CREATIVE MATH. & INF. 17 (2008), No. 3, 319 - 325

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

On the stability of quartic type functional equation

FLORIN BOJOR

ABSTRACT. In this article we investigate the generalized Hyers-Ulam-Rassias stability for the quartic type functional equation f(x + 2y) + f(x - 2y) = 4f(x + y) + 4f(x - y) + 24f(y) - 6f(x) by using the fixed point alternative and we shall obtain a better estimate for the difference in norm of a solution of equation and a sub-solution of equation.

1. INTRODUCTION

In 1940, S.M.Ulam [5] gave the following question concerning the stability of homomorfisms: Let G_1 be a group and let G_2 be a metric group with a metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, there exists a $\delta > 0$ such that if a function $h : G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$, then there is a homomorphism $H : G_1 \to G_2$ with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$.

In the next year, D.H. Hyers [3] excellently answered the question of Ulam for the case where G_1 and G_2 are Banach space. Th. M. Rassias [11], T.Aoki [8], Z. Gajda [9] and Găvruță [7] considered the stability problem with unbounded Cauchy differences. The stability phenomenon that was introduced and proved by Th. M. Rassias in [11] is called the generalized Hyers-Ulam-Rassias stability. These terminologies are also applied to the case of other functional equation.

In [14] V. Radu has the excellent idea to use the fixed point alternative to prove the generalized Hyers-Ulam-Rassias stability for functional equations.

Now, we consider the following functional equation:

$$f(2x+y) + f(2x-y) = 4f(x+y) + 4f(x-y) + 24f(x) - 6f(y)$$
(1.1)

It easy to see that the function $f(x) = cx^4$, $c \in \mathbf{R}$ satisfies functional equation (1.1). Hence, it is natural that equation (1.1) is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic function. The stability of equation (1.1) was obtained by S.H. Lee, S.M. Im and I.S. Hwang in [13].

Now we introduce another quartic type equation, that is,

$$f(x+2y) + f(x-2y) + 6f(x) = 4f(x+y) + 4f(x-y) + 24f(y)$$
(1.2)

In [15] J. M. Rassias proved the Hyers-Ulam stability for the functional equation (1.2), using the direct method and proved that:

Received: 31.10.2008. In revised form: 12.02.2009. Accepted: 22.05.2009.

²⁰⁰⁰ Mathematics Subject Classification. 39B55, 39B52, 39B82.

Key words and phrases. Hyers-Ulam stability, quartic mapping.

Florin Bojor

Theorem 1.1. *Let X be a normed linear space and Y be a Banach space, on the real field. If a function* $f : X \to Y$ *satisfies the inequality*

 $\|f(x+2y) + f(x-2y) - 4f(x+y) - 4f(x-y) + 6f(x) - 24f(y)\| \le \varepsilon$

for all $x, y \in X$, with a constant $\varepsilon \ge 0$, then there exists a unique quartic mapping $c: X \to Y$ such that

$$\|f(x) - c(x)\| \leqslant \frac{17\varepsilon}{180} \tag{1.3}$$

for all $x \in X$. The function c is given by

$$c(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^{4n}}$$

for all $x \in X$ and $n \in \mathbf{N}$.

In [16] Cădariu and Radu proved the generalized Hyers-Ulam-Rassias stability of functional equation (1.2) showing that

Theorem 1.2. Let *E* be a (real or complex) normed space, *F* a Banach space. Consider ε , δ , p, q fixed numbers, such that ε , δ , p, $q \ge 0$ and either p, q < 4 or p, q > 4. Suppose that the mapping $f : E \to F$ satisfies the inequality

$$\begin{aligned} \|f(x+2y) + f(x-2y) - 4f(x+y) - 4f(x-y) + 6f(x) - 24f(y)\| &\leq \\ &\leq \delta (1-i) + \varepsilon \left(\|x\|^p + \|y\|^q \right) \text{ for all } x, y \in E, \end{aligned}$$

where i = 0 for p, q < 4 and i = 1 for p, q > 4. Then there exist a unique quartic mapping $c : E \to F$ which satisfies the inequality

$$\|f(x) - c(x)\| \leq \frac{5\delta(1-i)}{6(2^4 - 2^q)} + \frac{\varepsilon}{24} \cdot \frac{2^4 + 2^q}{|2^4 - 2^q|} \cdot \|x\|^q, \ \forall x \in E$$

As a particular case of Theorem 1.2, for $\varepsilon = 0$ and p = q = 0 we obtain the result of Theorem 1.1 where the relation (1.3) become

$$\|f(x) - c(x)\| \leq \frac{\varepsilon}{18} \tag{1.4}$$

In this note we solve the equation (1.2) and prove the stability of functional equation (1.2) using the control function $\varphi(x, y)$ which satisfies the proper conditions, and as a particular case we obtain a better estimate for the difference in norm of a solution of equation and a sub-solution of equation.

