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Stabilizing discrete dynamical systems by monotone
Krasnoselskij type iterative schemes

VASILE BERINDE AND GABRIELLA KOVÁCS

ABSTRACT. In this note monotone approximations of fixed points of real Lipschitz functions are
produced by employing a variation controlling mechanism and a growth-rate controlling mechanism,
both with generalized Krasnoselskij type iterations, and both inspired from discrete dynamical sys-
tems.

1. PRELIMINARIES

Discrete dynamical systems are intensively studied due to their applications
in various fields. Even if one dimensional, they are able to model many different
kind of phenomena.

For a, b ∈ R, a < b and f : [a, b] → [a, b] denote

[[a, b], f ]

the discrete dynamical system defined by f . In such systems the trajectory of an
element x0 ∈ [a, b] is the sequence started with x0 and generated by the Picard
iteration

xn+1 = f(xn), n ∈ N.

A basic problem regarding the discrete dynamical system [[a, b], f ] is the study of
trajectories for all starting points and the analysis of the dependences on starting
points of the trajectories when f satisfies some smoothness conditions.

Denote Ff the set of fixed points of f, Ff = {x| x ∈ [a, b] , f(x) = x} (possible
empty).

If f is continuous, since f(a) ≥ a and f(b) ≤ b, by the intermediate value
theorem applied to f(x) − x, it results that f possesses at least one fixed point,
Ff 6= ∅; moreover, the set Ff is compact, as it is a bounded and closed subset of
R.

In the discrete dynamical system [[a, b], f ] a fixed point x∗ of f is considered as
([3], [5])

-attracting or stable if there exists an open interval I which contains x∗ such that
f(x) ∈ I for all x ∈ I and lim

n→∞
fn (x) = x∗ for all x ∈ I;

-repelling or instable if there exists an open interval I which contains x∗ such
that for every x ∈ I \ {x∗} there exists n ∈ N∗ with fn(x) /∈ I.
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We call the sequence (xn)n∈N s-increasing if either xn < xn+1 for all n ∈ N, or
there is a k ∈ N such that x0 < x1 < . . . < xk−1 < xk = xk+1 = xk+2 = . . .. We
call the sequence (xn)n∈N s-decreasing if either xn > xn+1 for all n ∈ N, or there is
a k ∈ N such that x0 > x1 > . . . > xk−1 > xk = xk+1 = xk+2 = . . ..

Slightly differently from [1] where the strict monotony is required, through
this paper we consider a fixed point x∗ of f as

-monotonously attracting from below if there exists ε > 0 such that all trajectories
starting with x0 ∈ (x∗ − ε, x∗) are s-increasing and converge to x∗;

-monotonously attracting from above if there exists ε > 0 such that all trajectories
starting with x0 ∈ (x∗, x∗ + ε) are s-decreasing and converge to x∗;

-monotonously stable if it is monotonously attracting both from below and from
above.

We associate to f the following two families of functions

fγ : [a, b] → R, fγ (x) = x + γ (f (x) − x) ,

f̃γ : [a, b] → R, f̃γ (x) = x (1 + γ (f (x) − x)) ,

where γ ∈ R∗.
The function f and all the functions fγ are related to each other by sharing

exactly the same fixed points set

Ff = F fγ
, γ ∈ R∗.

If 0 /∈ [a, b], then also
Ff = F

efγ
, γ ∈ R∗.

Indeed, if x ∈ Ff , then f(x) − x = 0, so f̃γ (x) = x and x ∈ F
efγ

. Conversely, if

x ∈ F
efγ

, from f̃γ (x) = x, since x 6= 0 and γ 6= 0, it results that f (x) − x = 0, so
x ∈ Ff .

The conditions γ 6= 0, respectively 0 /∈ [a, b], are essential for the above state-
ments.

With γ ∈ R∗ on some suitable interval I ⊂ [a, b] we will consider, associated to
[[a, b], f ], the discrete dynamical system[

I, fγ

]
and we refer to it as a variation controlled discrete dynamical system with control
parameter γ. In

[
I, fγ

]
the trajectory of an element y0 ∈ I is generated by

yn+1 = fγ(yn), n ∈ N,

i. e.
yn+1 = yn + γ(f(yn) − yn), n ∈ N,

or
yn+1 = (1 − γ) yn + γf(yn), n ∈ N.

