CREATIVEMATH. & INF.Online version at http://creative-mathematics.ubm.ro/17 (2008), No. 3, 339 - 345Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

Fixed point theory for nonself multivalued operators on a set with two metrics

CRISTIAN CHIFU AND GABRIELA PETRUŞEL

ABSTRACT. The purpose of this work is to present some fixed point results for multivalued operators on a set with two metrics. The data dependence and the well-posedness of the fixed point problem are also discussed.

1. INTRODUCTION

Throughout this paper, the standard notations and terminologies in nonlinear analysis (see [15], [16]) are used. For the convenience of the reader we recall some of them.

Let (X, d) be a metric space. By $\tilde{B}_d(x_0, r)$ we denote the closed ball centered in $x_0 \in X$ with radius r > 0.

We will also use the following symbols:

 $P(X) := \{Y \subset X | Y \text{ is nonempty}\}, P_{cl}(X) := \{Y \in P(X) | Y \text{ is closed}\},\$

 $P_b(X) := \{Y \in P(X) | Y \text{ is bounded } \}, P_{b,cl}(X) := P_{cl}(X) \cap P_b(X).$

Let A and B be nonempty subsets of the metric space (X,d). The gap between these sets is

$$D_d(A, B) = \inf\{d(a, b) | a \in A, b \in B\}.$$

In particular, $D_d(x_0, B) = D_d(\{x_0\}, B)$ (where $x_0 \in X$) is called the distance from the point x_0 to the set B.

The Pompeiu-Hausdorff generalized distance between the nonempty closed subsets *A* and *B* of the metric space (X, d) is defined by the following formula:

$$H_d(A,B) := \max\{\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b)\}$$

If $A, B \in P_{b,cl}(X)$, then one denote

$$\delta_d(A,B) := \sup\{d(a,b) \mid a \in A, b \in B\}.$$

The symbol $T: X \to P(Y)$ denotes a set-valued operator. We will denote by $Graph(T) := \{(x, y) \in X \times Y | y \in T(x)\}$ the graph of T. Recall that the set-valued operator is called closed if Graph(T) is a closed subset of $X \times Y$, i.e., if $x_n \subset X$ and $y_n \in T(x_n)$, for $n \in \mathbb{N}$, with $x_n \xrightarrow{d} x^*$ as $n \to \infty$ and if $y_n \xrightarrow{d} y^*$ as $n \to \infty$, then $y^* \in T(x^*)$.

Received: 28.10.2008. In revised form: 03.02.2009. Accepted: 11.05.2009.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Set with two metrics, multivalued operator, fixed point, strict fixed point, wellposed fixed point problem, generalized contraction, data dependence.

For $T : X \to P(X)$ the symbol $F_T := \{x \in X | x \in T(x)\}$ denotes the fixed point set of the set-valued operator T, while $(SF)_T := \{x \in X | \{x\} = T(x)\}$ is the strict fixed point set of T.

If (X, d) is a metric space, $T : X \to P_{cl}(X)$ is called a multivalued *a*-contraction if $a \in]0, 1[$ and $H(T(x_1), T(x_2)) \le a \cdot d(x_1, x_2)$, for each $x_1, x_2 \in X$.

In the same setting, an operator $T : X \to P_{cl}(X)$ is a multivalued weakly Picard operator (briefly MWP operator) (see [16]) if for each $x \in X$ and each $y \in T(x)$ there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in X such that:

i) $x_0 = x, x_1 = y$

ii) $x_{n+1} \in T(x_n)$, for all $n \in \mathbb{N}$

iii) the sequence $(x_n)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of *T*.

A sequence $(x_n)_{n \in \mathbb{N}}$ in X satisfying the condition (ii) from the previous definition is called the sequence of successive approximations of T starting from $x_0 \in X$.

The purpose of this paper is to present a fixed point theory for multivalued nonself contractions defined on a ball in a space endowed with two metric structures. Our results extend some previous theorems given by A. Petruşel and I.A. Rus in [7], as well as, some other results in the literature, see [1], [2], [4], [6], [14].

2. MAIN RESULTS

Our first theorem is a fixed point result for multivalued nonself contractions on a set with two metrics.