2. A SOLUTION OF FUNCTIONAL EQUATION (1.2)

It is well known [1] that a function $f : X \to Y$ between real vector spaces is quadratic if and only if there exist a unique symmetric biadditive function *B* such that f(x) = B(x, x) for all $x \in X$. The biadditive function *B* is given by

$$B(x,y) = \frac{1}{2} \left(f(x+y) - f(x-y) \right).$$
(2.5)

Throughout this section *X* and *Y* will be real vector spaces.

In [13] Lee proved the following Lemma

Lemma 2.1. A function $f : X \to Y$ satisfies the functional equation (1.2) if and only if there exists a symmetric biquadratic function $F : X \times X \to Y$ such that f(x) = F(x, x) for all $x \in X$.

320

Lemma 2.2. A function $f : X \to Y$ satisfies the functional equation (1.2) if and only if *f* satisfies the functional equation (1.1).

Proof. (\Rightarrow) Substituting x = y = 0 in (1.2) yields f(0) = 0. Putting x = 0 in (1.2), we get

$$f(-y) = f(y).$$
 (2.6)

Let us interchange x with y in (1.2) and using (2.6) we get

$$f(x+2y) + f(x-2y) + 6f(x) = 4f(x+y) + 4f(x-y) + 24f(y)$$
(2.7)

which is equation (1.1)

(\Leftarrow) Substituting x = y = 0 in (1.1) yields f(0) = 0. Putting x = 0 in (1.1), we get

$$f(2y) + f(-2y) = 28f(y) + 4f(-y)$$
(2.8)

Replacing *y* with -y in (2.8) we get

$$f(-y) = f(y) \tag{2.9}$$

Let us interchange x with y in (1.1) and using (2.9) we get that function f satisfies the functional equation (1.2)

Using the previous lemmas we get the solution of equation (1.2), and that is:

Lemma 2.3. A function $f : X \to Y$ satisfies the functional equation (1.2) if and only if there exist a symmetric biquadratic function $F : X \times X \to Y$ such that f(x) = F(x, x) for all $x \in X$.

3. STABILITY OF EQUATION (1.2)

For explicit later use, we state the following theorem:

Theorem 3.1. (*The alternative of fixed point*) Suppose that we are given a complete generalized metric space (Ω, d) and $T : \Omega \to \Omega$ a *L*-contraction with $L \in [0, 1)$. Then, for each given $x \in \Omega$, either

$$d(T^n x, T^{n+1} x) = \infty, \ \forall n \ge 0$$

or there exist a natural number n_0 such that

- $d(T^n x, T^{n+1}x) < \infty$ for all $n \ge n_0$;
- The sequence $(T^n x)_{n \ge 0}$ is convergent to a fixed point y * of T;
- y* is the unique fixed point of T in the set $\Delta = \{y \in \Omega | d(T^{n_0}x, y) < \infty\};$
- $d(y, y^*) \leq \frac{1}{1-L}d(y, Ty)$ for all $y \in \Delta$.

Utilizing the above-mentioned fixed point alternative, we now obtain our main result, i.e., the generalized Hyers-Ulam-Rassias stability of the functional equation (1.2).