For I = [a, b], in the system
[
[a, b], fγ

]
with γ ∈ (0, 1) given, this is exactly a

Krasnoselskij iteration applied to f .
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In case that 0 /∈ [a, b], with γ ∈ R∗ on some suitable interval I ⊂ [a, b] we will
also consider, associated to [[a, b], f ], the discrete dynamical system[

I, f̃γ

]
.

In
[
I, f̃γ

]
the trajectory of an element z0 ∈ I is generated by

zn+1 = f̃(zn), n ∈ N,

i. e.

zn+1 = zn (1 + γ (f(zn) − zn)) , n ∈ N,

or
zn+1 = zn + γzn (f(zn) − zn) ,

iteration studied by Huang, W. [6] under some conditions on f ′ at the fixed point
of f . Remark that

zn+1 − zn

zn
= γ (f(zn) − zn) ,

a ground for referring to the system
[
I, f̃γ

]
as a growth-rate controlled discrete

dynamical system with control parameter γ ([6]).
For recent and comprehensive results on Picard and Krasnoselskij iterations,

both presented within more general settings, we refer to [2].
Through this paper we focus on discrete dynamical systems [[a, b], f ] with f :

[a, b] → [a, b] satisfying a Lipschitz condition, i. e.

|f (u1) − f (u2)| ≤ L |u1 − u2| , u1, u2 ∈ [a, b] ,

where L > 0 is a constant. Such a function is continuous, so it possesses at least
one fixed point and the set of its fixed points is compact.

2. MONOTONE ITERATIONS WITH LIPSCHITZ FUNCTIONS

Let f : [a, b] → [a, b] satisfying a Lipschitz condition. As it is mentioned
in Section 1, f is continuous, Ff 6= ∅ and Ff is compact. Let c1, c2 ∈ [a, b],
c1 < c2. If f(c1) − c1 and f(c2) − c2 are of opposite sign, meaning that
(f(c1) − c1) (f(c2) − c2) ≤ 0, then, by the intermediate value theorem Ff ∩
[c1, c2] 6= ∅. In this case Ff ∩ [c1, c2], as a compact subset of R, possesses a least
element and a greatest element.

When f satisfies the Lipschitz condition with L < 1, by the contraction princi-
ple Ff consists of a unique fixed point of f and all sequences (xn)n∈N generated
by the Picard iteration x0 ∈ [a, b], xn+1 = f(xn), converge to this fixed point.

When a function f : [a, b] → [a, b] is monotone, the sequences (xn)n∈N gener-
ated by the Picard iteration are either monotone or compounded from two mono-
tone subsequences (x2k+1)k∈N and (x2k)k∈N; if f is also continuous, then these
sequences converge to a fixed point of f . For results on Picard iterations with
monotone and continuous functions see [7].
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Hillam ([4]) prove for f : [a, b] → [a, b] satisfying the Lipschitz condition with
constant L > 0 that for any x0 ∈ [a, b] the sequence (xn)n∈N defined by the Kras-

noselskij iteration xn+1 = (1 − γ) xn + γf(xn) with γ =
1

L + 1
converges mono-

tonically to a fixed point of f .
Hillam’s result is remarkable in giving monotone iterations for functions f :

[a, b] → [a, b] that are not necessarily monotone.
Hillam’s paper [4] inspires us for our next theorem and proof, dealing with

generalized Krasnoselskij type iterations of f , that are, in fact, Picard iterations of
the function fγ .

Theorem 2.1. Let a, b ∈ R, a < b, f : [a, b] → [a, b] satisfying the Lipschitz condition
with L > 0, and let x0 ∈ [a, b].

i) If f(x0) > x0, letting γ ∈
(

0,
1

L + 1

]
, the sequence (xn)n∈N, xn+1 =

(1 − γ)xn + γf(xn), is s-increasing and convergent to min (Ff ∩ [x0,b]).

ii) If f(x0) > x0 and Ff ∩ [a, x0] 6= ∅, letting γ ∈
[
− 1

L + 1
, 0
)

, the se-

quence (xn)n∈N, xn+1 = (1 − γ) xn + γf(xn), is s-decreasing and convergent to
max (Ff ∩ [a, x0]).

iii) If f(x0) < x0, letting γ ∈
(

0,
1

L + 1

]
, the sequence (xn)n∈N, xn+1 =

(1 − γ)xn + γf(xn), is s-decreasing and convergent to max (Ff ∩ [a, x0]).

iv) If f(x0) < x0 and Ff ∩ [x0, b] 6= ∅, letting γ ∈
[
− 1

L + 1
, 0
)

, the se-

quence (xn)n∈N, xn+1 = (1 − γ)xn + γf(xn), is s-increasing and convergent to
min (Ff ∩ [x0, b]).

