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On the stability of quartic type functional equation

FLORIN BOJOR

ABSTRACT. In this article we investigate the generalized Hyers-Ulam-Rassias stability for the
quartic type functional equation f (x+ 2y)+f (x− 2y) = 4f (x+ y)+4f (x− y)+24f (y) −6f (x)

by using the fixed point alternative and we shall obtain a better estimate for the difference in norm of
a solution of equation and a sub-solution of equation.

1. INTRODUCTION

In 1940, S.M.Ulam [5] gave the following question concerning the stability of
homomorfisms: Let G1 be a group and let G2 be a metric group with a metric d (· , ·).
Given ε > 0, there exists a δ > 0 such that if a function h : G1 → G2 satisfies the
inequality d (h (xy) , h (x)h (y)) < δ for all x, y ∈ G1, then there is a homomorphism
H : G1 → G2 with d (h (x) , H (x)) < ε for all x ∈ G1.

In the next year, D.H. Hyers [3] excellently answered the question of Ulam
for the case where G1 and G2 are Banach space. Th. M. Rassias [11], T.Aoki [8],
Z. Gajda [9] and Găvruţă [7] considered the stability problem with unbounded
Cauchy differences. The stability phenomenon that was introduced and proved
by Th. M. Rassias in [11] is called the generalized Hyers-Ulam-Rassias stability.
These terminologies are also applied to the case of other functional equation.
In [14] V. Radu has the excellent idea to use the fixed point alternative to prove
the generalized Hyers-Ulam-Rassias stability for functional equations.

Now, we consider the following functional equation:

f (2x+ y) + f (2x− y) = 4f (x+ y) + 4f (x− y) + 24f (x)− 6f (y) (1.1)

It easy to see that the function f (x) = cx4, c ∈ R satisfies functional equation
(1.1). Hence, it is natural that equation (1.1) is called a quartic functional equa-
tion and every solution of the quartic functional equation is said to be a quartic
function. The stability of equation (1.1) was obtained by S.H. Lee, S.M. Im and
I.S. Hwang in [13].

Now we introduce another quartic type equation, that is,

f (x+ 2y) + f (x− 2y) + 6f (x) = 4f (x+ y) + 4f (x− y) + 24f (y) (1.2)

In [15] J. M. Rassias proved the Hyers-Ulam stability for the functional equa-
tion (1.2), using the direct method and proved that:
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Theorem 1.1. Let X be a normed linear space and Y be a Banach space, on the real field.
If a function f : X → Y satisfies the inequality

‖f (x+ 2y) + f (x− 2y)− 4f (x+ y)− 4f (x− y) + 6f (x)− 24f (y)‖ 6 ε
for all x, y ∈ X, with a constant ε > 0, then there exists a unique quartic mapping
c : X → Y such that

‖f (x)− c (x)‖ 6 17ε

180
(1.3)

for all x ∈ X. The function c is given by

c (x) = lim
n→∞

f (2nx)

24n

for all x ∈ X and n ∈ N.

In [16] Cădariu and Radu proved the generalized Hyers-Ulam-Rassias stability
of functional equation (1.2) showing that

Theorem 1.2. Let E be a (real or complex) normed space, F a Banach space. Consider
ε, δ, p, q fixed numbers, such that ε, δ, p, q > 0 and either p, q < 4 or p, q > 4. Suppose
that the mapping f : E → F satisfies the inequality

‖f (x+ 2y) + f (x− 2y)− 4f (x+ y)− 4f (x− y) + 6f (x)− 24f (y)‖ 6
6 δ (1− i) + ε (‖x‖p + ‖y‖q) for all x, y ∈ E,

where i = 0 for p, q < 4 and i = 1 for p, q > 4. Then there exist a unique quartic
mapping c : E → F which satisfies the inequality

‖f (x)− c (x)‖ 6 5δ (1− i)
6 (24 − 2q)

+
ε

24
· 24 + 2q

|24 − 2q|
· ‖x‖q , ∀x ∈ E

As a particular case of Theorem 1.2, for ε = 0 and p = q = 0 we obtain the
result of Theorem 1.1 where the relation (1.3) become

‖f (x)− c (x)‖ 6 ε

18
(1.4)

In this note we solve the equation (1.2) and prove the stability of functional
equation (1.2) using the control function ϕ (x, y) which satisfies the proper con-
ditions, and as a particular case we obtain a better estimate for the difference in
norm of a solution of equation and a sub-solution of equation.