From now on, let *X* be a real vector space and *Y* be a real Banach space. Given a mapping $f : X \to Y$, we set

$$\begin{split} Df\left(x,y\right) &:= f\left(x+2y\right) + f\left(x-2y\right) + 6f\left(x\right) - 4f\left(x+y\right) - 4f\left(x-y\right) - 24f\left(y\right); \forall x,y \in X \\ \text{Let } \varphi: X \times X \to [0,\infty) \text{ be a function such that} \end{split}$$

$$\lim_{n \to \infty} \frac{\varphi\left(\lambda_i^n x, \lambda_i^n y\right)}{\lambda_i^{4n}} = 0$$
(3.10)

Florin Bojor

for all $x, y, z \in X$, where $\lambda_i = 2$ if i = 0 and $\lambda_i = \frac{1}{2}$ if i = 1, and

$$\varphi\left(0,-y\right) = \varphi\left(0,y\right), \,\forall x \in X \tag{3.11}$$

Theorem 3.2. Suppose that a function $f : X \to Y$ satisfies the functional inequality

$$\|Df(x,y)\| \leqslant \varphi(x,y) \tag{3.12}$$

for all $x, y \in X$ and f(0) = 0. If there exist L = L(i) < 1 such that the function

$$x \mapsto \psi(x) = \phi\left(0, \frac{x}{2}\right)$$

has the property

$$\psi(x) \leq L \cdot \lambda_i^4 \psi\left(\frac{x}{\lambda_i}\right)$$
 (3.13)

for all $x \in X$, then there exists a unique quartic function $C : X \to Y$ such that the inequality

$$\|f(x) - C(x)\| \leq \frac{L^{1-i}(2+2L)}{3(1-L)}\psi(x)$$
(3.14)

holds for all $x \in X$.

Proof. Consider the set

$$\Omega = \{g \,|\, g: X \to Y\,\}$$

and introduce the generalized metric on Ω ,

 $d(g,h) = d_{\psi}(g,h) = \inf \{ K \in (0,\infty) \, | \, \|g(x) - h(x)\| \leq K\psi(x) \, , \, \forall x \in X \} \, .$

It is easy to see that (Ω, d) is complete. Now we define a mapping $T : \Omega \to \Omega$ by

$$Tg(x) = \frac{1}{\lambda_i^4}g(\lambda_i x), \quad \forall x \in X.$$

Note that for all $g, h \in \Omega$,

$$\begin{split} d\left(g,h\right) < K \Rightarrow \left\|g\left(x\right) - h\left(x\right)\right\| \leqslant K\psi\left(x\right), \ x \in X \\ \Rightarrow \left\|\frac{1}{\lambda_{i}^{4}}g\left(\lambda_{i}x\right) - \frac{1}{\lambda_{i}^{4}}h\left(\lambda_{i}x\right)\right\| \leqslant \frac{1}{\lambda_{i}^{4}}K\psi\left(\lambda_{i}x\right), \ x \in X \\ \Rightarrow \left\|\frac{1}{\lambda_{i}^{4}}g\left(\lambda_{i}x\right) - \frac{1}{\lambda_{i}^{4}}h\left(\lambda_{i}x\right)\right\| \leqslant LK\psi\left(x\right), \ x \in X \\ \Rightarrow d\left(Tg, Th\right) \leqslant LK. \end{split}$$

Hence we see that

$$d\left(Tg,\,Th\right) \leqslant Ld\left(g,h\right)$$

for all $g,h\in\Omega$, that is, T is a strictly contractive selfmapping of Ω with the Lipschitz constant L.

If we put x = 0 in (3.12) we get

$$\|f(2y) + f(-2y) - 28f(y) - 4f(-y)\| \le \varphi(0, y) = \psi(2y)$$
(3.15)

If we substitute y := -y in (3.15), we get,

$$\|f(2y) + f(-2y) - 28f(-y) - 4f(y)\| \le \varphi(0, -y) = \psi(2y)$$
(3.16)

322

Then

 $24 \|f(y) - f(-y)\| =$ $\left\| \left[f\left(2y\right) + f\left(-2y\right) - 28f\left(y\right) - 4f\left(-y\right) \right] - \left[f\left(2y\right) + f\left(-2y\right) - 28f\left(-y\right) - 4f\left(y\right) \right] \right\| \leqslant \frac{1}{2} \left\| f\left(-2y\right) - 28f\left(-y\right) - 4f\left(y\right) \right\|$ $\leqslant 2\psi\left(2y\right), \quad \forall y \in X,$

and we obtain

$$\|f(y) - f(-y)\| \leq \frac{1}{12}\psi(2y), \quad \forall y \in X$$
 (3.17)

