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ABSTRACT. The distributed collaborative evolutionary model analyzed in this paper is character-
ized by structuring the population using a fitness guided topology and by assigning the individuals to
three societies characterized by different mating strategies. The membership of offsprings to societies
is decided in a probabilistic manner using a dominance probability. The influence of this dominance
probability on the dynamics of societies sizes is analyzed both empirically and theoretically. Con-
sequently, values of the dominance probability leading to particular distributions of the population
elements in societies are identified. Numerical experiments indicate a good performance of the pro-
posed model.

1. INTRODUCTION

Using structured populations in evolutionary algorithms has at least two mo-
tivations: improving the algorithm effectiveness in global, multimodal and dy-
namic optimization and designing efficient implementations based on parallel
and/or distributed environments [1].

The model analyzed in this paper is characterized through a particular topol-
ogy and a mating strategy inspired by the communication processes typical to
systems consisting of multiple agents [10]. The particularity of the topology con-
sists in distributing the elements of the population in several layers based on their
current fitness. The interaction between elements is based not only on the neigh-
borhood structure defined by layers but also on the distribution of the elements
in three different subpopulations characterized by different mating strategies.

A first empirical analysis of the behavior of this distributed model which com-
bines a geometrical fitness guided topology with the existence of societies having
different interaction strategies was conducted in [3].

The aim of this paper is to analyze in more depth the dynamics of the societies,
especially with respect to the value of the dominance probability. The analysis
reveals that societies of individuals form a complex system characterized by an
emergent pattern of behavior and a phase transition interval.

Numerical experiments prove the efficiency of the proposed technique, by
comparing it with the results obtained by recent evolutionary algorithms for sev-
eral difficult unimodal and multimodal real-valued functions.

Received: 02.11.2008. In revised form: 05.05.2009. Accepted: 11.05.2009.
2000 Mathematics Subject Classification. 68T20, 68Q25.
Key words and phrases. Collaborative evolutionary algorithms, population topology, asynchronous

search.

346



Complex dynamics in a collaborative evolutionary search model 347

2. THE DISTRIBUTED COLLABORATIVE EVOLUTIONARY ALGORITHM

The distributed evolutionary model analyzed in this paper is characterized by
combining two models of structuring the population. On one hand, the popula-
tion is spatially structured based on a fitness guided topology and on the other
hand the population is explicitly divided in three subpopulations having specific
collaborative properties. Both methods of structuring the population interfere
with the process of selecting mates for recombination and therefore have an in-
fluence on the population dynamics.

The main idea of the fitness guided topology is to sort the population with
respect to the elements fitness and to distribute the elements in several layers
such that elements which have similar values of the fitness are in the same or in
neighboring layers while elements which are different with respect to their fitness
are usually placed on distant layers.

This topology is used both to decide the order in which the population ele-
ments are transformed by applying the evolutionary operators and to restrict the
choice of the recombination mates. The restricted mating strategy is related with
the existence of three subpopulations, called societies, which are different with re-
spect to the way their elements select and/or accept elements for recombination.
The particularities of these societies are described in the following.

• Local Interaction Agent (LIA) society. The elements of this society select
mates for recombination from their 1-order neighborhood.

• Far Interaction Agent (FIA) society. The elements from this society select
mates for recombination outside their 1-order neighborhood.

• Global Interaction Agent (GIA) society. The GIA elements can select mates
for recombination on a global basis from the entire population.

Besides these mating restrictions related with the fitness guided topology there
can be introduced restrictions related also to the societies. This means that el-
ements belonging to one society accepts as mates only elements belonging to
some prespecified societies and the generated offspring will be assigned to the
society corresponding to one of its parents, that which is considered to be dom-
inant. Different variants can be considered here, but we restricted our analy-
sis to the following cases: the elements in LIA (FIA) societies select mates from
LIA(FIA) or from GIA society and GIA elements select mates from the entire pop-
ulation (global collaboration); the elements in LIA (FIA) societies select mates
from LIA(FIA) or from GIA society, while GIA elements select mates only from
the GIA elements (local collaboration).

