∂u

∂y

)
i,j

≈ ui,j±1 ∓ ui,j

±h
.

Step 4: We count out the integrates by using the trapezoid rule:

∥u∥2H1
0
=

∫
Ω

|∇u|2 dx, and
∫
Ω

F (u (x)) dx.

Step 5: Let u := u+ t · φ.
Step 6: We apply steps 3 and 4 for a new value at u.
Step 7: We calculate the value of λ with formula (2.3).

With the help of this algorithm we receive the alteration of λ when we change the height of one control point of
the spline surface.
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FIGURE 1. Graph of λ for 3× 3 grid.

FIGURE 2. Graph of λ for 4× 4 grid.

3. RESULTS

By using the Matlab program [3], we studied the variations of λ for the f (u) = arctan2 (u) sublinear function,
where Ω is a square.

We take a 3× 3 grid in Ω. The nodes of the grid are the control points of the surface. If we change the value of the
control point in the middle of the grid between 0 and 4 and the values of the other control points remain the same,
we obtain Figure 1.

The Ox axis indicates the height of the altering control point, and the Oy axis gives the values of λ. The graph
gives the critical surface of the energy functional for a chosen λ.

The Figure 1 presents the surface where the graph has local minimum.

FIGURE 3. Graph of λ for 5× 5 grid.

By considering four control points in the interior of Ω (4×4 grid), with three points fixed and the value of the forth
point varying, we obtain Figure 2. The surface beside the graph is the surface where the graph has inflection point.

If we consider nine control points in the interior of Ω (5 × 5 grid), where the value in one of the extreme control
points varies, and the values of the remaining eight control points are fixed, then we obtain Figure 3. The surfaces
under the graph represent the surfaces where the graph has local maximum and local minimum, respectively.

Another possibility is to consider nine control points in the interior of Ω (5× 5 grid), where we vary the height of
the control point in the middle of the grid. In this case we obtain Figure 4. The surfaces under the graphs represent
the surfaces where the graphs have vertical asymptote, local maximum and local minimum, respectively.
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FIGURE 4. Graph of λ for 5× 5 grid.
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FIGURE 5. Convergence.

As approximation errors might intervine it is necessary to examine the correctness of this method. The method
proves to be correct if we obtain better approximation results by taking lower steps in the derivation and integration
formulas. We need to obtain a converging array of curves if the resolution is divided in two equal parts (see Figure
5).

The following two tables establish the convergence numerically. The first table shows the alteration of the distances
between λ values when the resolution is redoubled. Accordingly, it is suggested to take small steps in the resolution
where the little change of the control point height induces big changes of the λ value.

0.25 0.5 0.75
0.05-0.025 63.31 15.33 6.06

0.025-0.0125 33.51 7.92 3.12
0.0125-0.00625 17.23 4.03 1.58

0.00625-0.003125 8.73 2.03 0.8
0.003125-0.0015625 4.39 1.02 0.4

0.0015625-0.00078125 2.21 0.51 0.2

The second table shows the alteration of the distances between the height of the control point when the resolution
for a chosen λ value is redoubled.

600 1000 1400
0.05-0.025 0.0118 0.0117 0.0121

0.025-0.0125 0.0061 0.0064 0.0061
0.0125-0.00625 0.0031 0.0031 0.0031

0.00625-0.003125 0.0016 0.0015 0.0016
0.003125-0.0015625 0.0007 0.0008 0.0007

0.0015625-0.00078125 0.0004 0.0004 0.0004



Sensitivity analysis of the energy functional 103

FIGURE 6. The possible critical surfaces for λ = 2500.

We also obtain a converging sequence, but here the received errors have the same order of magnitude, for different
λ values. The obtained distances are halved by redoubling the resolution. The estimated error is ε = 4 · 10−4

lim
n→∞

∞∑
n=1

ε
2n = ε,

when the resolution is 0.00078125. The obtained figures are made with this resolution.

4. CONCLUSIONS

We can approximate the J ⊂ (0,∞) interval in the three critical points theorem with the presented method. By
examining the obtained figures we can approximate the interval of λ with 0 and 26377.

We can also determine the values in the control points for which we find the critical surfaces of Eλ for a given λ.
If, for example, we choose the value of λ equal to 2500 we obtain six surfaces which could be critical values of the
energy functional Eλ (see Figure 6). The values of the altering control points height is specified under each figure.

5. VERIFICATION OF THE METHOD

The obtained surfaces are only possible critical surfaces of the energy functional, also motivated by the fact that
only one directional derivate has been taken in the calculations. We can check the validity of our statement with
the help of the pdenonlin Matlab function from the Matlab partial differential equation toolbox [9]. Here we have to
give as parameters the tolerance and the initial solution guess, which in our case will be the possible critical surface
determinated by us.

We observe that every given possible critical surface will be a solution of the problem Pλ, under a certain ’tol’
tolerance. The level of the tolerance decreases if the value of ’tol’ grows. Figure 6 shows the decrease of the tolerance
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FIGURE 7. Tolerance

level when we raise the height of the control point, in the case of the surfaces presented by figure 3 (we take a 5 × 5
grid on Ω, and one of the extreme control points varies). This phenomenon is the consequence of the pdenonlin
function derivatives scheme. The nonlinearities of the dependencies of the coefficients on the derivatives are not
properly linearized by the scheme. When such nonlinearities are strong, the scheme reduces to the fix-point iteration
and may converge slowly or not at all. We know that the nonlinearity of the surfaces increases when we grow the
height of the control point. Consequently, it is hard to determine the tolerance level under which we can consider
one surface as a solution.

The value of the tolerance is equal or greater than the calculation error given by us. Accordingly, we chose the
tolerance value to be equal to 4 · 10−4. Even so, the Matlab function accepts at least three surfaces determined by us
as a solution to the Pλ problem in the [433, 26377] interval of λ.
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