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Generating the basins of attraction for Newton’s
method

GHEORGHE ARDELEAN

ABSTRACT. There are many ways to view the basins of attraction for Newton’s method for com-
plex polynomials. In the paper a program to perform this task is presented. It determines if the
Newton’s method is converging from any point in a rectangular domain in RxR, and computes the
number of iterations necessary to attempt a root. The colors/number of iterations/roots and col-
ors/roots diagrams are generated.

1. INTRODUCTION

1.1. The basics. The Newton’s method is one of the most popular method to
approximate a root for an equation f(x) = 0. This is an iterative method and the
relation

xn = xn−1 − f(xn−1)
f ′(xn−1)

is used to generate the approximates sequence and starting from the given value
x0.

Our work refers to the Newton’s method for the complex coefficients polyno-
mials roots and the attraction basins for this roots, too. A Pascal source program
to determine the basins of attraction and some examples are presented.

1.2. An algorithm to estimate the roots of a complex coefficients polynomial.
In this section we present an algorithm to estimate the roots of a complex coeffi-
cients polynomial using Newton’s method.

Let us consider the complex coefficients polynomial:

f(z) = a1z
n + a2z

n−1 + ... + anz + an+1 (1.1)

where z = x + iy (i2 = −1) is a complex variable.
Let u and v be the real functions on two variables such that:

f(z) = u(x, y) + iv(x, y), z = x + iy (1.2)

u = Re(f), v = Im(f) are real and imaginary parts of f respectively.
For z = x + iy ∈ C, we have
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zn = (x + iy)n = xn + iyn (1.3)

where x1 = x, y1 = y. We have:

zn = (x + iy)n = (x + iy)(x + iy)n−1 =
= (x + iy)(xn−1 + iyn−1) = (xxn−1 − yyn−1)+
+i(xyn−1 + yxn−1)

It results the following iterative relations to determine zn:⎧⎨
⎩

xk = xxk−1 − yyk−1 k = 1, 2, ...n
yk = xyk−1 − yxk−1 k = 1, 2, ...n
x1 = x, y1 = x, x0 = 1, y0 = 0

(1.4)

and
f(z) = a1z

n + a2z
n−1 + ... + anz + an+1 =

= a1(xn + iyn) + a2(xn−1 + iyn−1) + ...+
+... + an(x1 + iy1) + an+1 = a1xn + a2xn−1 + ...+
+... + anx1 + an+1 + i(a1yn + a2yn−1 + ... + any1)

From f(z) = u(x, y) + iv(x, y) we can write:

u(x, y) = a1xn + a2xn−1 + ... + anx1 + an+1

v(x, y) = a1yn + a2yn−1 + ... + any1
(1.5)

u(x, y) =
n∑

k=0

an−k+1xk, v(x, y) =
n∑

k=1

an−k+1yk (1.6)

We compute the partial derivate of u and v:

∂u
∂x (x, y) =

n∑
k=1

an−k+1
∂xk

∂x (x, y)

∂v
∂x(x, y) =

n∑
k=1

an−k+1
∂yk

∂y (x, y)
(1.7)

∂u
∂y (x, y) =

n∑
k=1

an−k+1
∂xk

∂y (x, y)

∂v
∂y (x, y) =

n∑
k=1

an−k+1
∂yk

∂y (x, y)
(1.8)

We can prove that:
∂xk

∂x (x, y) = kxk−1
∂yk

∂x (x, y) = kyk−1
(1.9)

∂xk

∂y (x, y) = −kxk−1
∂yk

∂y (x, y) = kyk−1
(1.10)

and
∂u
∂x (x, y) =

n∑
k=1

kan−k+1xk−1

∂v
∂x(x, y) =

n∑
k=1

an−k+1yk−1

(1.11)
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∂u
∂y (x, y) = −

n∑
k=1

kan−k+1yk−1

∂v
∂y (x, y) =

n∑
k=1

kan−k+1xk−1

(1.12)

Let us consider the equation:

f(z) = 0, z = x + iy (1.13)
Let z = x + iy be a root of the equation (1.13).

Because f(z) = u(x, y) + iv(x, y) the equation (1.13) becomes:{
u(x, y) = 0
v(x, y) = 0 (1.14)

so the equation (1.13) is equivalent to the system (1.14). We have:

xk = xk−1 −
u∂v

∂y − v ∂u
∂y

∂u
∂x

∂v
∂y − ∂u

∂y
∂v
∂x

(1.15)

yk = yk−1 −
u ∂v

∂x − v ∂u
∂x

∂u
∂x

∂v
∂y − ∂u

∂y
∂v
∂x

(1.16)

where the functions u, v, ∂u
∂x , ∂u

∂y , ∂v
∂x , ∂v

∂y are in (xk−1, yk−1) and

xk = xk−1 −
u∂u

∂x + v ∂v
∂x(

∂u
∂x

)2
+

(
∂v
∂x

)2 (1.17)

yk = yk−1 −
v ∂u

∂x − u ∂v
∂x(

∂u
∂x

)2
+

(
∂v
∂x

)2 (1.18)

The xk + iyk sequence is converging to an approximative root of the equation
f(z) = 0.