If both parents belong to the same society the offspring will be assigned to the
same society. On the other hand, if a parent belongs to LIA (or FIA) society and
the other parent belongs to the GIA society then the offspring will belong to LIA
(or FIA) society with probability p and to the GIA society with probability 1 − p.
This means that the dominance relationship between societies is determined in
a probabilistic manner, based on the dominance probability, p. This dominance
probability may be viewed as the (probabilistic) membership degree of an off-
spring to the society LIA (FIA) when one of the parents is a GIA individual. Dif-
ferent values of the dominance probability can lead to different dynamics of the
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societies in the population and its influence on the search process is empirically
and theoretically analyzed in Sections 3 and 4.

3. EMPIRICAL ANALYSIS: INFLUENCE OF DOMINANCE PROBABILITY ON THE
SOCIETIES DYNAMICS

The aim of the empirical analysis is twofold: (i) to analyze the influence of the
dominance probability on the dynamics of societies; (ii) to analyze the combined
effect on the solutions quality of the fitness guided topology and of the restricted
mating based on societies. The analysis is conducted for four variants obtained
by combining the collaboration variants between societies mentioned in the pre-
vious section (global and local collaboration) with two topologies: an ordered one
(the fitness guided topology) and an unordered one (the population elements are
arbitrarily distributed in layers). The obtained variants are denoted as follows:
OG (ordered topology combined with global collaboration), OL (ordered topol-
ogy combined with local collaboration), UG (unordered topology combined with
global collaboration) and UL (unordered topology combined with local collabo-
ration).

For all these variants the underlying evolutionary algorithm is characterized
by a population consisting of 64 individuals, convex recombination, a mutation
based on additive normal perturbation and a selection of mates based on a tour-
nament of size equal to half of the considered group size.

Since the aim of the empirical analysis is to study the societies dynamics rather
than to assess the effectiveness of the evolutionary algorithms in solving opti-
mization problems we limited the results reported here to three classical test func-
tions: shifted Ackley (denoted in the following as f1), shifted Griewank (f2) and
shifted Rastrigin (f3) and a small number of functions evaluations.

In order to study the dynamics of societies let us introduce the notion of so-
ciety diameter, d(S) = card(S)/card(P ) which measures the proportion of ele-
ments from the population P which belongs to the society S. Initially the ele-
ments are uniformly distributed to societies, thus their initial sizes are equal and
dL(0) = dF (0) = dG(0) = 1/3. The evolution of the society size is studied against
the dominance probability, p, for all four variants described in the beginning of
the section. Figure 1 illustrates the dependence between the societies diameters
after T � 10000/64 evolution epochs and p for test function f1. The graph in Fig-
ure 1 corresponds to the average of societies diameters, estimated in 10 indepen-
dent runs, while the error bars illustrate the corresponding standard deviations.
Similar results have been obtained for test function f2.

In the case of the OG variant, for small values of p the GIA society manages
to quickly dominate the system (all members of the population fall in this soci-
ety). This is an interesting percolation phenomenon indicating that a society takes
global control over the entire population. In the case of the UG variant the GIA
society does not take global control. Nevertheless, the vast majority of the indi-
viduals fall in this society for small values of the dominance probability. For large
values of p in both cases the LIA and FIA societies become dominant. Thus for
the variants based on global collaboration a transition region of the system can
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FIGURE 1. Empirical dependence between dL(T ) (circles),
dF (T ) (triangles), dG(T ) (squares) and the dominance probabil-
ity. Test function: shifted Ackley

be detected. This region roughly corresponds to the interval [0.35, 0.65] indicating
the presence of a phenomenon similar to a phase transition.

For the other two variants, namely OL and UL, the dynamics of the three sub-
populations does not reveal a similar transition interval for the dominance prob-
ability. In these cases, for almost all values of p, unless those close to 1, the GIA
society is dominant. When p is close to one all societies have almost the same
number of elements, arriving to an equilibrium.