Proof. We discuss the case when f (xn) 6= xn for all n ∈ N.
i) Remark that Ff ∩ [x0,b] 6= ∅ is assured by f(x0) > x0 and f(b) ≤ b. Denote

p = min (Ff ∩ [x0,b]).
We have x0 < p and f(x0) > x0. We show that if x0 < x1 < · · · < xk < p and

f(xk) > xk, then xk < xk+1 < p and f(xk+1) > xk+1:
- Having xk < p and supposing xk+1 > p , it follows successively

|p − xk| < |xk+1 − xk| = γ |f (xk) − xk| = γ |f (xk) − f (p) + p − xk| ≤
γ (|f (xk) − f (p)| + |p − xk|) ≤ γ (L |xk − p| + |p − xk|) =

γ (L + 1) |p − xk| ≤ |p − xk| ,
which is a contradiction. Thus xk+1 < p.

- The inequality xk < xk+1 follows from xk+1 = xk+γ (f (xk) − xk) since γ > 0
and f (xk) − xk > 0.

- Now, supposing f(xk+1) < xk+1, as f(xk) > xk, it follows that f has a
fixed point in (xk, xk+1), which contradicts min (Ff ∩ [x0, b]) = p > xk+1. Thus
f(xk+1) > xk+1.

By induction it follows that xn < xn+1 < p and f(xn) > xn for all n ∈ N.
The sequence (xn)n∈N is convergent to an x∗ ∈ [x0, p], since it is monotone

increasing and bounded from above by p. Since f is continuous and since γ 6= 0,
the recurrence xn+1 = xn + γ (f (xn) − xn) implies x∗ = f(x∗), so x∗ = p.
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ii) Denote q = max (Ff ∩ [a, x0]). From f (x0) > x0 it follows that q < x0.
We have q < x0 and f (x0) > x0. We show that if q < xk < · · · < x1 < x0 and

f (xk) > xk, then q < xk+1 < xk and f (xk+1) > xk+1:
-Having q < xk and supposing xk+1 < q, it follows successively

|q − xk| < |xk+1 − xk| = |γ| |f (xk) − xk| = |γ| · |f (xk) − f (q) + q − xk| ≤
|γ| (|f (xk) − f (q)| + |q − xk|) ≤ |γ| (L |xk − q| + |q − xk|) =

|γ| (L + 1) |q − xk| ≤ |q − xk| ,
which is a contradiction. Thus q < xk+1.

- The inequality xk+1 < xk follows from xk+1 = xk+γ (f (xk) − xk) since γ < 0
and f (xk) − xk > 0.

- Now, supposing f(xk+1) < xk+1, as f(xk) > xk, it follows that f has a
fixed point in (xk+1, xk), which contradicts max (Ff ∩ [a, x0]) = q < xk+1. Thus
f(xk+1) > xk+1.

By induction it follows that q < xn+1 < xn and f(xn) > xn for all n ∈ N.
The sequence (xn)n∈N is convergent to an x∗ ∈ [q, x0], since it is monotone

decreasing and bounded from below by q. Since f is continuous and since γ 6= 0,
the recurrence xn+1 = xn + γ (f (xn) − xn) implies x∗ = f(x∗), so x∗ = q.

The proofs of iii) and iv) are similar to that of i) and ii) respectively. �

Our next two theorems - inspired by the growth-rate adjustment mechanism
studied under some conditions on f ′ at the fixed point of f by Huang, W. [6] -
deal with generalized Krasnoselskij type iterations for f , that are, in fact, Picard
iterations of the function f̃γ . The proofs we present here are inspired by the proof
in [4].

