CREATIVE MATH. & INF Online version at http://creative-mathematics.ubm.ro/
17 (2008), No. 3, 339-345 Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor lulian Coroian on the occasion of his 70" anniversary

Fixed point theory for nonself multivalued operators
on a set with two metrics

CRISTIAN CHIFU AND GABRIELA PETRUSEL

ABSTRACT. The purpose of this work is to present some fixed point results for multivalued op-
erators on a set with two metrics. The data dependence and the well-posedness of the fixed point
problem are also discussed.

1. INTRODUCTION

Throughout this paper, the standard notations and terminologies in nonlin-
ear analysis (see [15], [16]) are used. For the convenience of the reader we recall
some of them.

Let (X, d) be a metric space. By B’d(azo, r) we denote the closed ball centered in
zo € X with radius r > 0.

We will also use the following symbols:

P(X):={Y C X|Y isnonempty}, P,;(X) :={Y € P(X)| Y isclosed},

Py (X) :={Y € P(X)| Y isbounded }, Py ¢;(X) := Py(X) () Pp(X).

Let A and B be nonempty subsets of the metric space (X, d). The gap between
these sets is

~— —

Dy (A, B) = inf{d(a,b)| a € A, b € B}.
In particular, Dy(zo, B) = Dq({z0}, B) (Where z, € X) is called the distance from
the point x, to the set B.
The Pompeiu-Hausdorff generalized distance between the nhonempty closed
subsets A and B of the metric space (X, d) is defined by the following formula:

Hy(A, B) = inf d(a,b),sup inf d(a,b
a(4, B) i= max{sup inf d(a,b), sup inf, d(a, b)}

If A, B € P, (X), then one denote
dia(A, B) :=sup{d(a,b)| a € A, b € B}.

The symbol T : X — P(Y') denotes a set-valued operator. We will denote by
Graph(T) :=={(z,y) € X xY|y € T'(z)} the graph of T'. Recall that the set-valued
operator is called closed if Graph(T) is a closed subset of X x YV, i.e., ifz, C X

and y, € T(x,), forn € N, with z,, 4 4% asn — oo and if Yn 4 y*asn — oo,
then y* € T'(z*).
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For T : X — P(X) the symbol Fr := {x € X| z € T(z)} denotes the fixed
point set of the set-valued operator T, while (SE)r := {z € X| {z} = T(v)} is
the strict fixed point set of T'.

If (X, d)isametricspace, T : X — P, (X) iscalled a multivalued a-contraction
ifa €]0,1[and H(T(z1),T(x2)) < a - d(x1,z2), for each 1,z € X.

In the same setting, an operator " : X — P, (X) is a multivalued weakly
Picard operator (briefly MWP operator) (see [16]) if for each x € X and each
y € T(x) there exists a sequence (z,,),en in X such that:

Nro=2z, 1=y

i) 41 € T'(zy), foralln e N

iii) the sequence (z,,).en IS convergent and its limit is a fixed point of T..

A sequence (z,)nen In X satisfying the condition (ii) from the previous def-
inition is called the sequence of successive approximations of 7' starting from
T € X.

The purpose of this paper is to present a fixed point theory for multivalued
nonself contractions defined on a ball in a space endowed with two metric struc-

tures. Our results extend some previous theorems given by A. Petrusel and |.A.
Rus in [7], as well as, some other results in the literature, see [1], [2], [4], [6], [14].

2. MAIN RESULTS

Our first theorem is a fixed point result for multivalued nonself contractions
on a set with two metrics.

Theorem 2.1. Let X be a nonempty set, d and p two metricson X, ¢y € X, r > 0 and
T : B,(wo,r) — P(X) be amultivalued operator.

We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists ¢ > 0 such that d(=,y) < cp(z, y) for each z,y € B,(x0,7);

(iii) T : (B, (x0,7),d) — (P(X), Hy) is closed;

(iv) there exists « € [0, 1] such that

H,(T(2),T(y)) < ap(,y) for each z,y € B,(zo,7)

(V) D, (z0, T (x0)) < (1 — a)r.
Then:

(8) Fr # 0; )

(b) there exists a sequence (zy, )nen+ C B,y(xo, r) such that:

1) zpy1 €T(xn), neN,

(2) zn 4 e T(x*)asn — oo.
Proof. Letzo € X. From (v) we have that there exists z; € T'(xo) with p(zg,z1) <
(1 — a)r <. From (iv) we have that:
H,(T(x0),T(x1)) < ap(zo,z1) < a(l — a)r
On the other hand, it is known that, if A, B € P.;(X) and ¢ > 0, then:

H(A, B) < eimplies that, for all « € A, thereexists b € B such that p(a,b) < €
()

From (x) we have that there exists x5 € T'(x1) such that p(z1, z2) < a(l — a)r.
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We have

p(l‘o,l‘z) < 0(370,371) + p(x‘l,l‘g)
<(l-a)yr+all-a)r
=1-aHr<r

hence x5 € B, (zo, 7).

