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A modified Seidel method for calculating the fixed
points of contractive mappings

ADRIAN CARABINEANU

ABSTRACT. For calculating the fixed point of a contractive mapping f =(f1, f2, ..., fm) : Ω →
Ω, Ω ∈ Rm we employ a modified Seidel successive approximations scheme:
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We present a strategy to find the permutation π in order to accelerate the iterative processus.

1. INTRODUCTION

Definition. The function f =(f1, f2, ..., fm) : Ω → Ω, Ω ∈ Rm is a contractive
mapping if there exists a constant c ∈ (0, 1) such that

‖f (x)− f (y)‖ ≤ c ‖x− y‖ , ∀x,y ∈ Ω, (1.1)

We consider on Rm the norm

‖x‖ = ‖(x1, x2, ..., xm)‖ = |x1|+ |x1|+ ...+ |x1| . (1.2)

Definition. x ∈ Ω is a fixed point of the function f if f (x) = x.
We have the following theorem concerning the contraction mappings:

Theorem 1.1. IfΩ ∈ Rm is a closed set and f : Ω → Ω, is a contractive mapping, then
it has a unique fixed point x which can be obtained by means of the successive approx-
imations method starting from an initial approximation x(0). Hence x = limn→∞ x(n)

where x(n) = f
(
x(n−1)

)
, n = 1, 2, 3, ... .

2. THE MODIFIED SEIDEL’S METHOD

First of all we have to notice that generally, when we compute x
(n)
k the compo-

nents x
(n)
1 , ..., x
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k−1 are already calculated. This observation suggests the follow-

ing formula, due to Seidel, [3], [4] for calculating the successive approximations:
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However it is not obligatory ( in the framework of the n−th iteration) to calculate
first x

(n)
1 , then x

(n)
2 and so on; we may change the order. For instance, for an

arbitrary permutation π : {1, 2, ...,m} → {1, 2, ...,m}, we can calculate first x(n)
π(1),

then x
(n)
π(2) (taking into account that x(n)π(1) is already calculated) and so on, i.e.
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Our aim is to find the permutation π in order to accelerate the iterative processus.

3. DISCRETIZED HAMMERSTEIN INTEGRAL EQUATIONS

We consider the Hammerstein integral equation

x (t) =

∫ b

a

K (t, s) f (s, x (s)) ds, t ∈ [a, b] . (3.6)

In order to discretize this equation we employ Nyström’s method , considering
the numeric integration scheme

m∑
j=1

wjx (tj) ≈
∫ b

a

x (s) ds. (3.7)

By means of this scheme, from the integral equation (3.6) we get the algebraic
system

x (ti) =

m∑
j=1

wjK (ti, tj) f (tj , x (tj)) . (3.8)

Denoting xj = x (tj) ,Kij = wjK (ti, tj) , fj = f (tj , ·) , the system (3.8) becomes

xi =

m∑
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Kijfj (xj) . (3.9)

Assuming that the mapping defined by (3.9) is a contraction, we consider (ac-
cording to Seidel’s modified method) the sequence of successive approximations
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(3.11)

In order to minimize the assessment formula from the right hand side on of
the relationship (3.11) we embrace the following selection strategy which leads in
the end to the construction of the permutation π :

- π (1) is chosen such that
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- π (2) is chosen such that
m∑
i=2

K2
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∑
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K2
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(3.13)
- π (k) , k = 3, 4, ...,m is chosen such that

m∑
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K2
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K2
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4. THE SELECTION PROCEDURE .

We achieve the selection procedure described above as follows: we consider

the vector A = (A (1) , A (2) , ..., A (m)) with A (l) =

m∑
s=1

K2
ls + il, i =

√−1.
We organize the vector A as a heap [1] imposing Real (A (l)) < Real (A (2l)) si
Real (A (l)) < Real (A (2l+ 1)) and we employ the following algorithm (written
in pseudocode) for constructing the permutation π:

Procedure ConstructPermutation:

length← m
k← 1
While length > 0 do
{BuildHeap(A)
π (k) = imag (A (1))
p = 1
While p < length do
{A(p) = A(p+ 1)−K2

π(k)p

p = p+ 1}
A(length)←∞
length← length− 1
k← m− length+ 1}

Another procedure deals with the initial values of x and A :
Procedure Initialization

For l← 1...m
{x [l]← 0; y [l]← 1;
error =

∑m
l=1 |x [l]− y (l)| ;

A (l) =
m∑
s=1

K2
ls + il}

The last procedure deals with the computation of the fixed point
Procedure FixedPoint
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While error > ε do
{for l = 1...m
{y [π(l)]← x [π(l)]
x [π(l)]←∑m

j=1 Kπ(l)π(j)fπ(j)
(
xπ(j)

)}
error ←∑m

l=1 |x [l]− y (l)| ;}

For using the modified Seidel successive approximation method for solving
the algebraic system (which is assumed to be a contraction)

xi =

m∑
j=1

Kijfj (xj) , i = 1, ...,m, (4.15)

we utilize the following code
Initialization
ConstructPermutation
FixedPoint

5. APPLICATION

FIGURE 1. Comparison of the three methods

We shall consider the Hammerstein equation that appears in the study of the
free-surface flow past a circular obstacle [2]

x (t) =
λ

π

∫ π

0

exp (−x (s)) ln
∣∣∣∣ sin t+s

2

sin t−s
2

∣∣∣∣ (1 + sin s) sin sds. (5.16)

Since we have an integrable logarithmic singularity, in order to isolate the sin-
gularity, we shall write the integral equation as follows

x (t) =
λ

π

∫ π

0

exp (−x (s)) ln
∣∣∣∣ (t− s) sin t+s

2

sin t−s
2

∣∣∣∣ (1 + sin s) sin sds−
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−λ

π

∫ π

0

[exp (−x (s)) (1 + sin s) sin s− exp (−x (t)) (1 + sin t) sin t] ln |t− s| ds−

−λ

π
exp (−x (t)) (1 + sin t) sin t

∫ π

0

ln |t− s| ds.
We consider on the segment [0, π] a grid consisting of the nodes {t0, t1, ..., tn}

with ti =
i

n
π, i = 0, 1, ..., n. Employing the trapeziums formula∫ π

0

f (s) ds =
π

2n

[
f (t0) + 2

n−1∑
i=1

f (ti) + f (tn)

]
and taking into account that sin t0 = sin tn = 0, we obtain

x (ti) =
n−1∑
j=1

Kij exp (−x (tj)) , i = 0, 1, ..., n, (5.17)

with
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λ

n
ln
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2
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2

∣∣∣∣∣ (1 + sin tj) sin tj , i �= j,

Kjj = λ (1 + sin tj) sin tj ·
[
ln
∣∣4 sin2 tj (t0 − tj) (tn − tj)

∣∣
2n

+

+

n−1∑
i=1,i�=j

ln |ti − tj |
n

− π − tj
π

ln (π − tj)− tj
π
ln tj + 1

⎤⎦ .

In [2] one demonstrates that for λ = 1/2, the mapping defined by (5.17) is a
contraction

In Figure 1 we present by stars (*) the solution of the system obtained by the
successive approximations method (19 iterations), by Seidel’s method (6 itera-
tions) and by the modified Seidel method (4 iterations). We used continuous
lines for presenting the intermediate approximations.
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