Stabilizing discrete dynamical systems by monotone Krasnoselskij type iterative schemes

Vasile Berinde and Gabriella Kovács

Abstract

In this note monotone approximations of fixed points of real Lipschitz functions are produced by employing a variation controlling mechanism and a growth-rate controlling mechanism, both with generalized Krasnoselskij type iterations, and both inspired from discrete dynamical systems.

1. Preliminaries

Discrete dynamical systems are intensively studied due to their applications in various fields. Even if one dimensional, they are able to model many different kind of phenomena.

For $a, b \in \mathbb{R}, a<b$ and $f:[a, b] \rightarrow[a, b]$ denote

$$
[[a, b], f]
$$

the discrete dynamical system defined by f. In such systems the trajectory of an element $x_{0} \in[a, b]$ is the sequence started with x_{0} and generated by the Picard iteration

$$
x_{n+1}=f\left(x_{n}\right), n \in \mathbb{N} .
$$

A basic problem regarding the discrete dynamical system $[[a, b], f]$ is the study of trajectories for all starting points and the analysis of the dependences on starting points of the trajectories when f satisfies some smoothness conditions.

Denote F_{f} the set of fixed points of $f, F_{f}=\{x \mid x \in[a, b], f(x)=x\}$ (possible empty).

If f is continuous, since $f(a) \geq a$ and $f(b) \leq b$, by the intermediate value theorem applied to $f(x)-x$, it results that f possesses at least one fixed point, $F_{f} \neq \varnothing$; moreover, the set F_{f} is compact, as it is a bounded and closed subset of \mathbb{R}.

In the discrete dynamical system $[[a, b], f]$ a fixed point x^{*} of f is considered as ([3], [5])
-attracting or stable if there exists an open interval I which contains x^{*} such that $f(x) \in I$ for all $x \in I$ and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for all $x \in I$;
-repelling or instable if there exists an open interval I which contains x^{*} such that for every $x \in I \backslash\left\{x^{*}\right\}$ there exists $n \in \mathbb{N}^{*}$ with $f^{n}(x) \notin I$.

Received: 16.09.2008. In revised form: 4.03.2009. Accepted: 12.05.2009.
2000 Mathematics Subject Classification. 37C25.
Key words and phrases. Lipschitz continuity, generalized Krasnoselskij type iteration, fixed point attracting from below (from above), discrete dynamical system.

We call the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} s$-increasing if either $x_{n}<x_{n+1}$ for all $n \in \mathbb{N}$, or there is a $k \in \mathbb{N}$ such that $x_{0}<x_{1}<\ldots<x_{k-1}<x_{k}=x_{k+1}=x_{k+2}=\ldots$. We call the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} s$-decreasing if either $x_{n}>x_{n+1}$ for all $n \in \mathbb{N}$, or there is a $k \in \mathbb{N}$ such that $x_{0}>x_{1}>\ldots>x_{k-1}>x_{k}=x_{k+1}=x_{k+2}=\ldots$.

Slightly differently from [1] where the strict monotony is required, through this paper we consider a fixed point x^{*} of f as
-monotonously attracting from below if there exists $\epsilon>0$ such that all trajectories starting with $x_{0} \in\left(x^{*}-\epsilon, x^{*}\right)$ are s-increasing and converge to x^{*};
-monotonously attracting from above if there exists $\epsilon>0$ such that all trajectories starting with $x_{0} \in\left(x^{*}, x^{*}+\epsilon\right)$ are s-decreasing and converge to x^{*};
-monotonously stable if it is monotonously attracting both from below and from above.

We associate to f the following two families of functions

$$
\begin{gathered}
\bar{f}_{\gamma}:[a, b] \rightarrow \mathbb{R}, \bar{f}_{\gamma}(x)=x+\gamma(f(x)-x), \\
\widetilde{f}_{\gamma}:[a, b] \rightarrow \mathbb{R}, \widetilde{f}_{\gamma}(x)=x(1+\gamma(f(x)-x)),
\end{gathered}
$$

where $\gamma \in \mathbb{R}^{*}$.
The function f and all the functions \bar{f}_{γ} are related to each other by sharing exactly the same fixed points set

$$
F_{f}=F_{\bar{f}_{\gamma^{\prime}}} \gamma \in \mathbb{R}^{*}
$$

If $0 \notin[a, b]$, then also

$$
F_{f}=F_{\widetilde{f}_{\gamma}}, \gamma \in \mathbb{R}^{*}
$$

Indeed, if $x \in F_{f}$, then $f(x)-x=0$, so $\widetilde{f}_{\gamma}(x)=x$ and $x \in F_{\tilde{f}_{\gamma}}$. Conversely, if $x \in F_{\widetilde{f}_{\gamma}}$, from $\widetilde{f}_{\gamma}(x)=x$, since $x \neq 0$ and $\gamma \neq 0$, it results that $f(x)-x=0$, so $x \in F_{f}$.

