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Image compression with a human touch

OVIDIU COSMA

ABSTRACT.
Compression is very important for multimedia applications, because it reduces the amount of space for depositing the information, and the
bandwidth required for sending it through a computer network. Multiresolution analysis performs a wavelet decomposition that decorrelates the
signal data, in preparation for the quantization step and the final redundancy reduction. This article presents a simple algorithm for performing
the decomposition of images and propounds a quantization method that takes into account the human eye contrast sensitivity function.

1. INTRODUCTION

An image compressor is usually composed of an entropy reduction block, followed by a redundancy reduction
algorithm. The Entropy Reduction block applies a series of transformations to the signal, that are not fully reversible,
in order to prepare the data for the stage of Redundancy Reduction. The Entropy Reduction block contains two main
components: Transformation and Quantization, as it is shown in Figure 1.

Entropy reduction︷ ︸︸ ︷
Transformation → Quantization → Redundancy reduction

Figure 1

The transformation stage has the task of conveying the image in a domain where its important traits can be easily
marked out. Most of the actual compressors use the Fourier Transform (FT) for this purpose. The FT is a poor choice
for image compression, because it only reveals information about the spectral components of the signal, and it gives
no information about the time localization of these components. Because of that, dissimilar signals can have similar
transforms, and if the transform is followed by quantization, the little components that make the difference can
disappear [1].

We can say that the FT has the best possible frequency resolution, and the worst time resolution, and it is useful
in the case of unstationary signals only for revealing their spectral components [1]. If time localization of the spectral
components is needed, the FT is not the best choice. However, the FT is used in the old JPEG and MPEG compression
standards [4]. The new JPEG 2000 standard uses the wavelet transform [5].

The Quantization step is responsible for eliminating the less significant information from the transformed image.
The compromises performed at this stage determine the distortion level of the reconstructed image, and the com-
pression ratio [4].

Redundancy Reduction is the final stage that benefits from the previous transformations, and actually achieves com-
pression. It usually performs a run length encoding followed by Huffman or Arithmetic Encoding [4]. Other compression
techniques are described in [2] and [3].

2. IMAGE COMPRESSION

The purpose of the transform stage is to obtain a reversible decomposition of the signal in a set of basis compo-
nents. The FT uses sinusoides and the WT uses shorter components. Let’s consider the job done, and the signal f(t)
expressed as a weighted sum of basis functions: ψ1(t), ..., ψm(t).

f(t) =
m∑
i=1

ciψi(t) (2.1)

The data set required for the reconstruction of the signal contains the coefficients c1, ..., cm. In order to achieve
compression, an approximation of f(t) must be found, that can be expressed with fewer coefficients. For that purpose,
the coefficients c1, ..., cm are sorted in order of significance, so that for every m̃ < m, the first m̃ elements of the
sequence give the best approximationf̃(t) of f(t) in the L2 norm.

The solution to this problem is simple if an orthonormal basis is used. Let σ be a permutation of the elements
1, ...,m, and f̃(t) an approximation that uses coefficients corresponding to the first m̃ numbers of this permutation:
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f̃(t)

m̃∑
i=1

cσ(i)ψσ(i)(t) (2.2)

The square of the approximation error in the L2 norm is:∥∥∥f(t)− f̃(t)
∥∥∥2
2
=

⟨
f(t)− f̃(t)|f(t)− f̃(t)

⟩
=

=

⟨
m∑

i=m̃+1

cσ(i)ψσ(i)

∣∣∣∣∣ m∑
j=m̃+1

cσ(j)ψσ(j)

⟩
=

=
m∑

i=m̃+1

m∑
j=m̃+1

cσ(i)cσ(j)
⟨
ψσ(i)|ψσ(j)

⟩
=

=
m∑

i=m̃+1

(cσ(i))
2

(2.3)

The last step is possible only if the basis is orthonormal, that means that

⟨ψu|ψv⟩ = δuv

where δuv is the delta Kronecker function, that has the value 1 for u = v, and 0 in rest.
In conclusion, for minimizing the approximation error, for every m̃, the best choice for σ is the permutation that

sorts the coefficients in descending order [11], that is∣∣cσ(1)∣∣ > ∣∣cσ(2)∣∣ > · · · >
∣∣cσ(m)

∣∣ (2.4)

3. THE HAAR TRANSFORM

The Haar transform performs the decomposition of a signal in a set of Haar wavelets. The Haar wavelets are
defined in [5], and they are obviously the simplest wavelet functions.

ψjk(x) = ψ(2jx− k), k = 0, . . . , 2j − 1

where

ψ(x) =


1, for 0 6 x <

1

2

−1, for
1

2
6 x < 1

0, otherwise

(3.1)

The next figure illustrates the form of the Haar wavelets.