Theorem 2.1. Let X be a nonempty set, d and ρ two metrics on X, $x_0 \in X$, r > 0 and $T : \tilde{B}_{\rho}(x_0, r) \to P(X)$ be a multivalued operator.

We suppose that: (i) (X, d) is a complete metric space; (ii) there exists c > 0 such that $d(x, y) \le c\rho(x, y)$ for each $x, y \in \tilde{B}_{\rho}(x_0, r)$; (iii) $T : (\tilde{B}_{\rho}(x_0, r), d) \to (P(X), H_d)$ is closed; (iv) there exists $\alpha \in [0, 1[$ such that $H_{\rho}(T(x), T(y)) \le \alpha\rho(x, y)$ for each $x, y \in \tilde{B}_{\rho}(x_0, r)$

(v) $D_{\rho}(x_0, T(x_0)) < (1 - \alpha)r$. Then: (a) $F_T \neq \emptyset$; (b) there exists a sequence $(x_n)_{n \in \mathbb{N}^*} \subset \tilde{B}_{\rho}(x_0, r)$ such that: (1) $x_{n+1} \in T(x_n), \quad n \in \mathbb{N}$; (2) $x_n \stackrel{d}{\to} x^* \in T(x^*)$ as $n \to \infty$.

Proof. Let $x_0 \in X$. From (v) we have that there exists $x_1 \in T(x_0)$ with $\rho(x_0, x_1) < (1 - \alpha)r \leq r$. From (iv) we have that:

$$H_{\rho}(T(x_0), T(x_1)) \le \alpha \rho(x_0, x_1) < \alpha (1 - \alpha)r$$

On the other hand, it is known that, if $A, B \in P_{cl}(X)$ and $\epsilon > 0$, then:

 $H(A, B) < \epsilon$ implies that, for all $a \in A$, there exists $b \in B$ such that $\rho(a, b) < \epsilon$ (*) From (*) we have that there exists $x_2 \in T(x_1)$ such that $\rho(x_1, x_2) < \alpha(1 - \alpha)r$.

We have

$$\rho(x_0, x_2) \le \rho(x_0, x_1) + \rho(x_1, x_2)$$
$$< (1 - \alpha)r + \alpha(1 - \alpha)r$$
$$= (1 - \alpha^2)r \le r$$

hence $x_2 \in \tilde{B}_{\rho}(x_0, r)$.

Inductively we can construct a sequence $(x_n)_{n \in \mathbb{N}} \subset \tilde{B}_{\rho}(x_0, r)$ having the properties:

$$(\alpha) x_{n+1} \in T(x_n), \ n \in \mathbb{N};$$

 $(\beta) \ \rho(x_n, x_{n+1}) < \alpha^n (1 - \alpha) r, \ n \in \mathbb{N}.$

We will prove now that the sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy with respect to ρ . We successively have:

$$\rho(x_n, x_{n+p}) \le \rho(x_n, x_{n+1}) + \rho(x_{n+1}, x_{n+2}) + \dots + \rho(x_{n+p-1}, x_{n+p})$$

$$< \alpha^n (1 - \alpha)r + \alpha^{n+1} (1 - \alpha)r + \dots + \alpha^{n+p-1} (1 - \alpha)r$$

$$\le \alpha^n (1 - \alpha)r (1 + \alpha + \dots + \alpha^{n+p-1} + \dots)$$

$$< \alpha^n (1 - \alpha)r \cdot \frac{1}{1 - \alpha} = \alpha^n r.$$

Letting $n \to \infty$, since $\alpha^n \to 0$, it follows that:

$$\rho(x_n, x_{n+p}) \to 0 \text{ as } n \to \infty.$$

Hence $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, ρ)

From (ii) it follows that the sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy in (X, d). Denote by $x^* \in X$ the limit of this sequence. From (i) and (iii) we get that $x_n \stackrel{d}{\to} x^* \in T(x^*)$ as $n \to \infty$. The proof is complete.

Let us present now the notion of well-posedness for a fixed point problem.