The conditions $\gamma \neq 0$, respectively $0 \notin[a, b]$, are essential for the above statements.

With $\gamma \in \mathbb{R}^{*}$ on some suitable interval $I \subset[a, b]$ we will consider, associated to $[[a, b], f]$, the discrete dynamical system

$$
\left[I, \bar{f}_{\gamma}\right]
$$

and we refer to it as a variation controlled discrete dynamical system with control parameter γ. In $\left[I, \bar{f}_{\gamma}\right]$ the trajectory of an element $y_{0} \in I$ is generated by

$$
y_{n+1}=\bar{f}_{\gamma}\left(y_{n}\right), n \in \mathbb{N}
$$

i. e.

$$
y_{n+1}=y_{n}+\gamma\left(f\left(y_{n}\right)-y_{n}\right), n \in \mathbb{N},
$$

or

$$
y_{n+1}=(1-\gamma) y_{n}+\gamma f\left(y_{n}\right), n \in \mathbb{N}
$$

For $I=[a, b]$, in the system $\left[[a, b], \bar{f}_{\gamma}\right]$ with $\gamma \in(0,1)$ given, this is exactly a Krasnoselskij iteration applied to f.

In case that $0 \notin[a, b]$, with $\gamma \in \mathbb{R}^{*}$ on some suitable interval $I \subset[a, b]$ we will also consider, associated to $[[a, b], f]$, the discrete dynamical system

$$
\left[I, \widetilde{f}_{\gamma}\right] .
$$

In $\left[I, \tilde{f}_{\gamma}\right]$ the trajectory of an element $z_{0} \in I$ is generated by

$$
z_{n+1}=\widetilde{f}\left(z_{n}\right), n \in \mathbb{N},
$$

i. e.

$$
z_{n+1}=z_{n}\left(1+\gamma\left(f\left(z_{n}\right)-z_{n}\right)\right), n \in \mathbb{N},
$$

or

$$
z_{n+1}=z_{n}+\gamma z_{n}\left(f\left(z_{n}\right)-z_{n}\right),
$$

iteration studied by Huang, W. [6] under some conditions on f^{\prime} at the fixed point of f. Remark that

$$
\frac{z_{n+1}-z_{n}}{z_{n}}=\gamma\left(f\left(z_{n}\right)-z_{n}\right),
$$

a ground for referring to the system $\left[I, \widetilde{f}_{\gamma}\right]$ as a growth-rate controlled discrete dynamical system with control parameter γ ([6]).

For recent and comprehensive results on Picard and Krasnoselskij iterations, both presented within more general settings, we refer to [2].

Through this paper we focus on discrete dynamical systems $[[a, b], f]$ with f : $[a, b] \rightarrow[a, b]$ satisfying a Lipschitz condition, i. e.

$$
\left|f\left(u_{1}\right)-f\left(u_{2}\right)\right| \leq L\left|u_{1}-u_{2}\right|, u_{1}, u_{2} \in[a, b],
$$

where $L>0$ is a constant. Such a function is continuous, so it possesses at least one fixed point and the set of its fixed points is compact.

2. Monotone iterations With Lipschitz functions

Let $f:[a, b] \rightarrow[a, b]$ satisfying a Lipschitz condition. As it is mentioned in Section 1, f is continuous, $F_{f} \neq \varnothing$ and F_{f} is compact. Let $c_{1}, c_{2} \in[a, b]$, $c_{1}<c_{2}$. If $f\left(c_{1}\right)-c_{1}$ and $f\left(c_{2}\right)-c_{2}$ are of opposite sign, meaning that $\left(f\left(c_{1}\right)-c_{1}\right)\left(f\left(c_{2}\right)-c_{2}\right) \leq 0$, then, by the intermediate value theorem $F_{f} \cap$ $\left[c_{1}, c_{2}\right] \neq \varnothing$. In this case $F_{f} \cap\left[c_{1}, c_{2}\right]$, as a compact subset of \mathbb{R}, possesses a least element and a greatest element.

When f satisfies the Lipschitz condition with $L<1$, by the contraction principle F_{f} consists of a unique fixed point of f and all sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by the Picard iteration $x_{0} \in[a, b], x_{n+1}=f\left(x_{n}\right)$, converge to this fixed point.