2. A SOLUTION OF FUNCTIONAL EQUATION (1.2)

It is well known [1] that a function f : X → Y between real vector spaces is
quadratic if and only if there exist a unique symmetric biadditive functionB such
that f (x) = B (x, x) for all x ∈ X . The biadditive function B is given by

B (x, y) =
1

2
(f (x+ y)− f (x− y)) . (2.5)

Throughout this section X and Y will be real vector spaces.
In [13] Lee proved the following Lemma

Lemma 2.1. A function f : X → Y satisfies the functional equation (1.2) if and only if
there exists a symmetric biquadratic function F : X×X → Y such that f (x) = F (x, x)
for all x ∈ X .
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Lemma 2.2. A function f : X → Y satisfies the functional equation (1.2) if and only if
f satisfies the functional equation (1.1).

Proof. (⇒) Substituting x = y = 0 in (1.2) yields f (0) = 0. Putting x = 0 in (1.2),
we get

f(−y) = f (y) . (2.6)
Let us interchange x with y in (1.2) and using (2.6) we get

f (x+ 2y) + f (x− 2y) + 6f (x) = 4f (x+ y) + 4f (x− y) + 24f (y) (2.7)

which is equation (1.1)
(⇐) Substituting x = y = 0 in (1.1) yields f (0) = 0. Putting x = 0 in (1.1), we

get
f (2y) + f (−2y) = 28f (y) + 4f (−y) (2.8)

Replacing y with −y in (2.8) we get

f (−y) = f (y) (2.9)

Let us interchange x with y in (1.1) and using (2.9) we get that function f satisfies
the functional equation (1.2) �

Using the previous lemmas we get the solution of equation (1.2), and that is:

Lemma 2.3. A function f : X → Y satisfies the functional equation (1.2) if and only if
there exist a symmetric biquadratic function F : X×X → Y such that f (x) = F (x, x)
for all x ∈ X .

3. STABILITY OF EQUATION (1.2)

For explicit later use, we state the following theorem:

Theorem 3.1. (The alternative of fixed point) Suppose that we are given a complete
generalized metric space (Ω, d) and T : Ω → Ω a L-contraction with L ∈ [0, 1). Then,
for each given x ∈ Ω, either

d
(
Tnx, Tn+1x

)
=∞, ∀n > 0

or there exist a natural number n0 such that
• d

(
Tnx, Tn+1x

)
<∞ for all n > n0;

• The sequence (Tnx)n>0 is convergent to a fixed point y∗ of T ;
• y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω |d (Tn0x, y) <∞};
• d (y, y∗) 6 1

1−Ld (y, Ty) for all y ∈ ∆.

Utilizing the above-mentioned fixed point alternative, we now obtain our
main result, i.e., the generalized Hyers-Ulam-Rassias stability of the functional
equation (1.2).

From now on, let X be a real vector space and Y be a real Banach space. Given
a mapping f : X → Y , we set

Df (x, y) := f (x+ 2y)+f (x− 2y)+6f (x)−4f (x+ y)−4f (x− y)−24f (y) ;∀x, y ∈ X
Let ϕ : X ×X → [0,∞) be a function such that

lim
n→∞

ϕ (λni x, λ
n
i y)

λ4ni
= 0 (3.10)
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for all x, y, z ∈ X , where λi = 2 if i = 0 and λi = 1
2 if i = 1, and

ϕ (0,−y) = ϕ (0, y) , ∀x ∈ X (3.11)

Theorem 3.2. Suppose that a function f : X → Y satisfies the functional inequality

‖Df (x, y)‖ 6 ϕ (x, y) (3.12)

for all x, y ∈ X and f (0) = 0. If there exist L = L (i) < 1 such that the function

x 7→ ψ (x) = φ
(

0,
x

2

)
has the property

ψ (x) 6 L · λ4iψ
(
x

λi

)
(3.13)

for all x ∈ X , then there exists a unique quartic function C : X → Y such that the
inequality

‖f (x)− C (x)‖ 6 L1−i (2 + 2L)

3 (1− L)
ψ (x) (3.14)

holds for all x ∈ X .