Theorem 2.2. Let a, b ∈ R, 0 < a < b, f : [a, b] → [a, b] satisfying the Lipschitz
condition with L > 0, and let x0 ∈ [a, b].

i) If f(x0) > x0, consider p = min (Ff ∩ [x0, b]). Letting γ ∈
(

0,
1

p (L + 1)

]
, the

sequence (xn)n∈N, xn+1 = xn + γxn (f(xn) − xn), is s-increasing and convergent to p.
ii) If f(x0) > x0 and Ff ∩ [a, x0] 6= ∅, consider q = max (Ff ∩ [a, x0]). Letting

γ ∈
[
− 1

x0 (L + 1)
, 0
)

, the sequence (xn)n∈N, xn+1 = xn + γxn (f(xn) − xn), is

s-decreasing and convergent to q.

iii) If f(x0) < x0, consider q = max (Ff ∩ [a, x0]). Letting γ ∈
(

0,
1

x0 (L + 1)

]
,

the sequence (xn)n∈N, xn+1 = xn + γxn (f(xn) − xn), is s-decreasing and convergent
to q.

iv) If f(x0) < x0 and Ff ∩ [x0, b] 6= ∅, consider p = min (Ff ∩ [x0, b]). Letting

γ ∈
[
− 1

p (L + 1)
, 0
)

, the sequence (xn)n∈N, xn+1 = xn + γxn (f(xn) − xn), is s-

increasing and convergent to p.

Proof. We discuss the case when f (xn) 6= xn for all n ∈ N.
i) Remark that Ff ∩ [x0,b] 6= ∅ is assured by f(x0) > x0 and f(b) ≤ b.
We have x0 < p and f(x0) > x0. We show that if x0 < x1 < · · · < xk < p and

f(xk) > xk, then xk < xk+1 < p and f(xk+1) > xk+1:
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- Having xk < p and supposing xk+1 > p , it follows successively

|p − xk| < |xk+1 − xk| = γxk |f (xk) − xk| = γxk |f (xk) − f (p) + p − xk| ≤
γxk (|f (xk) − f (p)| + |p − xk|) ≤ γxk (L |xk − p| + |p − xk|) =

γxk (L + 1) |p − xk| ≤ γp (L + 1) |p − xk| ≤ |p − xk| ,
which is a contradiction. Thus xk+1 < p.

- The inequality xk < xk+1 follows from xk+1 = xk + γxk (f (xk) − xk) since
γ > 0, xk > 0 and f (xk) − xk > 0.

- Now, supposing f(xk+1) < xk+1, as f(xk) > xk, it follows that f has a fixed
point in (xk, xk+1), which contradicts min Ff ∩ [x0, b] = p > xk+1. Thus f(xk+1) >
xk+1.

By induction it follows that xn < xn+1 < p and f(xn) > xn for all n ∈ N.
The sequence (xn)n∈N is convergent to an x∗ ∈ [x0, p], since it is monotone

increasing and bounded from above by p. Since f is continuous and since x∗ 6= 0,
γ 6= 0, the recurrence xn+1 = xn+γxn (f(xn) − xn) implies x∗ = f(x∗), so x∗ = p.

ii) From f (x0) > x0 it follows that q < x0.
We have q < x0 and f (x0) > x0. We show that if q < xk < · · · < x1 < x0 and

f (xk) > xk, then q < xk+1 < xk and f (xk+1) > xk+1:
-Having q < xk and supposing xk+1 < q, it follows successively

|q − xk| < |xk+1 − xk| = |γ| ·xk · |f (xk) − xk| = |γ| ·xk · |f (xk) − f (q) + q − xk| ≤
|γ|xk (|f (xk) − f (q)| + |q − xk|) ≤ |γ|xk (L |xk − q| + |q − xk|) =

|γ|xk (L + 1) |q − xk| ≤ |γ|x0 (L + 1) |q − xk| ≤ |q − xk| ,
which is a contradiction. Thus q < xk+1.

- The inequality xk+1 < xk follows from xk+1 = xk + γxk (f (xk) − xk) since
γ < 0, xk > 0 and f (xk) − xk > 0.

- Now, supposing f(xk+1) < xk+1, as f(xk) > xk, it follows that f has a
fixed point in (xk+1, xk), which contradicts max (Ff ∩ [a, x0]) = q < xk+1. Thus
f (xk+1) > xk+1.

By induction it follows that q < xn+1 < xn and f(xn) > xn for all n ∈ N.
The sequence (xn)n∈N is convergent to an x∗ ∈ [q, x0], since it is monotone

decreasing and bounded from below by q. Since f is continuous and since x∗ 6= 0,
γ 6= 0, the recurrence xn+1 = xn+γxn (f(xn) − xn) implies x∗ = f(x∗), so x∗ = q.