When a function $f:[a, b] \rightarrow[a, b]$ is monotone, the sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ generated by the Picard iteration are either monotone or compounded from two monotone subsequences $\left(x_{2 k+1}\right)_{k \in \mathbb{N}}$ and $\left(x_{2 k}\right)_{k \in \mathbb{N}} ;$ if f is also continuous, then these sequences converge to a fixed point of f. For results on Picard iterations with monotone and continuous functions see [7].

Hillam ([4]) prove for $f:[a, b] \rightarrow[a, b]$ satisfying the Lipschitz condition with constant $L>0$ that for any $x_{0} \in[a, b]$ the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ defined by the Krasnoselskij iteration $x_{n+1}=(1-\gamma) x_{n}+\gamma f\left(x_{n}\right)$ with $\gamma=\frac{1}{L+1}$ converges monotonically to a fixed point of f.

Hillam's result is remarkable in giving monotone iterations for functions f : $[a, b] \rightarrow[a, b]$ that are not necessarily monotone.

Hillam's paper [4] inspires us for our next theorem and proof, dealing with generalized Krasnoselskij type iterations of f, that are, in fact, Picard iterations of the function \bar{f}_{γ}.
Theorem 2.1. Let $a, b \in \mathbb{R}, a<b, f:[a, b] \rightarrow[a, b]$ satisfying the Lipschitz condition with $L>0$, and let $x_{0} \in[a, b]$.
i) If $f\left(x_{0}\right)>x_{0}$, letting $\gamma \in\left(0, \frac{1}{L+1}\right]$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{\prime}} x_{n+1}=$ $(1-\gamma) x_{n}+\gamma f\left(x_{n}\right)$, is s-increasing and convergent to $\min \left(F_{f} \cap\left[x_{0}, b\right]\right)$.
ii) If $f\left(x_{0}\right)>x_{0}$ and $F_{f} \cap\left[a, x_{0}\right] \neq \varnothing$, letting $\gamma \in\left[-\frac{1}{L+1}, 0\right)$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=(1-\gamma) x_{n}+\gamma f\left(x_{n}\right)$, is s-decreasing and convergent to $\max \left(F_{f} \cap\left[a, x_{0}\right]\right)$.
iii) If $f\left(x_{0}\right)<x_{0}$, letting $\gamma \in\left(0, \frac{1}{L+1}\right]$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=$ $(1-\gamma) x_{n}+\gamma f\left(x_{n}\right)$, is s-decreasing and convergent to $\max \left(F_{f} \cap\left[a, x_{0}\right]\right)$.
iv) If $f\left(x_{0}\right)<x_{0}$ and $F_{f} \cap\left[x_{0}, b\right] \neq \varnothing$, letting $\gamma \in\left[-\frac{1}{L+1}, 0\right)$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{\prime}} x_{n+1}=(1-\gamma) x_{n}+\gamma f\left(x_{n}\right)$, is s-increasing and convergent to $\min \left(F_{f} \cap\left[x_{0}, b\right]\right)$.
Proof. We discuss the case when $f\left(x_{n}\right) \neq x_{n}$ for all $n \in \mathbb{N}$.
i) Remark that $F_{f} \cap\left[x_{0}, b\right] \neq \varnothing$ is assured by $f\left(x_{0}\right)>x_{0}$ and $f(b) \leq b$. Denote $p=\min \left(F_{f} \cap\left[x_{0}, b\right]\right)$.

We have $x_{0}<p$ and $f\left(x_{0}\right)>x_{0}$. We show that if $x_{0}<x_{1}<\cdots<x_{k}<p$ and $f\left(x_{k}\right)>x_{k}$, then $x_{k}<x_{k+1}<p$ and $f\left(x_{k+1}\right)>x_{k+1}$:

- Having $x_{k}<p$ and supposing $x_{k+1}>p$, it follows successively

$$
\begin{gathered}
\left|p-x_{k}\right|<\left|x_{k+1}-x_{k}\right|=\gamma\left|f\left(x_{k}\right)-x_{k}\right|=\gamma\left|f\left(x_{k}\right)-f(p)+p-x_{k}\right| \leq \\
\gamma\left(\left|f\left(x_{k}\right)-f(p)\right|+\left|p-x_{k}\right|\right) \leq \gamma\left(L\left|x_{k}-p\right|+\left|p-x_{k}\right|\right)= \\
\gamma(L+1)\left|p-x_{k}\right| \leq\left|p-x_{k}\right|
\end{gathered}
$$

which is a contradiction. Thus $x_{k+1}<p$.