Definition 2.1. (A. Petruşel and I. A. Rus [8]) Let (X, d) be a metric space, $Y \in P(X)$ and $T : Y \to P_{cl}(X)$ be a multivalued operator. Then the fixed point problem for T with respect to D_d is well-posed iff:

 $(a_1) F_T = \{x^*\};$ (b_1) If $x_n \in Y$, $n \in \mathbb{N}$ and $D_d(x_n, T(x_n)) \to 0$ as $n \to +\infty$, then $x_n \to x^*$ as $n \to +\infty$.

Definition 2.2. (A. Petruşel and I. A. Rus [8]) Let (X, d) be a metric space, $Y \in P(X)$ and $T : Y \to P_{cl}(X)$ be a multivalued operator. Then the fixed point problem for T with respect to H_d is well-posed iff:

$$(a_2) (SF)_T = \{x^*\};$$

(b₂) If $x_n \in Y$, $n \in \mathbb{N}$ and $H_d(x_n, T(x_n)) \to 0$ as $n \to +\infty$, then $x_n \to x^*$ as $n \to +\infty$.

For other details and results on this topic see A. Petruşel, I. A. Rus and J.-C. Yao [9].

Next, we will prove a strict fixed point theorem for a multivalued nonself contraction. **Theorem 2.2.** Let X be a nonempty set, d and ρ two metrics on X, $x_0 \in X, r > 0$ and $T: \tilde{B}_{\rho}(x_0, r) \to P(X)$ be a multivalued operator. We suppose that: (i) (X, d) is a complete metric space; (ii) there exists c > 0 such that $d(x, y) \leq c\rho(x, y)$, for each $x, y \in \tilde{B}_{\rho}(x_0, r)$; (iii) $T: (\tilde{B}_{\rho}(x_0, r), d) \to (P(X), H_d)$ is closed; (iv) there exists $\alpha \in [0, 1[$ such that $H_{\rho}(T(x), T(y)) \leq \alpha\rho(x, y)$, for each $x, y \in \tilde{B}_{\rho}(x_0, r)$; (v) $D_{\rho}(x_0, T(x_0)) < (1 - \alpha)r$; (vi) $(SF)_T \neq \emptyset$. Then we have: (a) $F_T = (SF)_T = \{x^*\}$; (b) $\rho(x, x^*) \leq \frac{1}{1 - \alpha} H_{\rho}(x, T(x))$ for each $x \in \tilde{B}_{\rho}(x_0, r)$; (c) the fixed point problem is well-posed for T with respect to D_{ρ} . Proof (a) From Theorem 1 it results $E_T \neq \emptyset$. From (vi) we have that there exists

Proof. (a) From Theorem 1 it results $F_T \neq \emptyset$. From (vi) we have that there exists $x^* \in (SF)_T$. It is obvious that $(SF)_T \subset F_T$. We will prove that $F_T \subset (SF)_T$. Let $y \in F_T$. We will prove that $y = x^*$.

By putting $x := x^*$ in (iv) we have

$$H_{\rho}(T(x^*), T(y)) \le \alpha \rho(x^*, y).$$

We have that:

$$\rho(x^*, y) = D_{\rho}(T(x^*), y) \le H_{\rho}(T(x^*), T(y)) \le \alpha \rho(x^*, y).$$

Thus, $y = x^*$ and so $F_T = (SF)_T = \{x^*\}.$

(b) We successively have:

$$\rho(x, x^*) \le H_{\rho}(x, T(x)) + H_{\rho}(T(x), T(x^*)) \\
\le H_{\rho}(x, T(x)) + \alpha \rho(x, x^*).$$

Hence

$$\rho(x, x^*) \le \frac{1}{1-\alpha} H_\rho(x, T(x)).$$

(c) Let $x_n \in B_{\rho}(x_0, r)$, $n \in \mathbb{N}$ be such that $D_{\rho}(x_n, T(x_n)) \to 0$ as $n \to +\infty$. We will prove that $\rho(x_n, x^*) \to 0$ as $n \to +\infty$. We have:

 $\rho(x_n, x^*) \leq D_{\rho}(x_n, T(x_n)) + H_{\rho}(T(x_n), T(x^*)) \leq D_{\rho}(x_n, T(x_n)) + \alpha \rho(x_n, x^*).$ Thus, $\rho(x_n, x^*) \leq \frac{1}{1-\alpha} D_{\rho}(x_n, T(x_n)) \to 0$ as $n \to +\infty$. The proof is complete.