The proofs of iii) and iv) are similar to that of i) and ii) respectively. �

Theorem 2.3. Let a, b ∈ R, a < b < 0, f : [a, b] → [a, b] satisfying the Lipschitz
condition with L > 0, and let x0 ∈ [a, b].

i) If f(x0) > x0, consider p = min (Ff ∩ [x0, b]). Letting γ ∈
[

1
x0 (L + 1)

, 0
)

, the

sequence (xn)n∈N, xn+1 = xn + γxn (f(xn) − xn), is s-increasing and convergent to p.
ii) If f(x0) > x0 and Ff ∩ [a, x0] 6= ∅, consider q = max (Ff ∩ [a, x0]). Letting

γ ∈
(

0,
1

−q (L + 1)

]
, the sequence (xn)n∈N, xn+1 = xn + γxn (f(xn) − xn), is s-

decreasing and convergent to q.

iii) If f(x0) < x0, consider q = max (Ff ∩ [a, x0]). Letting γ ∈
[

1
q (L + 1)

, 0
)

, the

sequence (xn)n∈N, xn+1 = xn +γxn (f(xn) − xn), is s-decreasing and convergent to q.
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iv) If f(x0) < x0 and Ff ∩ [x0, b] 6= ∅, consider p = min (Ff ∩ [x0, b]). Letting

γ ∈
(

0,
1

−x0 (L + 1)

]
, the sequence (xn)n∈N, xn+1 = xn + γxn (f(xn) − xn), is

s-increasing and convergent to p.

Proof. The proof is similar to that of the previous theorem. �

Remark 2.1. In Theorem 2.2, independently on x0 and p , the conditions on γ

from i) and iii) are satisfied for all γ ∈
(

0,
1

b(L + 1)

]
, those from ii) and iv) are

satisfied for all γ ∈
[
− 1

b(L + 1)
, 0
)

. In Theorem 2.3, independently on x0 and q ,

the conditions on γ from i) and iii) are satisfied for all γ ∈
[

1
a(L + 1)

, 0
)

, those

from ii) and iv) are satisfied for all γ ∈
(

0,
1

−a(L + 1)

]
.

The theorems developed here have concrete usability in searching for fixed
points of Lipschitz functions, as well as in the analysis of discrete dynamical sys-
tems [[a, b] , f ] with f satisfying a Lipschitz condition.

3. NUMERICAL EXPERIMENT

Consider the discrete dynamical system [[−2, 2] , f ], f(x) =
∣∣2x2 − 4

∣∣− 2. This
function f , f : [−2, 2] → [−2, 2], satisfies the Lipschitz condition with L = 8, and

has the fixed points set Ff =

{
−3

2
,
−1 −

√
17

4
,
−1 +

√
17

4
, 2

}
. Remark that f is

not differentiable at x = ±
√

2. Figure 1 depicts the graph of f . Figure 3 depicts
the graph of f3.

The trajectory of x0 = −1.45 in the discrete dynamical system [[−2, 2] , f ] starts
as follows - only the first two decimal places being listed trough this paper

{−1.45,−1.80, 0.44, 1.61,−0.84, 0.58, 1.34,−1.57,−1.04,−0.18, 1.93, 1.47,
−1.66,−0.46, 1.58,−1.00, 0.02, 2.00, 2.00, 1.97, 1.74, 0.04, 2.00, 1.97, 1.78, 0.31,

1.80, 0.51, 1.47,−1.67,−0.40, 1.68, ...}

The trajectory of x0 = 0.25 in [[−2, 2] , f ] starts as follows

{0.25, 1.88, 1.03,−0.13, 1.97, 1.74, 0.08, 1.99, 1.89, 1.12,−0.49, 1.52,−1.35,
−1.65,−0.54, 1.41,−2.00, 1.98, 1.87, 1.01,−0.05, 1.99, 1.96, 1.65,−0.56, 1.37,

−1.73,−0.04, 2.00, 1.98, 1.84, 0.75, 0.87, 0.48, 1.53,−1.30, ...}

It seems that both these trajectories start chaotically.
By Theorem 2.1 iv) the sequence x0 = −1.45, xn+1 = fγ (xn) = (1 − γ)xn +

γf(xn) with γ = −0.1 is s-increasing and convergent to
−1 −

√
17

4
; the same

is true for any x0 ∈

(
−1.45,

−1 −
√

17
4

)
, so in the discrete dynamical system
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−1.45,

−1 −
√

17
4

]
, f−0.1

]
the fixed point

−1 −
√

17
4

is monotonously attract-

ing from below.
The trajectory of x0 = −1.45 in this dynamical system is stabilized as

{−1.45,−1.42,−1.36,−1.32,−1.31,−1.30,−1.29,−1.29,−1.28,
−1.28,−1.28,−1.28,−1.28,−1.28,−1.28, ...}.