- The inequality $x_{k}<x_{k+1}$ follows from $x_{k+1}=x_{k}+\gamma\left(f\left(x_{k}\right)-x_{k}\right)$ since $\gamma>0$ and $f\left(x_{k}\right)-x_{k}>0$.
- Now, supposing $f\left(x_{k+1}\right)<x_{k+1}$, as $f\left(x_{k}\right)>x_{k}$, it follows that f has a fixed point in $\left(x_{k}, x_{k+1}\right)$, which contradicts $\min \left(F_{f} \cap\left[x_{0}, b\right]\right)=p>x_{k+1}$. Thus $f\left(x_{k+1}\right)>x_{k+1}$.

By induction it follows that $x_{n}<x_{n+1}<p$ and $f\left(x_{n}\right)>x_{n}$ for all $n \in \mathbb{N}$.
The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent to an $x^{*} \in\left[x_{0}, p\right]$, since it is monotone increasing and bounded from above by p. Since f is continuous and since $\gamma \neq 0$, the recurrence $x_{n+1}=x_{n}+\gamma\left(f\left(x_{n}\right)-x_{n}\right)$ implies $x^{*}=f\left(x^{*}\right)$, so $x^{*}=p$.
ii) Denote $q=\max \left(F_{f} \cap\left[a, x_{0}\right]\right)$. From $f\left(x_{0}\right)>x_{0}$ it follows that $q<x_{0}$.

We have $q<x_{0}$ and $f\left(x_{0}\right)>x_{0}$. We show that if $q<x_{k}<\cdots<x_{1}<x_{0}$ and $f\left(x_{k}\right)>x_{k}$, then $q<x_{k+1}<x_{k}$ and $f\left(x_{k+1}\right)>x_{k+1}$:
-Having $q<x_{k}$ and supposing $x_{k+1}<q$, it follows successively

$$
\begin{gathered}
\left|q-x_{k}\right|<\left|x_{k+1}-x_{k}\right|=|\gamma|\left|f\left(x_{k}\right)-x_{k}\right|=|\gamma| \cdot\left|f\left(x_{k}\right)-f(q)+q-x_{k}\right| \leq \\
|\gamma|\left(\left|f\left(x_{k}\right)-f(q)\right|+\left|q-x_{k}\right|\right) \leq|\gamma|\left(L\left|x_{k}-q\right|+\left|q-x_{k}\right|\right)= \\
|\gamma|(L+1)\left|q-x_{k}\right| \leq\left|q-x_{k}\right|
\end{gathered}
$$

which is a contradiction. Thus $q<x_{k+1}$.

- The inequality $x_{k+1}<x_{k}$ follows from $x_{k+1}=x_{k}+\gamma\left(f\left(x_{k}\right)-x_{k}\right)$ since $\gamma<0$ and $f\left(x_{k}\right)-x_{k}>0$.
- Now, supposing $f\left(x_{k+1}\right)<x_{k+1}$, as $f\left(x_{k}\right)>x_{k}$, it follows that f has a fixed point in $\left(x_{k+1}, x_{k}\right)$, which contradicts $\max \left(F_{f} \cap\left[a, x_{0}\right]\right)=q<x_{k+1}$. Thus $f\left(x_{k+1}\right)>x_{k+1}$.

By induction it follows that $q<x_{n+1}<x_{n}$ and $f\left(x_{n}\right)>x_{n}$ for all $n \in \mathbb{N}$.
The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent to an $x^{*} \in\left[q, x_{0}\right]$, since it is monotone decreasing and bounded from below by q. Since f is continuous and since $\gamma \neq 0$, the recurrence $x_{n+1}=x_{n}+\gamma\left(f\left(x_{n}\right)-x_{n}\right)$ implies $x^{*}=f\left(x^{*}\right)$, so $x^{*}=q$.

The proofs of iii) and iv) are similar to that of i) and ii) respectively.
Our next two theorems - inspired by the growth-rate adjustment mechanism studied under some conditions on f^{\prime} at the fixed point of f by Huang, W. [6] deal with generalized Krasnoselskij type iterations for f, that are, in fact, Picard iterations of the function \tilde{f}_{γ}. The proofs we present here are inspired by the proof in [4].