Let us analyze now the influence of the dominance probability on the quality
of the solution. To evaluate the quality of the solution discovered by the evolu-
tionary algorithm we use the following measure:

Q(f) = exp

(
−|f(xb)− f(x∗)

f(x∗)
|
)
,

where x∗ is the true optimum, xb is the best element in the population obtained
at the end of the evolutionary process and f is the objective function (for all test
functions f(x∗) �= 0). As Q is closer to 0 as the estimated solution is worse and
as it is closer to 1 the estimated solution is better. Figure 2 presents the de-
pendence between Q and p for the first test function and for all four variants
(OG,OL,UG,UL). As the graphs illustrate there is a significant difference between
the behavior of the variants based on fitness guided topology and those based on
unordered topologies. On the other hand p seems to have almost no influence
on the solution quality except for the OG variant for which a slight improvement
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FIGURE 2. Influence of the dominance probability on the quality
of solutions. Variants: OG - circles, OL - triangles, UG - squares,
UL - stars

can be observed for values of p inside the transition region previously detected.
A closer look to the results obtained for all three test functions (Table 1) suggest
that there is a slight improvement for values of p larger than 0.4.

TABLE 1. Influence of the dominance probability, p, on the solu-
tion quality, Q, in the case of OG variant (all test functions)

p Q (f1) Q (f2) Q (f3)
0 0.952 0.986 0.876

±5 · 10−5 ±5 · 10−6 ±3 · 10−4

0.1 0.955 0.983 0.876
±3 · 10−5 ±4 · 10−6 ±5 · 10−4

0.2 0.957 0.984 0.872
±2 · 10−5 ±7 · 10−6 ±5 · 10−4

0.3 0.954 0.986 0.872
±3 · 10−5 ±5 · 10−6 ±3 · 10−4

0.4 0.952 0.985 0.890
±2 · 10−5 ±6 · 10−6 ±7 · 10−4

0.5 0.961 0.989 0.901
±2 · 10−5 ±1 · 10−5 ±3 · 10−4

0.6 0.964 0.988 0.913
±2 · 10−5 ±1 · 10−5 ±3 · 10−4

0.7 0.964 0.987 0.899
±3 · 10−5 ±6 · 10−6 ±3 · 10−4

0.8 0.960 0.984 0.904
±8 · 10−5 ±1 · 10−5 ±1 · 10−3

0.9 0.958 0.986 0.899
±4 · 10−5 ±1 · 10−5 ±3 · 10−4

1 0.957 0.985 0.886
±2 · 10−5 ±2 · 10−5 ±7 · 10−4
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4. THEORETICAL ANALYSIS: A SIMPLE PROBABILISTIC MODEL FOR THE
SOCIETIES DYNAMICS

The aim of this section is to show that the societies dynamics empirically an-
alyzed in the previous section can be modelled by a rather simple probabilistic
model which describes the dependence between the proportion of elements in
each society after a given number of generations and the dominance probability,
p. The notion of generation is used here to denote m offspring construction steps,
m being the population size. Despite the fact that the evolutionary process de-
scribed in the previous sections is an asynchronous one, the probabilistic model
is constructed based on the simplifying assumption that the new elements are in-
troduced in the current population only after all of them were generated. Another
simplifying assumption is that the fitness guided topology is not explicitly taken
into account and the mates selection is uniformly random over the correspond-
ing mating subpopulation. However, with all these simplifying assumptions, the
theoretical model explains most of the influence of the dominance probability on
the societies dynamics.

In order to describe the probabilistic model let us first introduce some nota-
tions. At each generation t, nL(t) denotes the average number of elements of the
local interaction society, nF (t) denotes the average number of elements of the far
interaction society while nG(t) denotes the average size of the global interaction
society. The average proportions of societies in the population are denoted by
pL(t), pF (t) and pG(t) respectively and they correspond to the societies diame-
ters from the empirical analysis. The dynamics of the societies is influenced by
the probability of an offspring to be accepted into the population. Therefore we
shall consider the following probabilities: qLG (the acceptance probability of an
offspring generated by recombining a first parent from LIA society with a mate
from the GIA society), qFG (the acceptance probability of an offspring generated
by recombining a first parent from FIA society with a mate from the GIA society),
qGL and qGF (acceptance probabilities of offsprings generated by parents from
GIA and LIA or FIA societies, respectively).