A data dependence result is the following theorem.

Theorem 2.3. Let X be a nonempty set, d and ρ two metrics on X and T, S : $\tilde{B}_{\rho}(x_0, r) \rightarrow P(X)$ be two multivalued operators. We suppose that:

(i) (X, d) is a complete metric space; (ii) there exists c > 0 such that $d(x, y) \le c\rho(x, y)$, for each $x, y \in \tilde{B}_{\rho}(x_0, r)$; (iii) $T : (\tilde{B}_{\rho}(x_0, r), d) \to (P(X), H_d)$ is closed; (iv) there exists $\alpha \in [0, 1[$ such that $H_{\rho}(T(x), T(y)) \le \alpha\rho(x, y)$, for each $x, y \in \tilde{B}_{\rho}(x_0, r)$; (v) $D_{\rho}(x_0, T(x_0)) < (1 - \alpha)r$;

Fixed points theory for nonself multivalued operators on a set with two metrics

(vi) $(SF)_T \neq \emptyset$; (vii) $F_S \neq \emptyset$; (viii) there exists $\eta > 0$ such that $H_{\rho}(T(x), S(x)) \leq \eta$, for each $x \in \tilde{B}_{\rho}(x_0, r)$. Then $H_{\rho}(F_T, F_S) \leq \frac{\eta}{1-\alpha}$.

Proof. By Theorem 2 we have $F_T = (SF)_T = \{x^*\}$. Let $y^* \in F_S$. Then: $\rho(y^*, x^*) \leq H_{\rho}(S(y^*), x^*) \leq H_{\rho}(S(y^*), T(y^*)) + H_{\rho}(T(y^*), T(x^*)) \leq \eta + \eta$ $\alpha \rho(y^*, x^*)$. Hence:

$$\rho(y^*, x^*) \le \frac{\eta}{1 - \alpha}.$$

Hence $H_{\rho}(F_T, F_S) = \sup_{y^* \in F_S} \rho(y^*, x^*) \leq \frac{\eta}{1 - \alpha}$. The proof is complete.

We will present now a strict fixed point theorem for the so-called Reich δ contractions. on a set endowed with two metrics.

Theorem 2.4. Let $X \neq \emptyset$ be a nonempty set and d, ρ two metrics on X. Let $T : X \rightarrow \emptyset$ $P_b(X)$ be a multivalued operator.

We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists c > 0 such that $d(x, y) \le c\rho(x, y)$, for all $x, y \in X$;

(iii) there exist $a, b, c \in \mathbb{R}_+$ with a + b + c < 1 such that -

$$\delta_{\rho}(T(x), T(y)) \le a\rho(x, y) + b\delta_{\rho}(x, T(x)) + c\delta_{\rho}(y, T(y)), \text{ for all } x, y \in X$$

Then:

(a) $(SF)_T = \{x^*\};$ (b) for each $x \in X$ there exists $(x_n)_{n \in \mathbb{N}}$ such that: $(b_1) x_0 = x, x_1 = y;$ $(b_2) x_{n+1} \in T(x_n), n \in \mathbb{N};$ $(b_3) x_n \xrightarrow{d} x^* \in (SF)_T, n \to \infty.$

(c) the fixed point problem is well-posed for T with respect to H_{ρ} .

Proof. (a) and (b) Let q > 1 and $x_0 \in X$ be arbitrarily chosen. Then, there exists $x_1 \in T(x_0)$ such that

$$\delta_{\rho}(x_0, T(x_0)) \le q\rho(x_0, x_1)$$

We have:

$$\delta_{\rho}(x_1, T(x_1)) \leq \delta_{\rho}(T(x_0), T(x_1)) \leq a\rho(x_0, x_1) + b\delta_{\rho}(x_0, T(x_0)) + c\delta_{\rho}(x_1, T(x_1)) \leq (a + bq)\rho(x_0, x_1) + c\delta_{\rho}(x_1, T(x_1)).$$