Theorem 2.2. Let $a, b \in \mathbb{R}, 0<a<b, f:[a, b] \rightarrow[a, b]$ satisfying the Lipschitz condition with $L>0$, and let $x_{0} \in[a, b]$.
i) If $f\left(x_{0}\right)>x_{0}$, consider $p=\min \left(F_{f} \cap\left[x_{0}, b\right]\right)$. Letting $\gamma \in\left(0, \frac{1}{p(L+1)}\right]$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is s-increasing and convergent to p.
ii) If $f\left(x_{0}\right)>x_{0}$ and $F_{f} \cap\left[a, x_{0}\right] \neq \varnothing$, consider $q=\max \left(F_{f} \cap\left[a, x_{0}\right]\right)$. Letting $\gamma \in\left[-\frac{1}{x_{0}(L+1)}, 0\right)$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{\prime}} x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is s-decreasing and convergent to q.
iii) If $f\left(x_{0}\right)<x_{0}$, consider $q=\max \left(F_{f} \cap\left[a, x_{0}\right]\right)$. Letting $\gamma \in\left(0, \frac{1}{x_{0}(L+1)}\right]$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is s-decreasing and convergent to q.
iv) If $f\left(x_{0}\right)<x_{0}$ and $F_{f} \cap\left[x_{0}, b\right] \neq \varnothing$, consider $p=\min \left(F_{f} \cap\left[x_{0}, b\right]\right)$. Letting $\gamma \in\left[-\frac{1}{p(L+1)}, 0\right)$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is sincreasing and convergent to p.

Proof. We discuss the case when $f\left(x_{n}\right) \neq x_{n}$ for all $n \in \mathbb{N}$.
i) Remark that $F_{f} \cap\left[x_{0}, b\right] \neq \varnothing$ is assured by $f\left(x_{0}\right)>x_{0}$ and $f(b) \leq b$.

We have $x_{0}<p$ and $f\left(x_{0}\right)>x_{0}$. We show that if $x_{0}<x_{1}<\cdots<x_{k}<p$ and $f\left(x_{k}\right)>x_{k}$, then $x_{k}<x_{k+1}<p$ and $f\left(x_{k+1}\right)>x_{k+1}$:

- Having $x_{k}<p$ and supposing $x_{k+1}>p$, it follows successively

$$
\begin{gathered}
\left|p-x_{k}\right|<\left|x_{k+1}-x_{k}\right|=\gamma x_{k}\left|f\left(x_{k}\right)-x_{k}\right|=\gamma x_{k}\left|f\left(x_{k}\right)-f(p)+p-x_{k}\right| \leq \\
\gamma x_{k}\left(\left|f\left(x_{k}\right)-f(p)\right|+\left|p-x_{k}\right|\right) \leq \gamma x_{k}\left(L\left|x_{k}-p\right|+\left|p-x_{k}\right|\right)= \\
\gamma x_{k}(L+1)\left|p-x_{k}\right| \leq \gamma p(L+1)\left|p-x_{k}\right| \leq\left|p-x_{k}\right|
\end{gathered}
$$

which is a contradiction. Thus $x_{k+1}<p$.

- The inequality $x_{k}<x_{k+1}$ follows from $x_{k+1}=x_{k}+\gamma x_{k}\left(f\left(x_{k}\right)-x_{k}\right)$ since $\gamma>0, x_{k}>0$ and $f\left(x_{k}\right)-x_{k}>0$.
- Now, supposing $f\left(x_{k+1}\right)<x_{k+1}$, as $f\left(x_{k}\right)>x_{k}$, it follows that f has a fixed point in $\left(x_{k}, x_{k+1}\right)$, which contradicts $\min F_{f} \cap\left[x_{0}, b\right]=p>x_{k+1}$. Thus $f\left(x_{k+1}\right)>$ x_{k+1}.

By induction it follows that $x_{n}<x_{n+1}<p$ and $f\left(x_{n}\right)>x_{n}$ for all $n \in \mathbb{N}$.
The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent to an $x^{*} \in\left[x_{0}, p\right]$, since it is monotone increasing and bounded from above by p. Since f is continuous and since $x^{*} \neq 0$, $\gamma \neq 0$, the recurrence $x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$ implies $x^{*}=f\left(x^{*}\right)$, so $x^{*}=p$.
ii) From $f\left(x_{0}\right)>x_{0}$ it follows that $q<x_{0}$.

We have $q<x_{0}$ and $f\left(x_{0}\right)>x_{0}$. We show that if $q<x_{k}<\cdots<x_{1}<x_{0}$ and $f\left(x_{k}\right)>x_{k}$, then $q<x_{k+1}<x_{k}$ and $f\left(x_{k+1}\right)>x_{k+1}$:
-Having $q<x_{k}$ and supposing $x_{k+1}<q$, it follows successively

$$
\begin{gathered}
\left|q-x_{k}\right|<\left|x_{k+1}-x_{k}\right|=|\gamma| \cdot x_{k} \cdot\left|f\left(x_{k}\right)-x_{k}\right|=|\gamma| \cdot x_{k} \cdot\left|f\left(x_{k}\right)-f(q)+q-x_{k}\right| \leq \\
|\gamma| x_{k}\left(\left|f\left(x_{k}\right)-f(q)\right|+\left|q-x_{k}\right|\right) \leq|\gamma| x_{k}\left(L\left|x_{k}-q\right|+\left|q-x_{k}\right|\right)= \\
|\gamma| x_{k}(L+1)\left|q-x_{k}\right| \leq|\gamma| x_{0}(L+1)\left|q-x_{k}\right| \leq\left|q-x_{k}\right|
\end{gathered}
$$

which is a contradiction. Thus $q<x_{k+1}$.