The iterative process (1.17) and (1.18) starts from z1 = x1 + iy1 and stop at the
condition

|xk+1 − xk| + |yk+1 − yk|
|xk+1| + |yk+1| < ε (1.19)

where ε > 0. In the following we present the iterative relation to determine the
values of u, v, ∂u

∂x , ∂v
∂x at a point (x, y). For that, let us consider the polynomial

function:
f(z) = a1z

n + a2z
n−1 + ... + anz + an+1, (1.20)

where z = x + iy. Let us denote

f(z) = un+1(x, y) + ivn+1(x, y) = sn+1 (1.21)

From (1.20) and (1.21) it results:

sn+1 = an+1 + z(un + ivn)

and sn+1 = an+1 + (x + iy)(un + ivn)
and sn+1 = an+1 + (xun + yvn) + i(yun + xvn)
and from (1.21) it results:

un+1 = an+1 + xun − yvn
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vn+1 = yun + xvn with u1 = a1, v1 = 0 (1.22)
relations to compute

f(z) = un+1(x, y) + ivn+1(x, y).

The relations to compute ∂u
∂x , ∂v

∂x are determined in the following:

un+1 = an+1 + (xun − yvn)
vn+1 = yun + xvn

(1.23)

By derivation we have:
∂un+1

∂x = un + x∂un

∂x − y ∂vn

∂x
∂vn+1

∂x = vn + y ∂un

∂x + xy ∂vn

∂x

(1.24)

2. THE BASINS OF ATTRACTION FOR NEWTON’S METHOD

Let us consider the polynomial

P (z) = a1z
n + a2z

n−1 + ... + anz + an+1

where z = x + iy(i2 = −1) is a complex variable.
The Basin of Attraction for a root of P is the set of starting points for which

the Newton’s method is converging to this root.

3. THE PASCAL SOURCE PROGRAM FOR NEWTON’S METHOD

procedure NEWTON(l,j:integer;var k:byte;var sol:complex);
Begin
z.re:=alfa+l*h;;
z.im:=gama+j*q;

Derivk(0,a,n,z,d);
m:=modul(d);
k := 0;
While (m>=eps) and (k < Kmax) do

begin
k := k + 1;

Derivk(1,a,n,z,d);
if modul(d)¡1.0e-4000 then exit;
Derivk(0,a,n,z,d);
Derivk(1,a,n,z,d1);
div(d,d1,d2);
sub(z,d2,z);
Derivk(0,a,n,z,d);
m:=modul(d);

end;
k:=k mod 16;
sol:=z;

End;{Procedure NEWTON}
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unit Ucomplex;
interface
type complex=record

re:extended;
im:extended;

end; vcomplex=array[0..20] of complex;
procedure add(a,b:complex;var c:complex);
procedure sub(a,b:complex;var c:complex);
procedure mult(a,b:complex;var c:complex);
procedure inminco(i:integer;a:complex;var c:complex);
procedure div(a,b:complex;var c:complex);
function modul(a:complex):extended;
function permut(n,k:integer):integer;

{Compute the product (n-k+1)....(n-1)n }
procedure Derivk (k:integer; a:v complex; n: integer; z : complex;

var derk:complex);
{Compute the k derivative in z, of a complex polynomial}

implementation

procedure add;
begin
c.re:=a.re+b.re;
c.im:=a.im+b.im;
end;

procedure sub;
begin

c.re:=a.re-b.re;
c.im:=a.im-b.im;

end;

procedure mult;
begin
c.re:=b.re*a.re-a.im*b.im;
c.im:=b.im*a.re+b.re*a.im;

end;

procedure inminco;
begin

c.re:=i*a.re;
c.im:=i*a.im;

end;

procedure div;
begin
c.re:=(a.re*b.re+a.im*b.im)/(sqr(b.re)+sqr(b.im));
c.im:=(a.im*b.re-a.re*b.im)/(sqr(b.re)+sqr(b.im));
end;
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function modul;
begin
modul:=sqrt(sqr(a.re)+sqr(a.im));
end;

function permut;
var i,p:integer;
begin

if k=0 then permut:=1
else
begin
p := 1;
for i:=n-k+1 to n do
p := p ∗ i;
permut:=p;
end;

end;

procedure Derivk;
Var p,q:complex;

j:integer;
begin

inminco(permut(n,k),a[n],p);
for j:=1 to n-k do

begin
mult(p,z,p);
inminco(permut(n-j,k),a[n-j],q);
add(p,q,p);
end;
derk:=p;

end;
end.

4. EXAMPLES

The following figures are generated by the Pascal program and presents an
eight degree polynomial case and a four degree polynomial basins of attraction
and the roots.
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P (Z) = Z8 + (1 + 8i)Z7 + (−22 + 27i)Z6 + (−105 + 70i)Z5 + (−271 + 185i)Z4+

(−346 + 872i)Z3 + (1282 + 1658i)Z2 + (3060 − 2820i)Z − 3600

P(Z)= Z4 + 1
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