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Integral mean for fuzzy random variables

IULIANA CARMEN BĂRBĂCIORU

ABSTRACT. In this paper we give some convergence properties with respect to weakly conver-
gence for integral mean of fuzzy random variables.

1. INTRODUCTION AND PRELIMINARIES

Let X be a real separable reflexive Banach space with dual X∗ and 〈·, ·〉 the
dual operations between X and X∗. Let 2X denote the family of all nonempty
subsets of X and σ (A, x∗) = sup {〈x∗, x〉 ; x ∈ A} the support function of A ⊂ X.
Also, we denote by Pf (X) the family of all nonempty closed subsets of X , by
Pbfc (X) the family of all nonempty bounded closed convex subsets of X , and by
Pwkc (X) the family of all nonempty weakly compact convex subsets of X . For
A,B ∈ Pf (X) , let H(A,B) denote the Hausdorff metric of A and B defined by

H(A,B) = max
{

sup
a∈A

d (a,B) , sup
b∈B

d (b, A)
}

where d (a, B) = inf
b∈B

‖a − b‖ and ‖·‖ is the norm of X . If A, B are convex sets,

then
H(A,B) = sup

‖x∗‖≤1

|σ (A, x∗) − σ (B, x∗)|

Let (T, Σ, µ) be a complete finite measurable space and F : T → Pf (X) a set
valued function. F is said to be measurable if

F−1 (A) = {t ∈ T ; F (t) ∩ A 6= ∅} ∈ Σ

for every A ∈ Pf (X) . A function f : T → X is called an integrable selector of F
if f is Bochner integrable and f(t) ∈ F (t), t ∈ T. Let

SF = {f ; f : T → X is an integrable sector} .

For A ∈ Σ, the Aumann-Bochner integral of F is defined by∫
A

F (t)dµ(t) =
{∫

A

f(t)dµ(t); f ∈ SF

}
,

where
∫

A
f(t)dµ(t) is the Bochner integral of f .
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F is said to be integrable if SF 6= ∅. F is said to be integrable bounded if
|F (t)| = sup

x∈F (t)

‖x‖ is integrable.

We know (see [6]) that F : T → Pwkc (X) is measurable if and only if for
every x∗ ∈ X∗, t → σ(F (t), x∗) is measurable. Moreover, if F is measurable
and integrable bounded then

∫
A

F (t)dµ(t) ∈ Pwkc (X) and σ(
∫

A
F (t)dµ(t), x∗) =∫

A
σ(F (t), x∗)dµ(t) for every x∗ ∈ X∗.
The definition of Aumann-Bochner integral was introduced by Aumann in [1]

on Rn and was generalized by Hiai [5] and Papageorgiou [8] on Banach spaces.
In this paper a fuzzy vector u ∈ Fwkc (X) is a function u : X → [0, 1]

for which the α- level set [u]α of u, defined by [u]α = {x ∈ X;u(x) ≥ α} is
nonempty, weakly compact convex subset of X for all α ∈ [0, 1]. Also [u]0 =
{x ∈ X; u(x) > 0} is weakly compact.

For two fuzzy vectors u, v ∈ Fwkc (X) we can define a distance D : Fwkc (X)×
Fwkc (X) → R+ by

D(u, v) = sup
0≤α≤1

H([u]α, [v]α).

A function u : X → [0, 1] is said to be a Lipschitz fuzzy vectorr if it satisfies
the following:

(1) [u]α is bounded closed convex;
(2) there exists a constant L > 0 such that

H([u]α, [u]β) ≤ L |α − β| for all α, β ∈ [0, 1]

If we put FL (X) = {u; u is Lipschitz fuzzy vector} then we have that
FL (X) ⊂ Fwkc (X). F : T → Fwkc (X) is said to be a measurable fuzzy map-
ping (or a fuzzy random variable ) if [F ]α(t) = {x ∈ X; F (t) ≥ α} is a measurable
set-valued mapping for every α ∈ [0, 1] .

F is said to be integrable if for every A ∈ Σ there exists a uA ∈ Fwkc (X)
such that [uA]α =

∫
A
[F ]α(t)dµ(t) for all α ∈ [0, 1] . We call uA =

∫
A

F (t)dµ(t)
the integral of F on A. Therefore,

∫
A

F (t)dµ(t) = uA if and only if [uA]α =
[
∫

A
F (t)dµ(t)]α =

∫
A
[F ]α(t)dµ(t) .

A sequence {un} ⊂ Fwkc (X) is said to be weakly convergent to u ∈ Fwkc (X) if

σ ([un]α, x∗) → σ ([u]α, x∗) as n → ∞

for all α ∈ [0, 1] and x∗ ∈ X∗. We denote by un
w→ u the weakly convergence.

In this paper we give some convergence properties with respect to weakly con-
vergence for integral mean of fuzzy random variables. The properties of integral
mean for fuzzy random variables with respect to the metric D was studied in [2].
The set-valued versions of the results in [2] were given in [10].

2. THE CONVERGENCE OF INTEGRAL MEAN

Let F : T → Fwkc (X) be an integrable bounded fuzzy random variable. Then
the fuzzy mapping MF : T → Fwkc (X) given by

MF (A) =
1

µ (A)

∫
A

F (t)dµ(t),

where A ∈ Σ and µ (A) 6= 0 is called the fuzzy integral mean of F .
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Remark 2.1. For every α ∈ [0, 1] and A ∈ Σ with µ (A) 6= 0, we have that

[MF (A)]α =
1

µ (A)

∫
A

[F ]α(t)dµ(t).