- The inequality $x_{k+1}<x_{k}$ follows from $x_{k+1}=x_{k}+\gamma x_{k}\left(f\left(x_{k}\right)-x_{k}\right)$ since $\gamma<0, x_{k}>0$ and $f\left(x_{k}\right)-x_{k}>0$.
- Now, supposing $f\left(x_{k+1}\right)<x_{k+1}$, as $f\left(x_{k}\right)>x_{k}$, it follows that f has a fixed point in $\left(x_{k+1}, x_{k}\right)$, which contradicts $\max \left(F_{f} \cap\left[a, x_{0}\right]\right)=q<x_{k+1}$. Thus $f\left(x_{k+1}\right)>x_{k+1}$.

By induction it follows that $q<x_{n+1}<x_{n}$ and $f\left(x_{n}\right)>x_{n}$ for all $n \in \mathbb{N}$.
The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent to an $x^{*} \in\left[q, x_{0}\right]$, since it is monotone decreasing and bounded from below by q. Since f is continuous and since $x^{*} \neq 0$, $\gamma \neq 0$, the recurrence $x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$ implies $x^{*}=f\left(x^{*}\right)$, so $x^{*}=q$.

The proofs of iii) and iv) are similar to that of i) and ii) respectively.
Theorem 2.3. Let $a, b \in \mathbb{R}, a<b<0, f:[a, b] \rightarrow[a, b]$ satisfying the Lipschitz condition with $L>0$, and let $x_{0} \in[a, b]$.
i) If $f\left(x_{0}\right)>x_{0}$, consider $p=\min \left(F_{f} \cap\left[x_{0}, b\right]\right)$. Letting $\gamma \in\left[\frac{1}{x_{0}(L+1)}, 0\right)$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is s-increasing and convergent to p.
ii) If $f\left(x_{0}\right)>x_{0}$ and $F_{f} \cap\left[a, x_{0}\right] \neq \varnothing$, consider $q=\max \left(F_{f} \cap\left[a, x_{0}\right]\right)$. Letting $\gamma \in\left(0, \frac{1}{-q(L+1)}\right]$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is s decreasing and convergent to q.
iii) If $f\left(x_{0}\right)<x_{0}$, consider $q=\max \left(F_{f} \cap\left[a, x_{0}\right]\right)$. Letting $\gamma \in\left[\frac{1}{q(L+1)}, 0\right)$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is s-decreasing and convergent to q.
iv) If $f\left(x_{0}\right)<x_{0}$ and $F_{f} \cap\left[x_{0}, b\right] \neq \varnothing$, consider $p=\min \left(F_{f} \cap\left[x_{0}, b\right]\right)$. Letting $\gamma \in\left(0, \frac{1}{-x_{0}(L+1)}\right]$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{\prime}} x_{n+1}=x_{n}+\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$, is s-increasing and convergent to p.

Proof. The proof is similar to that of the previous theorem.
Remark 2.1. In Theorem 2.2, independently on x_{0} and p, the conditions on γ from i) and iii) are satisfied for all $\gamma \in\left(0, \frac{1}{b(L+1)}\right]$, those from ii) and iv) are satisfied for all $\gamma \in\left[-\frac{1}{b(L+1)}, 0\right)$. In Theorem 2.3, independently on x_{0} and q, the conditions on γ from i) and iii) are satisfied for all $\gamma \in\left[\frac{1}{a(L+1)}, 0\right)$, those from ii) and iv) are satisfied for all $\gamma \in\left(0, \frac{1}{-a(L+1)}\right]$.

The theorems developed here have concrete usability in searching for fixed points of Lipschitz functions, as well as in the analysis of discrete dynamical systems $[[a, b], f]$ with f satisfying a Lipschitz condition.

3. NUMERICAL EXPERIMENT

Consider the discrete dynamical system $[[-2,2], f], f(x)=\left|2 x^{2}-4\right|-2$. This function $f, f:[-2,2] \rightarrow[-2,2]$, satisfies the Lipschitz condition with $L=8$, and has the fixed points set $F_{f}=\left\{-\frac{3}{2}, \frac{-1-\sqrt{17}}{4}, \frac{-1+\sqrt{17}}{4}, 2\right\}$. Remark that f is not differentiable at $x= \pm \sqrt{2}$. Figure 1 depicts the graph of f. Figure 3 depicts the graph of f^{3}.