Using (3.17), we get

$$\begin{split} & 2 \left\| f\left(2y\right) - 16f\left(y\right) \right\| = \\ & \left\| \left(f\left(2y\right) + f\left(-2y\right) - 4f\left(-y\right) - 28f\left(y\right)\right) + \left(f\left(2y\right) - f\left(-2y\right)\right) + 4\left(f\left(-y\right) - f\left(y\right)\right) \right\| \leqslant \\ & \leqslant \left\| f\left(2y\right) + f\left(-2y\right) - 4f\left(-y\right) - 28f\left(y\right) \right\| + \left\| f\left(2y\right) - f\left(-2y\right) \right\| + 4\left\| f\left(y\right) - f\left(-y\right) \right\| \leqslant \\ & \leqslant \psi\left(2y\right) + \frac{1}{12}\psi\left(4y\right) + \frac{1}{3}\psi\left(2y\right) = \frac{4+4L}{3}\psi\left(2y\right) \end{split}$$

which yields:

$$\|f(2y) - 16f(y)\| \leq \frac{2+2L}{3}\psi(2y) \leq \frac{2+2L}{3} \cdot 16L\psi(y)$$
(3.18)

which is reduced to

$$\left\|f\left(y\right) - \frac{1}{16}f\left(2y\right)\right\| \leqslant \frac{L\left(2+2L\right)}{3}\psi\left(y\right), \ \forall y \in X$$

that is, $d(f, Tf) \leq \frac{L(2+2L)}{3} < \infty$. If we substitute $y := \frac{y}{2}$ in (3.18) and use (3.13), then we see that

$$\left\|f\left(y\right) - 2^{4}f\left(\frac{y}{2}\right)\right\| \leqslant \frac{2+2L}{3}\psi\left(y\right), \quad \forall y \in X$$

that is, $d(f, Tf) \leq \frac{2+2L}{3} < \infty$.

Now, from the fixed point alternative in both cases, it follows that there exists a fixed point *C* of *T* in Ω such that

$$C(x) = \lim_{n \to \infty} \frac{f(\lambda_i^n x)}{\lambda_i^{4n}}, \quad \forall x \in X,$$
(3.19)

since $\lim_{n\to\infty} d(T^n f, C) = 0.$

To show that the function $C: X \to X$ is quartic, let us replace x and y by $\lambda_i^n x$ and $\lambda_i^n y$ in (3.10), respectively, and divide by λ_i^{4n} . Then it follows from (3.10) and (3.12) that

$$\left\|DC\left(x,y\right)\right\| = \lim_{n \to \infty} \frac{\left\|Df\left(\lambda_{i}^{n}x,\,\lambda_{i}^{n}y\right)\right\|}{\lambda_{i}^{4n}} \leqslant \lim_{n \to \infty} \frac{\phi\left(\lambda_{i}^{n}x,\,\lambda_{i}^{n}y\right)}{\lambda_{i}^{4n}} = 0, \; \forall x,y \in X,$$

that is, C satisfies the functional equation (1.2). Therefore Lemma 2.2 guarantees that C is quartic.

According to the fixed point alternative, since C is the *unique* fixed point of T in the set $\Delta = \left\{ g \in \Omega : \, d \left(f, \, g \right) < \infty \right\}, C$ is the unique function such that

$$\left\|f\left(x\right) - C\left(x\right)\right\| \leqslant K\psi\left(x\right)$$

Florin Bojor

for all $x \in X$ and some K > 0. Again using the fixed point alternative, we have

$$d(f,C) \leqslant \frac{1}{1-L}d(f,Tf)$$

and so we obtain the inequality

$$d(f, C) \leq \frac{L^{1-i}(2+2L)}{3(1-L)}$$

which yields the inequality (3.14). This completes the proof of theorem.

From Theorem 3.2, we obtain the following corollary concerning the Hyers-Ulam stability of the functional equation (1.2).