Indeed we have

[MF (A)]α =
[

1
µ (A)

∫
A

F (t)dµ(t)
]α

=
1

µ (A)

[∫
A

F (t)dµ(t)
]α

=
1

µ (A)

∫
A

[F ]α(t)dµ(t).

Proposition 2.1. Let F : T → FL (X) be a fuzzy random variable such that satisfy the
following:

(1) there exists an integrable function g : T → R+ such that

|[F ]0(t)| ≤ g(t),

(2) there exists an integrable function h : T → R+ such that

H([F ]α(t), [F ]β(t)) ≤ h(t) |α − β| for all α, β ∈ [0, 1] .

Then, for each A ∈ Σ with µ (A) 6= 0, there exists uA ∈ FL (X) such that

[uA]α =
[

1
µ (A)

∫
A

F (t)dµ(t)
]α

=
1

µ (A)

∫
A

[F ]α(t)dµ(t)

i.e. MF (A) ∈ FL (X) .

Proof. According to theorem 4.5 in [11], then exists a uA : X → [0, 1] such that
[uA]α ∈ Pbfc (X) and satisfies

[uA]α =
[∫

A

F (t)dµ(t)
]α

=
∫

A

[F ]α(t)dµ(t)

Hence

H([MF (A)]α , [MF (A)]β) = H

([
1

µ (A)

∫
A

F (t)dµ(t)
]α

,

[
1

µ (A)

∫
A

F (t)dµ(t)
]β
)

= H

(
1

µ (A)

[∫
A

F (t)dµ(t)
]α

,
1

µ (A)

[∫
A

F (t)dµ(t)
]β
)

=
1

µ (A)
H

(∫
A

[F ]α(t)dµ(t),
∫

A

[F ]β(t)dµ(t)
)

≤ 1
µ (A)

∫
A

H
(
[F ]α(t), [F ]β(t)

)
dµ(t)

≤ 1
µ (A)

(∫
A

h(t)dµ(t)
)
|α − β|

we have MF (A) ∈ FL (X) and the proof is complete. �

Theorem 2.1. Let F : T → FL (X) be a fuzzy random variable such that satisfy the
following:
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(1) there exists an integrable function g : T → R+ such that

|[F ]0(t)| ≤ g(t),

(2) there exists an integrable function h : T → R+ such that

H([F ]α(t), [F ]β(t)) ≤ h(t) |α − β| for all α, β ∈ [0, 1] .

Then the level-application α → [MF (A)]α is H-continuous on [0, 1].

Proof. Let A ∈ Σ with µ (A) 6= 0 and αn, α ∈ [0, 1] such that αn → α as n → ∞.
Since

H([MF (A)]αn , [MF (A)]α)

= H

([
1

µ (A)

∫
A

F (t)dµ(t)
]αn

,

[
1

µ (A)

∫
A

F (t)dµ(t)
]α)

= H

(
1

µ (A)

[∫
A

F (t)dµ(t)
]αn

,
1

µ (A)

[∫
A

F (t)dµ(t)
]α)

=
1

µ (A)
H

(∫
A

[F ]αn(t)dµ(t),
∫

A

[F ]α(t)dµ(t)
)

≤ 1
µ (A)

∫
A

H ([F ]αn(t), [F ]α(t)) dµ(t)

≤ 1
µ (A)

(∫
A

h(t)dµ(t)
)
|αn − α|

we infer that H([MF (A)]αn , [MF (A)]α) → 0 as n → ∞, and so α → [MF (A)]α is
H-continuous on [0, 1]. �

Theorem 2.2. Let Fn : T → Fwkc (X), n ∈ N, be a sequence of integrably bounded
fuzzy random variables such that Fn

w→ F ∈ Fwkc (X) as n → ∞. Then MFn (A) w→
MF (A) for all A ∈ Σ with µ (A) 6= 0.

Proof. Since Fn
w→ F as n → ∞ then, for every ε > 0 and x∗ ∈ X∗ there exists

n0 ∈ N such that
|σ ([Fn]α(t), x∗) − σ ([F ]α(t), x∗) | < ε

for all n ≥ n0. Further, if A ∈ Σ with µ (A) 6= 0 then, for n ≥ n0, we have

|σ ([MFn (A)]α , x∗) − σ ([MF (A)]α , x∗)|

=
1

µ (A)

∣∣∣∣σ([∫
A

Fn(t)dµ(t)
]α

, x∗
)
− σ

([∫
A

F (t)dµ(t)
]α

, x∗
)∣∣∣∣

=
1

µ (A)

∣∣∣∣∫
A

σ ([Fn]α(t), x∗) dµ(t) −
∫

A

σ ([F ]α(t), x∗) dµ(t)
∣∣∣∣

=
1

µ (A)

∣∣∣∣∫
A

[σ ([Fn]α(t), x∗) − σ ([F ]α(t), x∗)]dµ(t)
∣∣∣∣

≤ 1
µ (A)

∫
A

|σ ([Fn]α(t), x∗) − σ ([F ]α(t), x∗)| dµ(t) < ε.

Therefore limn→∞ σ ([MFn (A)]α , x∗) = σ ([MF (A)]α , x∗) and hence MFn (A) w→
MF (A) as n → ∞. �
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