The main result of this section is the following proposition which allows to
describe the dynamics of societies.

Proposition 4.1. The average number of elements in each society satisfy the following
recurrence relations:

nL(t+ 1) =
(
1− (1− p)qLG

nG(t)
nL(t)+nG(t)

)
nL(t) + pqGLpL(t)nG(t) (4.1)

nF (t+ 1) =
(
1− (1− p)qFG

nG(t)
nF (t)+nG(t)

)
nF (t) + pqGF pF (t)nG(t) (4.2)

nG(t+ 1) = m− nL(t+ 1)− nF (t+ 1) (4.3)

where pL(t) = nL(t)/m, pF (t) = nF (t)/m and pG(t) = nG(t)/m denote the average
proportion of elements in each society.
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Proof. Since the recurrence relationships for nL and nF are similar it suffices to
prove the first one. There are two processes which influence the number of ele-
ments in LIA society. The first one corresponds to the situation when an element
from LIA is replaced with an offspring obtained by recombining a LIA with a GIA
element and which is assigned to GIA society. This process leads to a decrease of
the number of elements in LIA with (1 − p)qLGnL(t)nG(t)/(nL(t) + nG(t)). This
number is derived by taking into consideration that three independent events
occur, each one having its probability: (i) a mate is selected from the GIA society
with the probability nG(t)/(nL(t)+nG(t)); (ii) the offspring is accepted with prob-
ability qLG; (iii) the offspring is assigned to GIA society with probability (1 − p).
Thus the average number of elements in LIA which are replaced with offsprings
belonging to GIA is obtained by multiplying these three probabilities with the
current size of LIA society, nL(t).

The second process which influences the size of LIA society correspond to the
case when elements from GIA select mates from LIA and the offspring is accepted
in LIA, leading to an increase of the number of elements in LIA society. The
number of elements added to LIA is also derived based on the probabilities of
three independent events: (i) a mate for a GIA element is selected from the LIA
society with a probability equal to the proportion of elements in the LIA society,
pL(t); (ii) the offspring is accepted with the corresponding acceptance probability,
qGL; (iii) the offspring is assigned to LIA society with probability p. Therefore the
number of new elements in LIA is pqGLpL(t)nG(t). The new number of elements
in LIA, nL(t + 1), is obtained by subtracted from nL(t) the number of elements
assigned to GIA and by adding the number of new elements obtained by mating a
GIA with a LIA element. The recurrence relation for nF (t) is obtained in a similar
way, while the number of GIA elements, nG(t), is just the difference between the
population size and the number of elements in the other two societies. �

In order to analyze if this probabilistic model captures the dynamics of the so-
cieties illustrated by the empirical analysis we tried first to estimate the values of
acceptance probabilities (qLG, qFG, qGL, qGF ) which lead to a similar dependence
between the proportion of societies after a given number of generations, T , and
the dominance probability, p. As a dissimilarity measure between the empirical
and the theoretical dependence we used a simple mean squared difference:

D =
1

N

∑
p∈P

((pL(T, p)−dL(T, p))
2+(pF (T, p)−dF (T, p))

2+(pG(T, p)−dG(T, p))
2)