Corollary 3.1. Let X and Y be a normed space and a Banach space, respectively. Let $p \ge 0$ be given with $p \ne 4$. Assume that $\delta \ge 0$ and $\varepsilon \ge 0$ are fixed. Suppose that a function $f: X \rightarrow Y$ satisfies the functional inequality

$$|Df(x, y)|| \leq \delta + \varepsilon \left(||x||^p + ||y||^p \right)$$
(3.20)

for all $x, y \in X$. Furthermore, assume that f(0) = 0 and $\delta = 0$ in (3.20) for the case p > 4. Then there exists a unique quartic function $C : X \to Y$ such that the inequality

$$\|f(x) - C(x)\| \leq \frac{2+2^{p-3}}{3(2^{4-p}-1)}\delta + \frac{(2+2^{p-3})\varepsilon}{3(16-2^p)} \|x\|^p$$
(3.21)

holds for all $x \in X$, where p < 4, or the inequality

$$\|f(x) - C(x)\| \leq \frac{(2+2^{5-p})\varepsilon}{3(2^p-16)} \|x\|^p$$
 (3.22)

holds for all $x \in X$ *, where* p > 4*.*

Proof. Let $\phi(x, y) := \delta + \varepsilon (||x||^p + ||y||^p), \forall x, y \in X$. Then it follows that

$$\frac{\phi\left(\lambda_{i}^{n}x,\,\lambda_{i}^{n}y\right)}{\lambda_{i}^{4n}} = \frac{\delta}{\lambda_{i}^{4n}} + \left(\lambda_{i}^{n}\right)^{p-4}\varepsilon\left(\left\|x\right\|^{p} + \left\|y\right\|^{p}\right) \to 0$$

as $n \to \infty$, where p < 4, if i = 0 and p > 4, if i = 1, that is, the relation (3.12) is true.

Since the inequality

$$\frac{1}{\lambda_{i}^{4}}\psi\left(\lambda_{i}x\right) = \frac{\delta}{\lambda_{i}^{4}} + \frac{\lambda_{i}^{p-4}}{2^{p}}\varepsilon\left\|x\right\|^{p} \leqslant \lambda_{i}^{p-4}\psi\left(x\right)$$

holds for all $x \in X$, where p < 4 if i = 0 and p > 4 if i = 1, we see that the inequality (3.13) holds with either $L = 2^{p-4}$ or $L = 2^{4-p}$. Now the inequality (3.14) yields the inequality (3.21) and (3.22) which complete the proof of the corollary.

The following corollary is the Hyers-Ulam stability of the functional equation (1.2).

Corollary 3.2. Let X and Y be a normed space and a Banach space, respectively. Assume that $\theta \ge 0$ is fixed. Suppose that a function $f : X \to Y$ satisfies the functional inequality

$$\|Df(x,y)\| \leqslant \theta \tag{3.23}$$

324

for all $x, y \in X$. Then there exist a unique quartic function $C : X \to Y$ such that the inequality

$$\|f(x) - C(x)\| \leq \frac{11}{720}\theta \tag{3.24}$$

holds for all $x \in X$ *.*

Proof. In Corollary 3.1, putting $\delta := 0$, p := 0 and $\varepsilon := \frac{\theta}{2}$, we arrive at the conclusion of the corollary.

Conclusion. We applied the alternative of fixed point to obtain the stability of equation (1.2), and is easy to see that our estimate (3.24) is better than estimate (1.3) and (1.4)

References

- [1] Aczl, J. and Dhombres, J., Functional Equations in Several Variables, Cambridge Univ. Press, 1989
- [2] Czerwik, S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64
- [3] Hyers, D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222-224
- [4] Hyers, D.H. and Rassias, Th.M., Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153
- [5] Ulam, S.M., Problems in Modern Mathematics, Wiley, New York, 1964
- [6] Cholewa, P.W., Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86
 [7] Găvruță, P., A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436
- [8] Aoki, T., On the stability of the linear transformation in Banach spaces, J. M. Soc. Japan 2 (1950), 64-66
 [9] Gajda, Z., On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434
- [10] Kannappan, Pl., Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372
- [11] Rassias, Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300
- [12] Skof, F., Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129
- [13] Lee, S.H., Im, S.M. and Hwang, I.S., *Quartic functional equation*, J. Math. Anal. Appl. **307** (2005), 387-394
- [14] Radu, V., *The fixed point alternative and the stability of functional equation*, Fixed point theory **4** (1) (2003), 91-96
- [15] Rassias, J.M., Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Vol. 34 (54) (1999), 243-252
- [16] Cădariu, L. and Radu, V., A Hyers-Ulam-Rassias stability theorem for a quartic functional equation, ACAM 13 (1) (2004), 31-39

NORTH UNIVERSITY OF BAIA MARE DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE VICTORIEI NR. 76 430122 BAIA MARE, ROMANIA *E-mail address*: f_bojor@yahoo.com