Proof. Consider the set
Ω = {g | g : X → Y }

and introduce the generalized metric on Ω,

d (g, h) = dψ (g, h) = inf {K ∈ (0, ∞) | ‖g (x)− h (x)‖ 6 Kψ (x) , ∀x ∈ X} .

It is easy to see that (Ω, d) is complete. Now we define a mapping T : Ω→ Ω by

Tg (x) =
1

λ4i
g (λix) , ∀x ∈ X.

Note that for all g, h ∈ Ω,

d (g, h) < K ⇒ ‖g (x)− h (x)‖ 6 Kψ (x) , x ∈ X

⇒
∥∥∥∥ 1

λ4i
g (λix)− 1

λ4i
h (λix)

∥∥∥∥ 6 1

λ4i
Kψ (λix) , x ∈ X

⇒
∥∥∥∥ 1

λ4i
g (λix)− 1

λ4i
h (λix)

∥∥∥∥ 6 LKψ (x) , x ∈ X

⇒ d (Tg, Th) 6 LK.

Hence we see that
d (Tg, Th) 6 Ld (g, h)

for all g, h ∈ Ω , that is, T is a strictly contractive selfmapping of Ω with the
Lipschitz constant L.

If we put x = 0 in (3.12) we get

‖f (2y) + f (−2y)− 28f (y)− 4f (−y)‖ 6 ϕ (0, y) = ψ (2y) (3.15)

If we substitute y := −y in (3.15), we get,

‖f (2y) + f (−2y)− 28f (−y)− 4f (y)‖ 6 ϕ (0,−y) = ψ (2y) (3.16)
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Then

24 ‖f (y)− f (−y)‖ =
‖[f (2y) + f (−2y)− 28f (y)− 4f (−y)]− [f (2y) + f (−2y)− 28f (−y)− 4f (y)]‖ 6
6 2ψ (2y) , ∀y ∈ X,

and we obtain

‖f (y)− f (−y)‖ 6 1

12
ψ (2y) , ∀y ∈ X (3.17)

Using (3.17), we get

2 ‖f (2y)− 16f (y)‖ =
‖(f (2y) + f (−2y)− 4f (−y)− 28f (y)) + (f (2y)− f (−2y)) + 4 (f (−y)− f (y))‖ 6

6 ‖f (2y) + f (−2y)− 4f (−y)− 28f (y)‖+ ‖f (2y)− f (−2y)‖+ 4 ‖f (y)− f (−y)‖ 6

6 ψ (2y) + 1
12ψ (4y) + 1

3ψ (2y) = 4+4L
3 ψ (2y)

which yields:

‖f (2y)− 16f (y)‖ 6 2 + 2L

3
ψ (2y) 6

2 + 2L

3
· 16Lψ (y) (3.18)

which is reduced to∥∥∥∥f (y)− 1

16
f (2y)

∥∥∥∥ 6 L (2 + 2L)

3
ψ (y) , ∀y ∈ X

that is, d (f, Tf) 6 L(2+2L)
3 <∞.

If we substitute y := y
2 in (3.18) and use (3.13), then we see that∥∥∥f (y)− 24f

(y
2

)∥∥∥ 6 2 + 2L

3
ψ (y) , ∀y ∈ X

that is, d (f, Tf) 6 2+2L
3 <∞.

Now, from the fixed point alternative in both cases, it follows that there exists
a fixed point C of T in Ω such that

C (x) = lim
n→∞

f (λni x)

λ4ni
, ∀x ∈ X, (3.19)

since lim
n→∞

d (Tnf, C) = 0.