The trajectory of $x_{0}=-1.45$ in the discrete dynamical system $[[-2,2], f]$ starts as follows - only the first two decimal places being listed trough this paper

$$
\begin{aligned}
& \{-1.45,-1.80,0.44,1.61,-0.84,0.58,1.34,-1.57,-1.04,-0.18,1.93,1.47 \\
& -1.66,-0.46,1.58,-1.00,0.02,2.00,2.00,1.97,1.74,0.04,2.00,1.97,1.78,0.31 \\
& \quad 1.80,0.51,1.47,-1.67,-0.40,1.68, \ldots\}
\end{aligned}
$$

The trajectory of $x_{0}=0.25$ in $[[-2,2], f]$ starts as follows

$$
\begin{aligned}
& \{0.25,1.88,1.03,-0.13,1.97,1.74,0.08,1.99,1.89,1.12,-0.49,1.52,-1.35 \\
& -1.65,-0.54,1.41,-2.00,1.98,1.87,1.01,-0.05,1.99,1.96,1.65,-0.56,1.37 \\
& \quad-1.73,-0.04,2.00,1.98,1.84,0.75,0.87,0.48,1.53,-1.30, \ldots\}
\end{aligned}
$$

It seems that both these trajectories start chaotically.
By Theorem 2.1 iv) the sequence $x_{0}=-1.45, x_{n+1}=\bar{f}_{\gamma}\left(x_{n}\right)=(1-\gamma) x_{n}+$ $\gamma f\left(x_{n}\right)$ with $\gamma=-0.1$ is s-increasing and convergent to $\frac{-1-\sqrt{17}}{4}$; the same is true for any $x_{0} \in\left(-1.45, \frac{-1-\sqrt{17}}{4}\right)$, so in the discrete dynamical system
$\left[\left[-1.45, \frac{-1-\sqrt{17}}{4}\right], \bar{f}_{-0.1}\right]$ the fixed point $\frac{-1-\sqrt{17}}{4}$ is monotonously attracting from below.
The trajectory of $x_{0}=-1.45$ in this dynamical system is stabilized as

$$
\begin{gathered}
\{-1.45,-1.42,-1.36,-1.32,-1.31,-1.30,-1.29,-1.29,-1.28, \\
-1.28,-1.28,-1.28,-1.28,-1.28,-1.28, \ldots\} .
\end{gathered}
$$

By Theorem 2.1 ii) the sequence $x_{0}=0.25, x_{n+1}=\bar{f}_{\gamma}\left(x_{n}\right)$ with $\gamma=-0.1$ is s-decreasing and convergent to $\frac{-1-\sqrt{17}}{4}$; the same is true for any $x_{0} \in\left(\frac{-1-\sqrt{17}}{4}, 0.25\right)$, so in the discrete dynamical system $\left[\left[\frac{-1-\sqrt{17}}{4}, 0.25\right], \bar{f}_{-0.1}\right]$ the fixed point $\frac{-1-\sqrt{17}}{4}$ is monotonously attracting from above.
The trajectory of $x_{0}=0.25$ in this dynamical system is stabilized as

$$
\begin{aligned}
& \{0.25,0.09,-0.10,-0.31,-0.52,-0.72,-0.89,-1.02,-1.11,-1.18,-1.22, \\
& -1.24,-1.26,-1.27,-1.27,-1.28,-1.28,-1.28,-1.28,-1.28,-1.28, \ldots\} .
\end{aligned}
$$

In the discrete dynamical system $\left[[-1.45,0.25], \bar{f}_{-0.1}\right]$ the fixed point $\frac{-1-\sqrt{17}}{4}$ is monotonously stable, since it is monotonously attractive both from below and from above.