Inductively we can construct a sequence (z,,)nen C B, (20, ) having the prop-
erties:

(@) Tp1 € T(zn), n €N;

(ﬁ) p(xn;anrl) < an(l - 04)7“, n € N.

We will prove now that the sequence (z,,).en is Cauchy with respect to p.

We successively have:

P(Tns Tntp) < p(Tn, Tnt1) + P(Tnt1, Tnt2) + -+ p(Zntp—1, Tntp)
<a"(l—a)yr+a" 1 —a)r+---+a" P 1 - a)r
<a"(l—a)r(l+a+---+a™P 14 )
1
< n 1 _ . — n .
a™(1—a)r T =T
Letting n — oo, since o™ — 0, it follows that:

P( X, Tpyp) — 08@S T — 00.

Hence (z,,).en is a Cauchy sequence in (X, p)

From (ii) it follows that the sequence (z,,),en is Cauchy in (X, d). Denote by
z* € X the limit of this sequence. From (i) and (iii) we get that =, Lo e T(z*)
as n — oo. The proof is complete. O

Let us present now the notion of well-posedness for a fixed point problem.

Definition 2.1. (A. Petrusel and I. A. Rus [8]) Let (X, d) be a metric space, Y €
P(X)and T : Y — P,(X) be a multivalued operator. Then the fixed point
problem for T" with respect to D, is well-posed iff:

(a1) Pr ={z"};

(by) fz, € Y,n € Nand Dy(x,,T(z,)) — 0asn — +oo, then z,, — z* as
n — +o00.

Definition 2.2. (A. Petrusel and I. A. Rus [8]) Let (X, d) be a metric space, Y €
P(X)and T : Y — P,(X) be a multivalued operator. Then the fixed point
problem for T with respect to H; is well-posed iff:

(az) (SF)r = {a"};

(bo) If z,, € Y,n € Nand Hy(z,,, T (z,)) — 0asn — +oo, then z,, — z* as
n — +o0o.

For other details and results on this topic see A. Petrusel, I. A. Rus and J.-C.

Yao [9].

Next, we will prove a strict fixed point theorem for a multivalued nonself con-
traction.
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Theorem 2.2. Let X be a nonempty set, d and p two metricson X, ¢y € X, r > 0 and
T : B,(xo,r) — P(X) be a multivalued operator. We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists ¢ > 0 such that d(z, y) < cp(x,y), for each z,y € B,(xzo,r);

(iii) T : (B, (x0,7),d) — (P(X), Hy) is closed;

(iv) there exists « € [0, 1] such that

H,(T(x), T(y)) < ap(z,y), foreach z,y € Bp(xo,r);

(V? D, (0, T (z0)) < (1 — a)r;

(Vi) (SF)7 # 0.
Then we have:

@ Fr = (SF)r - {z*}

(b) p(z,z*) < me(x,T(a:)) for each = € B, (w0, 7);

(c) the fixed point problem is well-posed for 7" with respect to D ,.

Proof. (a) From Theorem 1 it results Fr # (). From (vi) we have that there exists
€ (SF)r. Itis obvious that (SF)r C Fr. We will prove that Fr C (SF)r.
Lety € Fr. We will prove that y = z*.

By putting x := z* in (iv) we have
Hy(T(2"),T(y)) < ap(z”,y).
We have that:

p(x",y) = Dp(T(2"),y) < Hp(T(27),T(y)) < ap(z”,y).
Thus, y = z* and so Fp = (SF)p = {z*}.
(b) We successively have:

Hence 1
p(a?, J)*) < 1—H,;(.13,T(J))).

(c) Let z,, € B,(z0,7), n € N be such that D,(z,,, T(z,)) — 0asn — +oo. We
will prove that p(z,,,2*) — 0asn — +oo. We have

p(n, %) < Dy(@n, T(2n)) + Hp(T(zn), T(2")) < Dp(n, T(zn)) + ap(@n, ).
Thus, p(zy,, 7*) < 2=D, (2, T(z,)) — 0asn — +oc. The proof is complete.

— l—«o

O
A data dependence result is the following theorem.

Theorem 2.3. Let X be a nonempty set, d and p two metrics on X and 7,5 :
B,(z0,7) — P(X) be two multivalued operators. We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists ¢ > 0 such that d(z,y) < cp(x,y), for each z,y € B,(zo,7);

(iii) T : (By(zo,7),d) = (P(X), Hq) is closed;

(iv) there exists o € [0, 1] such that H,(T'(z), T(y)) < ap(z,y), for each z,y €
Bl)(an ’I“);

(V) Dy(zo, T(x0)) < (1 —a)r;
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(Vi) (SF)r # 0;

(vii) Fs # 0; .

(viii) there exists n > 0 such that H,(T'(z), S(z)) < n, for each = € B,(x¢, ).
Then H,(Frp, Fs) < .

11—«

Proof. By Theorem 2 we have Fr = (SF)r = {«*}. Lety* € Fg. Then:

ply*,2") < Hp(S(y"),z") < Hp(S(y"), T(y")) + Hp(T(y"), T(z")) < n+
ap(y*, z*). Hence:
n

ply*,z*) <

Hence H,(Fr,Fs) = sup p(y*,z*) < T The proof is complete. O
y*€Fs l-a

—_
o

We will present now a strict fixed point theorem for the so-called Reich -
contractions, on a set endowed with two metrics.