where P = {0, 0.05, 0.1, 0.15, . . . , 1}, N = 3card(P ), pL(T, p) (pF (T, p),
pG(T, p)) denotes the theoretical proportion of elements in LIA (FIA and GIA, re-
spectively) corresponding to generation T and dominance probability p. dL(T, p)
(dF (T, p), dG(T, p)) denotes the corresponding empirical proportions of the
societies. The acceptance probabilities were estimated by just choosing for
each variant and each test function the quadruple (qLG, qFG, qGL, qGF )∈
{0, 0.1, . . . , 0.9, 1}4 which minimizes the mean squared difference, D. The ob-
tained acceptance probabilities and the corresponding value of D are presented
in Table 2.
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By taking a look at Figure 1(a,b,c) one can see that the probabilistic model
captures the dependence between the societies proportions and the dominance
probability, despite the simplifying assumptions on which it is based. The values
in Table 2 confirm the empirical observation that for all test functions the distri-
bution of elements in societies follows similar patterns. For instance in the case of
the OG variant for all test functions the acceptance probabilities satisfy the same
relationship: 0 = qGF < qFG < qLG < qGL. This suggests that an offspring which
has at least one LIA parent has a higher chance to be accepted in the population
than an offspring obtained from FIA parents. The lowest acceptance probability
corresponds to the offsprings obtained by combining a GIA individual (as first
parent) with a FIA individual (as mate). On the other hand it is worth to be men-
tioned that the probabilistic model accurately describes both the global and the
local collaboration variants. In the case of local collaboration the estimated ac-
ceptance probabilities qGL and qGF are always 0, meaning that none offspring
obtained by combining a GIA first parent with a LIA (or FIA) mate is accepted.
This fully corresponds to the local collaboration variant which is characterized
by the fact that GIA elements select mates only from their society. Another local
collaboration strategy would be that characterized through the fact that LIA and
FIA elements chose only mates from their society but accept to be mates for ele-
ments from GIA. This situation corresponds to the case when qLG = qFG = 0 (see
Figure 3(d)).

TABLE 2. Acceptance probabilities estimated based on empirical
results

Function/ qLG qFG qGL qGF D
variant
f1/OG 0.4 0.3 0.5 0 0.0036
f1/OL 0.1 0.1 0 0 0.0128
f1/UG 0.1 0.2 0.1 0 0.0117
f1/UL 0.1 0.1 0 0 0.0089
f2/OG 0.8 0.3 1 0 0.0033
f2/OL 0 0.1 0 0 0.0223
f2/UG 0.1 0.1 0.1 0 0.0126
f2/UL 0.1 0.1 0 0 0.0060
f3/OG 0.4 0.3 0.5 0 0.0049
f3/OL 0.1 0.1 0 0 0.0177
f3/UG 0.1 0.1 0.1 0 0.0112
f3/UL 0.1 0.1 0 0 0.0075

5. NUMERICAL EXPERIMENTS

The OG instance of the proposed model (OGA) is engaged in set of numerical
experiments and compared to some of the most recently proposed evolutionary
algorithms that can be found in the literature. In order to show the generality of
the method, numerical experiments are performed on a different set of unimodal
and multimodal benchmark functions [8, 9]: h1 - Shifted Sphere Function, h2 -
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FIGURE 3. Theoretical dependence between the proportion of
societies and the dominance probability for different values of
the acceptance probabilities: (a):qLG = 0.4,qFG = 0.3,qGL =
0.5,qGF = 0; (b):qLG = 0.1,qFG = 0.2,qGL = 0.1,qGF = 0;
(c):qLG = 0.1,qFG = 0.1,qGL = 0,qGF = 0; (d):qLG = 0,qFG =
0,qGL = 0.1,qGF = 0.1

Shifted Rosenbrocks Function, h3 - Shifted Rotated Ackleys Function with Global
Optimum on Bounds, h4 - Shifted Rastrigins Function, h5 - Shifted Rotated Rast-
rigins Function, h6 - Shifted Rotated Weierstrass Function.

The proposed algorithm uses the following parameters: a population consists
of 8*8 (64) individuals, the mutation probability is 0.2, the tournament size is of
the considered group of individuals. Convex recombination is used.

The OG model has been compared to the following five evolutionary algo-
rithms: Real-Coded Genetic Algorithm (RCGA) [4], Guided Differential Evolu-
tion Algorithm (GDEA) [2], Estimation of Distribution Algorithm (EDA) [11],
Self-adaptive Differential Evolution Algorithm (SaDEA) [7] and Evolutionary
Strategy Algorithm (ESA) [6].