By Theorem 2.1 i) the sequence $x_{0}=0.25, x_{n+1}=\bar{f}_{\gamma}\left(x_{n}\right)$ with $\gamma=0.1$ is s-increasing and convergent to $\frac{-1+\sqrt{17}}{4}$; the same is true for any $x_{0} \in\left(0.25, \frac{-1+\sqrt{17}}{4}\right)$, so in the discrete dynamical system $\left[\left[0.25, \frac{-1+\sqrt{17}}{4}\right], \bar{f}_{0.1}\right]$ the fixed point $\frac{-1+\sqrt{17}}{4}$ is monotonously attracting from below.
The trajectory of $x_{0}=0.25$ in this dynamical system is stabilized as

$$
\begin{aligned}
& \{0.25,0.41,0.54,0.63,0.68,0.72,0.75,0.76,0.77,0.77,0.78, \\
& 0.78,0.78,0.78,0.78,0.78,0.78, \ldots\} .
\end{aligned}
$$

By Theorem 2.3 iii) the sequence $x_{0}=-1.45, x_{n+1}=\tilde{f}_{\gamma}\left(x_{n}\right)=x_{n}+$ $\gamma x_{n}\left(f\left(x_{n}\right)-x_{n}\right)$ with $\gamma=-0.05$ is s-decreasing and convergent to $-\frac{3}{2}$; the same is true for any $x_{0} \in\left(-\frac{3}{2},-1.45\right)$, so in the discrete dynamical system $\left[\left[-\frac{3}{2},-1.45\right], \widetilde{f}_{-0.05}\right]$ the fixed point $-\frac{3}{2}$ is monotonously attracting from above. The trajectory of $x_{0}=-1.45$ in this dynamical system is stabilized as

$$
\{-1.45,-1.48,-1.49,-1.49,-1.50,-1.50,-1.50,-1.50,-1.50,-1.50, \ldots\} .
$$

By Theorem 2.3 iv) the sequence $x_{0}=-1.45, x_{n+1}=\widetilde{f}_{\gamma}\left(x_{n}\right)$ with $\gamma=0.05$ is s-increasing and convergent to $\frac{-1-\sqrt{17}}{4}$; the same is true for any $x_{0} \in\left(-1.45, \frac{-1-\sqrt{17}}{4}\right)$, so in the discrete dynamical system $\left[\left[-1.45, \frac{-1-\sqrt{17}}{4}\right], \tilde{f}_{0.05}\right]$ the fixed point $\frac{-1-\sqrt{17}}{4}$ is monotonously attracting from below.
The trajectory of $x_{0}=-1.45$ in this dynamical system is stabilized as

$$
\begin{gathered}
\{-1.45,-1.42,-1.39,-1.36,-1.33,-1.32,-1.31,-1.30,-1.30,-1.29 \\
-1.29,-1.29,-1.29,-1.28,-1.28,-1.28,-1.28,-1.28,-1.28,-1.28, \ldots\} .
\end{gathered}
$$

Figures 3 and 4 show the graphs of $\bar{f}_{\gamma}, \bar{f}_{\gamma}^{5}$, for $\gamma=-0.1$ and for $\gamma=0.1$, respectively. Figures 5 and 6 show the graphs of $\widetilde{f}_{\gamma}, \widetilde{f}_{\gamma}^{5}$, for $\gamma=-0.05$ and for $\gamma=0.05$, respectively.

Figure 1. The graph of f

Figure 3. The graphs of \bar{f}_{γ} and $\bar{f}_{\gamma^{\prime}}^{5} \gamma=-0.1$

Figure 2. The graph of f^{3}

Figure 4. The graphs of \bar{f}_{γ} and $\bar{f}_{\gamma}^{5} \gamma=0.1$

Figure 5. The graphs of \widetilde{f}_{γ} and $\widetilde{f}_{\gamma}^{5}, \gamma=-0.05$

Figure 6. The graphs of \widetilde{f}_{γ} and $\widetilde{f}_{\gamma}^{5}, \gamma=0.05$

References

[1] Bair, J. and Haesbroeck, G., Monotonous stability for neutral fixed points, Bull. Belg. Math. Soc. 4(1997), 639-646
[2] Berinde, V., Iterative Approximation of Fixed Points, Second edition, Springer-Verlag, Berlin, Heidelberg, New York, 2007
[3] Devaney, R. L., An Introduction to Chaotic Dynamical Systems, Second edition, Addison-Wesley Publ. Comp., 1989
[4] Hillam, B. P., A generalization of Krasnoselski's theorem on the real line, Math. Magazine 48 (1975), 167-168
[5] Holmgren, R. A., A first course in discrete dynamical systems, Second edition, Springer-Verlag, Berlin, Heidelberg, New York, 2000
[6] Huang, W., Controlling Chaos Through Growth Rate Adjustment, Discrete Dynamics in Nature and Society, 7 (3) (2002), 191-199
[7] Kovács, G., On the convergence of a sequence, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, MatematicăInformatică, VIII (1992), 53-62

North University of Baia Mare
Department of Mathematics and
Computer Science
Victoriei 76
430122 Baia Mare, Romania
E-mail address: vasile_berinde@yahoo.com
E-mail address: kovacsgabriella@yahoo.com