Figure 2

It is obvious that the Haar wavelets have compact support and they are orthogonal, but for image compression it
is important that they are also normalized. The following relation defines the normalized Haar wavelets:

ψj,k(x) = 2
j
2ψ(2jx− k) (3.2)

The wavelets defined by relation (3.2) are orthonormal. This implies that they have the property expressed in (2.3)
[7].

In order to compute the Haar transform of a digital signal f(i), we start with applying the following filter, that
splits the signal spectrum in two equal parts:
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h1(i) = (f(2i)− f(2i+ 1))/
√
2

l1(i) = (f(2i) + f(2i+ 1))/
√
2

(3.3)

Where hj(i) contains the high frequencies coefficients, and lj(i) contains the averages at the current resolution.
Because natural and computer generated images are usually composed by long smooth portions separated by lo-
calized discontinuities, we are satisfied with the sharp time resolution of the h1(i) signal, and we continue with the
decomposition in the same manner of the average signal lj(i), j=1,. . . , n. The process is completed when the signal is
reduced to a single sample, that will contain the overall average of the original signal.

This process is illustrated in the following figure:

Figure 3
For computing the inverse transform, we start with the general average and the detail coefficient for the lowest

resolution, and we determine the two averages for the next (higher) resolution.

lj(2i) = (lj+1(i) + hj+1(i))/
√
2

lj(2i+ 1) = (lj+1(i)− hj+1(i))/
√
2, j = n− 1, ..., 0

(3.4)

The transform is repeated until the original signal f(t) is recovered. f(i) = l0(i).

4. TWO-DIMENSIONAL HAAR WAVELET TRANSFORM

There are two possibilities to extend a one-dimensional wavelet transform to two-dimensional signals:
• Perform a complete separate one-dimensional wavelet transform for each of the rows, and then the collec-

tion of transformed rows is interpreted as a new image, and compute the wavelet transform for each of the
columns [1],[6].

• Alternate between the operations on the rows, and the operations on columns. At each step only the averages
resulted from the previous operations are processed.

Figure 4

The second method is more efficient, because it involves fewer operations.
Figure 4 presents the localization of the subbands generated by these decomposition methods (first method in a and
second in b). The right – down square contains the highest detail coefficients, and the upper – right corner contains
the overall average.
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5. QUANTIZATION

The role of the quantization step is to eliminate the insignificant information from the transformed image. A
general method of quantization that can be applied in the case of wavelet transform was described in [4]. There are
many ways to perform the quantization process. The most common method is the use of a linear quantizer with a
given quantization step ∆Q, so that the quantized representation c̃ of a coefficient c is given by:

c̃ = ∆Q

⌊
c

∆Q

⌋
(5.1)

The linear quantization method is correct from a mathematical point of view, but it does not take in consideration
the human eye characteristics.

The human eye contrast sensitivity function CSF is presented in the next figure. The luminance CSF has a max-
imum for spatial frequencies of around 4 cycles per optical degree (cpd). It is important to know which subband
contains this maxim. For a viewing distance of between 30 and 90 cm the maxim is situated in levels 3-5. A weight-
ing computed for a small distance would coarsely quantizate the coefficients in level 5, but for larger distances this
components shift to the maximum sensitivity region [8]

Figure 5
To avoid this situation, the luminance CSF is flattened for low frequencies as shown with the horizontal dotted

line in Figure 5.
Because the wavelet decomposition performs a natural separation of the coefficients per subbands, it is a good

idea to apply a separate weighting factor for each subband, before the quantization step. The weighting factors are
chosen in concordance with the CSF.

Figure 8 presents two sample images generated with the algorithms described in this article, and close-ups that
highlight the artifacts generated by the transforms. For each of the pictures, the localization of the significant wavelet
coefficients is shown. The black dots indicate the position of the nonzero coefficients, and the white dots indicate the
null ones. The distortion level is the same for both images: PSNR ≈ 22,61, and RMSE ≈ 18,86. RMSE is the Root
Mean Square Error and PSNR is the Peak Signal – to – Noise Ratio (in dB):

RMSE =

√√√√ 1

N

N∑
i=1

(fi − f̃i) PSNR = 20 log10
maxi |fi|

PSNR
(5.2)

where N is the total number of pixels, and maxi |fi| is the difference between the maximum and the minimum value
the pixels can hold.

For the image in a, a linear quantization was used, and for the image in
b the weighting factors presented in Table 1 were applied, in concordance
with the CSF. Although the second image has fewer coefficients, and the
distortion levels are equal, it seems to have a better quality than the image
in a, due to the CSF.

Level Weighting
1 0,16
2 0,29
3 0,56
4 0,89
5 1
6 1

...
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(a)

(b)
Figure 6
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