To show that the function C : X → X is quartic, let us replace x and y by λni x
and λni y in (3.10),respectively, and divide by λ4ni . Then it follows from (3.10) and
(3.12) that

‖DC (x, y)‖ = lim
n→∞

‖Df (λni x, λ
n
i y)‖

λ4ni
6 lim
n→∞

φ (λni x, λ
n
i y)

λ4ni
= 0, ∀x, y ∈ X,

that is, C satisfies the functional equation (1.2). Therefore Lemma 2.2 guarantees
that C is quartic.

According to the fixed point alternative, sinceC is the unique fixed point of T in
the set ∆ = {g ∈ Ω : d (f, g) <∞} , C is the unique function such that

‖f (x)− C (x)‖ 6 Kψ (x)
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for all x ∈ X and some K > 0. Again using the fixed point alternative, we have

d (f, C) 6
1

1− L
d (f, Tf)

and so we obtain the inequality

d (f, C) 6
L1−i (2 + 2L)

3 (1− L)

which yields the inequality (3.14). This completes the proof of theorem. �

From Theorem 3.2, we obtain the following corollary concerning the Hyers-
Ulam stability of the functional equation (1.2).

Corollary 3.1. Let X and Y be a normed space and a Banach space, respectively. Let
p > 0 be given with p 6= 4. Assume that δ > 0 and ε > 0 are fixed. Suppose that a
function f : X → Y satisfies the functional inequality

‖Df (x, y)‖ 6 δ + ε (‖x‖p + ‖y‖p) (3.20)

for all x, y ∈ X. Furthermore, assume that f (0) = 0 and δ = 0 in (3.20) for the case
p > 4. Then there exists a unique quartic function C : X → Y such that the inequality

‖f (x)− C (x)‖ 6 2 + 2p−3

3 (24−p − 1)
δ +

(
2 + 2p−3

)
ε

3 (16− 2p)
‖x‖p (3.21)

holds for all x ∈ X , where p < 4, or the inequality

‖f (x)− C (x)‖ 6
(
2 + 25−p

)
ε

3 (2p − 16)
‖x‖p (3.22)

holds for all x ∈ X , where p > 4.

Proof. Let φ (x, y) := δ + ε (‖x‖p + ‖y‖p) , ∀x, y ∈ X. Then it follows that

φ (λni x, λ
n
i y)

λ4ni
=

δ

λ4ni
+ (λni )

p−4
ε (‖x‖p + ‖y‖p)→ 0

as n → ∞, where p < 4, if i = 0 and p > 4, if i = 1, that is, the relation (3.12) is
true.

Since the inequality

1

λ4i
ψ (λix) =

δ

λ4i
+
λp−4i

2p
ε ‖x‖p 6 λp−4i ψ (x)

holds for all x ∈ X , where p < 4 if i = 0 and p > 4 if i = 1, we see that the inequal-
ity (3.13) holds with either L = 2p−4 or L = 24−p. Now the inequality (3.14) yields
the inequality (3.21) and (3.22) which complete the proof of the corollary. �

The following corollary is the Hyers-Ulam stability of the functional equation
(1.2).

Corollary 3.2. LetX and Y be a normed space and a Banach space, respectively. Assume
that θ > 0 is fixed. Suppose that a function f : X → Y satisfies the functional inequality

‖Df (x, y)‖ 6 θ (3.23)
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for all x, y ∈ X . Then there exist a unique quartic function C : X → Y such that the
inequality

‖f (x)− C (x)‖ 6 11

720
θ (3.24)

holds for all x ∈ X .

Proof. In Corollary 3.1, putting δ := 0, p := 0 and ε := θ
2 , we arrive at the conclu-

sion of the corollary. �

Conclusion. We applied the alternative of fixed point to obtain the stability of
equation (1.2), and is easy to see that our estimate (3.24) is better than estimate
(1.3) and (1.4)
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