It follows that

$$\delta_{\rho}(x_1, T(x_1)) \le \frac{a+bq}{1-c}\rho(x_0, x_1)$$

For $x_1 \in T(x_0)$, there exists $x_2 \in T(x_1)$ such that

$$\delta_{\rho}(x_1, T(x_1)) \le q\rho(x_1, x_2).$$

We have:

$$\delta_{\rho}(x_2, T(x_2)) \le \delta_{\rho}(T(x_1), T(x_2))$$

$$\le a\rho(x_1, x_2) + b\delta_{\rho}(x_1, T(x_1)) + c\delta_{\rho}(x_2, T(x_2))$$

 $\leq (a+bq)\rho(x_1, x_2) + c\delta_{\rho}(x_2, T(x_2)).$

It follows that

$$\delta_{\rho}(x_2, T(x_2)) \leq \frac{a+bq}{1-c}\rho(x_1, x_2)$$
$$\leq \frac{a+bq}{1-c}\delta_{\rho}(x_1, T(x_1)) \leq \left(\frac{a+bq}{1-c}\right)^2\rho(x_0, x_1).$$

We construct inductively the sequence $(x_n)_{n \in \mathbb{N}}$ with the properties: $(\alpha) x_n \in T(x_{n-1}), \ n \in \mathbb{N}^*;$, - \ n

$$(\beta) \ \rho(x_n, x_{n+1}) \le \delta_{\rho}(x_n, T(x_n)) \le \left(\frac{a+bq}{1-c}\right)^n \rho(x_0, x_1)$$

Denote by $\alpha := \frac{a + bq}{1 - c}$. We prove now that (x_n) is a Cauchy sequence with respect to ρ . We have:

$$\rho(x_n, x_{n+p}) \le \rho(x_n, x_{n+1}) + \rho(x_{n+1}, x_{n+2}) + \dots + \rho(x_{n+p-1}, x_{n+p})$$

$$\le (\alpha^n + \alpha^{n+1} + \dots + \alpha^{n+p-1})\rho(x_0, x_1).$$

It follows

$$\rho(x_n, x_{n+p}) \le \alpha^n (1 + \alpha + \dots + \alpha^{p-1}) \rho(x_0, x_1)$$
$$= \alpha^n \frac{\alpha^p - 1}{\alpha - 1} \rho(x_0, x_1).$$

If we choose $q < \frac{1-a-c}{b}$, then we have that $\alpha < 1$. Hence, $\rho(x_n, x_{n+p}) \rightarrow$ $0, n \to \infty$ and thus $(x_n)_{n \in \mathbb{N}}$ is Cauchy sequence in (X, ρ) .

From (ii) we get that there exists c > 0 such that

$$d(x_n, x_{n+p}) \le c\rho(x_n, x_{n+p}).$$

Hence, we get $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d).

By the completeness of the space (X, d), it follows that there exists $x^* \in X$ such that $x_n \stackrel{d}{\rightarrow} x^*, \ n \rightarrow \infty$.

We prove now that $x^* \in (SF)_T$. We have:

$$\delta_{\rho}(x^*, T(x^*)) \le \rho(x^*, x_n) + \delta_{\rho}(x_n, T(x_n)) + \delta_{\rho}(T(x_n), T(x^*))$$

$$\leq \rho(x^*, x_n) + \delta_{\rho}(x_n, T(x_n)) + a\rho(x_n, x^*) + b\rho(x_n, T(x_n)) + c\delta_{\rho}(x^*, T(x^*))$$

We have:

$$\delta_{\rho}(x^{*}, T(x^{*})) \leq \frac{1+a}{1-c}\rho(x^{*}, x_{n}) + \frac{1+b}{1-c}\delta_{\rho}(x_{n}, T(x_{n})) \to 0, \text{ as } n \to \infty.$$

Notice that, in the above relation, we have used the fact that $\delta_{\rho}(x_n, T(x_n)) \leq$ $\alpha^n \rho(x_0, x_1).$

Hence, $\delta_{\rho}(x^*, T(x^*)) = 0$ and thus $x^* \in (SF)_T$.