By Theorem 2.1 ii) the sequence x0 = 0.25, xn+1 = fγ (xn) with

γ = −0.1 is s-decreasing and convergent to
−1 −

√
17

4
; the same is true

for any x0 ∈

(
−1 −

√
17

4
, 0.25

)
, so in the discrete dynamical system[[

−1 −
√

17
4

, 0.25

]
, f−0.1

]
the fixed point

−1 −
√

17
4

is monotonously attract-

ing from above.
The trajectory of x0 = 0.25 in this dynamical system is stabilized as

{0.25, 0.09,−0.10,−0.31,−0.52,−0.72,−0.89,−1.02,−1.11,−1.18,−1.22,
−1.24,−1.26,−1.27,−1.27,−1.28,−1.28,−1.28,−1.28,−1.28,−1.28, ...}.

In the discrete dynamical system
[
[−1.45, 0.25] , f−0.1

]
the fixed point

−1 −
√

17
4

is monotonously stable, since it is monotonously attractive both from below and
from above.

By Theorem 2.1 i) the sequence x0 = 0.25, xn+1 = fγ (xn) with

γ = 0.1 is s-increasing and convergent to
−1 +

√
17

4
; the same is true

for any x0 ∈

(
0.25,

−1 +
√

17
4

)
, so in the discrete dynamical system[[

0.25,
−1 +

√
17

4

]
, f0.1

]
the fixed point

−1 +
√

17
4

is monotonously at-

tracting from below.
The trajectory of x0 = 0.25 in this dynamical system is stabilized as

{0.25, 0.41, 0.54, 0.63, 0.68, 0.72, 0.75, 0.76, 0.77, 0.77, 0.78,
0.78, 0.78, 0.78, 0.78, 0.78, 0.78, ...}.

By Theorem 2.3 iii) the sequence x0 = −1.45, xn+1 = f̃γ (xn) = xn +

γxn (f(xn) − xn) with γ = −0.05 is s-decreasing and convergent to −3
2

; the

same is true for any x0 ∈
(
−3

2
, − 1.45

)
, so in the discrete dynamical system[[

−3
2
,−1.45

]
, f̃−0.05

]
the fixed point −3

2
is monotonously attracting from above.

The trajectory of x0 = −1.45 in this dynamical system is stabilized as

{−1.45,−1.48,−1.49,−1.49,−1.50,−1.50,−1.50,−1.50,−1.50,−1.50, ...}.
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By Theorem 2.3 iv) the sequence x0 = −1.45, xn+1 = f̃γ (xn) with

γ = 0.05 is s-increasing and convergent to
−1 −

√
17

4
; the same is true

for any x0 ∈

(
−1.45,

−1 −
√

17
4

)
, so in the discrete dynamical system[[

−1.45,
−1 −

√
17

4

]
, f̃0.05

]
the fixed point

−1 −
√

17
4

is monotonously attract-

ing from below.
The trajectory of x0 = −1.45 in this dynamical system is stabilized as

{−1.45,−1.42,−1.39,−1.36,−1.33,−1.32,−1.31,−1.30,−1.30,−1.29,
−1.29,−1.29,−1.29,−1.28,−1.28,−1.28,−1.28,−1.28,−1.28,−1.28, ...}.

Figures 3 and 4 show the graphs of fγ , f
5

γ , for γ = −0.1 and for γ = 0.1,
respectively. Figures 5 and 6 show the graphs of f̃γ , f̃5

γ , for γ = −0.05 and for
γ = 0.05, respectively.

Figure 1. The graph of f Figure 2. The graph of f3

Figure 3. The graphs of fγ and f
5
γ , γ = −0.1 Figure 4. The graphs of fγ and f

5
γ , γ = 0.1
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Figure 5. The graphs of efγ and ef5
γ , γ = −0.05 Figure 6. The graphs of efγ and ef5

γ , γ = 0.05
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