The error values h(x) − h(x∗) where x∗ is the real optimum, are presented
in Table 3. Each column corresponds to a method used for comparison. The
best and the average error values have been recorded after 1E+3 function eval-
uations (FEs), after 25 runs of each algorithm for each function with dimension
D = 10. The obtained standard deviations are also presented in these tables. Nu-
merical results indicate a competitive performance of the OG algorithm. A better
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TABLE 3. Error values achieved in 25 runs for functions h1 − h6

with D = 10 after 1E+3 FEs

OGA RCGA GDEA EDA SaDEA ESA
h1 Best 7.26E+02 1.55E+04 7.81E+02 2.90E+03 8.14E+02 1.74E+03

Mean 1.74E+03 4.03E+03 4.14E+03 5.72E+03 1.98E+03 4.63E+03
Avg 7.27E+02 1.20E+03 1.57E+03 1.63E+03 6.51E+02 2.35E+03

h2 Best 4.40E+06 7.89E+07 3.61E+07 4.52E+07 1.71E+07 3.81E+07
Mean 8.25E+07 2.70E+08 2.28E+08 3.90E+08 5.63E+07 5.21E+08
Avg 7.55E+07 1.28E+08 1.41E+08 2.78E+08 3.45E+07 3.23E+08

h3 Best 2.042E+01 2.03E+01 2.05E+01 2.043E+01 2.04E+01 2.03E+01
Mean 2.07E+01 2.069E+01 2.069E+01 2.07E+01 2.07E+01 2.06E+01
Avg 1.33E-01 1.76E-01 1.24E-01 1.09E-01 1.70E-01 1.43E-01

h4 Best 1.64E+01 5.43E+01 5.18E+01 5.70E+01 3.69E+01 4.08E+01
Mean 3.28E+01 7.17E+01 6.93E+01 8.20E+01 5.44E+01 7.08E+01
Avg 1.12E+01 9.36E+00 7.70E+00 9.96E+00 7.58E+00 1.63E+01

h5 Best 2.81E+01 6.24E+01 7.74E+01 8.03E+01 4.52E+01 5.80E+01
Mean 5.67E+01 8.99E+01 9.41E+01 1.01E+02 7.58E+01 9.37E+01
Avg 1.34E+01 1.02E+01 9.02E+00 9.49E+00 1.17E+01 2.08E+01

h6 Best 6.30E+00 9.97E+00 9.71E+00 9.24E+00 8.94E+00 8.13E+00
Mean 9.28E+00 1.15E+01 1.14E+01 1.19E+01 1.14E+01 1.13E+01
Avg 1.23E+00 6.42E-01 8.22E-01 8.18E-01 9.54E-01 1.20E+00

TABLE 4. Statistical analysis for all considered algorithms on the
average results obtained in 25 runs for the functions h1−h6 with
D = 10, after 1E+3 FEs.

OGA RCGA GDEA EDA SaDEA ESA
euf 398.13 392.95 394.25 388.61 398.75 382.33
rank 2 4 3 5 1 6

solution is reported by OGA in roughly 90% of the considered cases. Further-
more, the best performance of the proposed OGA is obtained for difficult highly
multimodal functions. For these functions OGA clearly outperforms most rival
methods considered. Results obtained after 1E+4 FEs indicates a slightly weaker
performance of the algorithm, which indicate that the proposed algorithm is able
to perform an efficient search especially in the first stages of the algorithm. A
mechanism for fine tuning and improving local search will be investigated as fu-
ture work. A statistical analysis is performed using the expected utility approach
[5] to determine the most accurate algorithm. The results of the statistical analy-
sis test are presented in Table 4. The proposed OG algorithm obtains Rank 2 after
1E+3 FEs, being surpassed only by SaDEA.

6. CONCLUSIONS

Despite the simplifying assumptions used in developing the probabilistic
model it captures rather accurately the dependence between the sizes of the dif-
ferent societies and the dominance probability. Both the empirical and the theo-
retical analysis reveal the existence of a range of values for the dominance proba-
bility which correspond to changes in the distribution of elements in the societies
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and in the same time lead to slight improvements in the ability of the algorithm
to identify the global optimum. On the other hand the obtained results suggest
that the fitness guided topology does not influence the dynamics of the societies
sizes. However it has a significant impact on the effectiveness of the evolution-
ary algorithm, leading to significantly better results than the variant based on a
topology which does not take into account the fitness of elements, at least in the
first stages of the evolution.

The performance of the obtained algorithm has been tested against several
existing methods for optimizing difficult unimodal and multimodal functions.
The obtained results are an indicator of the proposed algorithm efficiency.
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