We will prove now the uniqueness of the strict fixed point. Suppose that there exist $x^*, y^* \in (SF)_T$. Then:

$$\delta_{\rho}(x^*, T(x^*)) = 0, \quad \delta_{\rho}(y^*, T(y^*)) = 0$$

We have:

$$\rho(x^*, y^*) = \delta_{\rho}(T(x^*), T(y^*)) \le a\rho(x^*, y^*) + b\delta_{\rho}(x^*, T(x^*)) + c\delta_{\rho}(y^*, T(y^*)).$$

If $\rho(x^*, y^*) > 0$, then $a \ge 1$, which is contradiction with the hypothesis. If $\rho(x^*, y^*) = 0$, then $x^* = y^*$ and thus $(SF)_T = \{x^*\}$.

(c) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in X such that $H_{\rho}(x_n, T(x_n)) \to 0$ as $n \to +\infty$. We will prove that $\rho(x_n, x^*) \to 0$ as $n \to +\infty$. We have:

 $\begin{array}{l} \rho(x_n,x^*) \leq \rho(x_n,x_{n+1}) + \rho(x_{n+1},x^*) \leq H_{\rho}(x_n,T(x_n)) + \rho(x_{n+1},T(x^*)) \leq H_{\rho}(x_n,T(x_n)) + \delta_{\rho}(T(x_n),T(x^*)) \leq H_{\rho}(x_n,T(x_n)) + a\rho(x_n,x^*) + b\delta_{\rho}(x_n,T(x_n)) + c\delta_{\rho}(x^*,T(x^*)) = (1+b)H_{\rho}(x_n,T(x_n)) + a\rho(x_n,x^*). \end{array}$

$$\rho(x_n, x^*) \le \frac{1+b}{1-a} \cdot H_{\rho}(x_n, T(x_n)) \to 0 \text{ as } n \to +\infty.$$

The proof is now complete.

References

- Agarwal, R.P., Dshalalow, J.H. and O'Regan, D., Fixed point and homotopy results for generalized contractive maps of Reich type, Appl. Anal., 82 (2003), 329-350
- [2] Covitz, H. and Nadler S.B. Jr., Multi-valued contraction mapping in generalized metric spaces, Israel J. Math., 8 (1970), 5-11
- [3] Frigon, M. and Granas, A., Résultats du type de Leray-Schauder pour les contractions multivoques, Topol. Math. Nonlinear Anal., 4 (1994), 197-208
- [4] Nadler S.B. Jr., *Multivalued contraction mappings*, Pacific J. Math., **30** (1969), 475-488
- [5] Petruşel, A., Generalized multivalued contractions, Nonlinear Analysis, 47 (2001), 649-659
- [6] Petruşel, A., Multivalued weakly Picard operators and applications, Scientiae Mathematicae Japonicae, 59 (2004), 169-202
- [7] Petruşel, A. and Rus, I.A., *Fixed point theory for multivalued operators on a set with two metrics*, Fixed Point Theory, **8** (2007), 97-104
- [8] Petruşel, A. and Rus, I.A., Well-posedness of the fixed point problem for multivalued operators, Applied Analysis and Differential Equations (Câriă O, Vrabie II. eds.) World Scientific 2007, 295-306
- [9] Petruşel, A., Rus, I.A. and Yao, J.C., Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math., 11 (2007), 903-914
- [10] Reich, S., Fixed points of contractive functions, Boll. U.M.I., 5 (1972), 26-42
- [11] Reich, S., A fixed point theorem for locally contractive multi-valued functions, Rev. Roum. Math. Pures et Appl., 17 (1972), 569-572
- [12] Rus, I.A., Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japonica, 20 (1975), 21-24
- [13] Rus, I.A., Generalized Contractions and Applications, Transilvania Press Cluj-Napoca, 2001
- [14] Rus, I.A., Strict fixed point theory, Fixed Point Theory, 4 (2003), 177-183
- [15] Rus, I.A., Petruşel, A. and Petruşel, G., Fixed Point Theory 1950-2000: Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002
- [16] Rus, I.A., Petruşel, A. and Sîntămărian, A., Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal., 52 (2003), 1947-1959

BABEŞ-BOLYAI UNIVERSITY DEPARTMENT OF BUSINESS HOREA STREET NO. 7 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: cristian.chifu@tbs.ubbcluj.ro *E-mail address*: gabi.petrusel@tbs.ubbcluj.ro