Theorem 2.4. Let X # () be a nonempty set and d, p two metricson X. Let T : X —
P, (X) be a multivalued operator.
We suppose that:
(i) (X, d) is a complete metric space;
(ii) thereexists ¢ > 0 such that d(z,y) < cp(z,y), forall z,y € X;
(iii) there exist a, b, c € R4 with a + b + ¢ < 1 such that
6P(T(x)7 T(y)) S Clp(.l?, y) + bél)(xa T(J?)) + 661)(y7 T(y))7 for a“ z,Yy S X
Then:
@ (SF)r = {a*};
(b) foreach = € X thereexists (x,)nen Such that:
(b1) o =, 11 =y,
(b2) Tpy1 € T(xy), n €N;
(b3) @, = (SF)r,n — oo.
(c) the fixed point problem is well-posed for 7" with respect to H ,.

Proof. (@) and (b) Let ¢ > 1 and zg € X be arbitrarily chosen.
Then, there exists z; € T'(zo) such that

8y (w0, T(z0)) < qp(x0,21).
We have:
Sp(z1,T(21)) < 0,(T(20), T(w1)) < ap(xo,21) + bdy(x0, T (20))

+cd,(x1,T(21)) < (a+ bg)p(xo, x1) + cdp(z1, T (21)).
It follows that

a+b
o1, T(ar)) < T plwo, 1)

For 21 € T'(xz), there exists z2 € T'(x1) such that
5P(x1a T((L’1)) < qp(xlv xQ)'
We have:
6p(w2, T(22)) < 6,(T(21),T(22))
< ap(z1,x2) + b0,(x1,T(21)) + cbp(x2, T (22))
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< (a+bg)p(x1,22) + cbp(w2, T(22)).
It follows that

a+b
p(w2, T(a2)) < T pler, a2)
a+ bg a+ bq 2
< 7 %@, T(21)) < ( e ) p(zo, 1)

We construct inductively the sequence (x,, ),y With the properties:
(@) p, € T(xp—1), n € N¥;
(3) s 2r10) < 8o 7o) <

b
Denote by « := a1+ 7

a + bq
1-c

>np(:v0,x1).

We prove now that (z,,) is a Cauchy sequence with respect to p.
We have:

P(Tns Trgp) < p(Tn, Tny1) + p(Tni1; Tag2) + -+ p(Tngp—1, Tnip)
<

(@™ + o™ 4 o™ (g, ).

It follows
p(Tn, xn+p) <a"(l+a+---+ ap—l)p(xo, 1)
nof —1
= a" ——=p(zo, 21).

1—a—
If we choose ¢ < #, then we have that oo < 1. Hence, p(zn, Zntp) —
0, n — oo and thus (z,,),en is Cauchy sequence in (X, p).
From (ii) we get that there exists ¢ > 0 such that
d(@n, Tntp) < cp(Tn, Tnip)-
Hence, we get (z,,)nen is a Cauchy sequence in (X, d).
By the completeness of the space (X, d), it follows that there exists z* € X
such that x,, S x*, n — oc.
We prove now that z* € (SF)r. We have:
6p(@, T(x")) < p(*, 70n) + 6p(@n, T(w0)) + 6,(T (20), T(z"))
< p(x*,w0) + 0p(Tn, T(20)) + ap(wn, %) + bp(2n, T(2n)) + cbp(x*, T(z"))
We have:
1 1+
5p(a T (")) < (" n) + Ty (o, T(a)) = 0, @5 7= oo,
— C — C
Notice that, in the above relation, we have used the fact that §,(z,, T (z,)) <
a™p(xo, x1).
Hence, §,(z*, T'(z*)) = 0 and thus z* € (SF)r.
We will prove now the uniqueness of the strict fixed point. Suppose that
there exist z*, y* € (SF)7. Then:

6p(z™,T(2%)) =0, d,(y",T(y")) =0.
We have:
p(@",y") = 6,(T(z"),T(y")) < ap(a”,y") + bdp (2", T'(2")) + b, (y*, T (y7)).
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If p(z*,y*) > 0, then a > 1, which is contradiction with the hypothesis.

If p(x*,y*) = 0, then 2* = y* and thus (SF)p = {z*}.

(c) Let (z,,)nen be a sequence in X such that H,(x,,T(x,)) = 0asn — +oo.
We will prove that p(x,,, z*) — 0 as n — +oc0. We have:

P(Tn, %) < p(Tn, Tnt1) + p(Tng1,27) < Hp(zn, T(zn)) + ($n+17 (")) <
Ho (s ()65 (T ), (@) < Hp(, T () +ap(m, %)+ b6 (2, T () +
¢p(*, T(a*)) = (1+ b)Hy(wn, T(xn)) + ap(an, ). Thus

1+
p(xp, ") < T4’ H,(xn,T(x,)) — 0asn — +oo.

The proof is now complete. O
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