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Some applications of the fixed-point theory in
economics

RODICA-MIHAELA DĂNEŢ AND MARIAN-VALENTIN POPESCU

ABSTRACT. In this paper, firstly we prove some fixed-point results and then we apply these results
in economics, giving two general equilibrium theorems. These theorems give sufficient conditions for
the existence of an equilibrium point (and a maximal element) for a generalized abstract economy
(respectively for a qualitative game).

1. INTRODUCTION

Many results concerning the fixed-point theory can be applied in the equilib-
rium theory, giving, for example, the existence of a solution for the equilibrium
in the abstract economies or generalized games and in the generalized abstract
economies with preference multimaps.

In 1975, W. Shafer and H. Sonnenschein proved the existence of the equi-
librium for abstract economies without ordered preferences.Over the last forty
years, more general existence results appeared in the literature (for example: A.
Borglin and H. Keiding (1976), D. Gale and A. Mas Colell (1978), N. C. Yannelis
(1987), C. Ionescu-Tulcea (1988), E. Tarafdar (1988), K. K. Tan and G. X.- Z. Yuan
(1994)). All these results assume directly or indirectly the lower-semicontinuity
of the multimaps representing the constraints of each agent. In 1999, G. X.- Z.
Yuan and E. Tarafdar proved some existence theorems for the equilibrium of the
compact or noncompact qualitative games and generalized games in which the
constraint or the preference multimaps have supplementary properties. The exis-
tence of the equilibrium in an abstract economy with compact strategy sets in Rn

was proved in a seminal paper by G. Debreu. The Debreu’s theorem extended the
earlier work of J. Nash in the game theory and have many generalizations, for ex-
ample, by A. Borglin and H. Keiding (1976). Following their paper and, also, the
paper of D. Gale and A. Mas-Colell (1978), on non-ordered preference relations,
many theorems on the existence of maximal elements of the preference relations,
which may not be transitive or complete have been proved by T. C. Bergs (1976),
M. Walker (1977), N. C. Yannelis and D. Prabhakar (1983), S. Toussaint (1984), N.
C. Yannelis (1985), C. Ionescu-Tulcea (1988), G. Mehta (1990).

In this paper we give two results of Tarafdar type equilibrium theorems, more
precisely, an equilibrium theorem for the generalized abstract economies and a
maximal element theorem for the qualitative games. For the proof of the existence
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of an equilibrium point, we use some results, presented without proofs in [3],
about the existence of a fixed-point for a family of multimaps, giving now their
proofs.

Firstly, we recall some definitions and notations, reviewing the mathematical
and economical concepts that we need. For a nonempty set X , 2X denotes the
class of all subsets of X .

Definition 1.1. A multimap is a function T : X → 2Y ; in another terminology, a
multimap is also known as a set valued function, a mapping, a map or a correspon-
dence (hereX and Y are two nonempty sets).

A multimap T : X → 2Y is nonempty-valued (convex-valued, or compact-valued)
if the set T (x) is a nonempty (respectively convex, or compact) for each x ∈ X .The
fiber of the multimap T : X → 2Y at the point y ∈ Y , is the set T−1(y) = {x ∈ X :
y ∈ T (x)}.

Definition 1.2. Let I be a countable or uncountable set of agents (or players). For
each i ∈ I , suppose her/his choice or strategy set Xi is a nonempty subset of a
topological vector space. Let X =

∏
i∈I Xi. For each i ∈ I , let Pi : X → 2Xi be a

multimap. Following the notion of D. Gale and A. Mas-Colell, the collection Γ =
(Xi, Pi)i∈I is called a qualitative game.An element x̃ ∈ X is said to be a maximal
point of the game Γ , if Pi(x̃) = ∅ , for all i ∈ I .

Definition 1.3. A generalized abstract economy (or a generalized game) is a family
of quadruples Γ = (Xi, Ai, Bi, Pi)i∈I , where I is a (finite or infinite) set of agents
(players) such that, for each i ∈ I ,Xi is a nonempty subset of a topological vector
space; Ai, Bi : X =

∏
i∈I Xi → 2Xi are constraint multimaps and Pi : X → 2Xi is

a preference multimap. An equilibrium for Γ is a point x̃ = (x̃i)i∈I ∈ X such that,
for each i ∈ I , x̃i ∈ Bi(x̃) and Ai(x̃) ∩ Pi(x̃) = ∅.

2. PRELIMINARIES

The following proposition (see [3]), has a starting point a result of [2], gener-
alized in a certain sense in [4]. We notice that in the last two mentioned results,
appeared two families of multimaps.

Let I be an index set and for each i ∈ I , letEi be a Hausdorff topological vector
space. Let (Xi)i∈I be a family of nonempty convex subsets with each Xi in Ei.
Let X =

∏
i∈I Xi . Let also C ⊆ X be a nonempty compact subset.

Proposition 2.1. For each i ∈ I , let Ti : X → 2Xi be a nonempty-valued and convex-
valued multimap. Suppose that the following conditions hold:

(1) for each i ∈ I , X can be covered with the interiors of all fibers of Ti, i.e.

X =
⋃

{intXT−1
i (yi) : yi ∈ Xi};

(2) if X is not compact, assume that for each i ∈ I and for each finite subset Fi of
Xi, there exists a nonempty compact convex set CFi in Xi such that CFi ⊇ Fi

andX \C can be covered with the interiors of all fibers of Ti at the points of CFi ,
i.e.

X \ C ⊆
⋃

{intXT−1
i (yi) : yi ∈ CFi}.
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Then, there exists x̃ = (x̃i)i∈I ∈ X , such that x̃i ∈ Ti(x̃), for each i ∈ I (i.e. x̃ is a
fixed-point for the family (Ti)i∈I ).

Proof. From the hypothesis (1), because the set C is compact, it follows that, for
each i ∈ I , there exists a finite set Fi ⊂ Xi such that

C ⊆
⋃

yi∈Fi

intT−1
i (yi). (2.1)

From (2), it follows the existence of a compact convex set CFi ⊆ Xi such that
CFi ⊇ Fi and

X \ C ⊆
⋃

yi∈CFi

intT−1
i (yi). (2.2)

Let F =
∏

i∈I Fi (a finite set in X) and CF =
∏

i∈I CFi (a compact convex set
in X). It follows that CF ⊇ F and CF \ C ⊆ X \ C. Now, using (2.2), we obtain
the following inclusion:

CF \ C ⊆
⋃

yi∈CFi

intT−1
i (yi). (2.3)

Since Fi ⊆ CFi , from (2.1) and (2.3) we have CF ⊆ ⋃
yi∈CFi

intT−1
i (yi). But the

set CF is compact. Therefore, it follows that: for each i ∈ I , there exists a finite
set Yi = {yi,1, . . . , yi,mi+1} ⊆ CFi such that CF ⊆ ⋃mi+1

j=1 intT−1
i (yi,j).

BecauseCF is compact, then also exists a continuous partition of unity {λi,1, . . .
,λi,mi+1} subordinated to the open covering (intT−1

i (yi,j))
mi+1
j=1 , that is, for each

j ∈ {1, 2, . . . ,mi + 1}, λi,j : CF → [0, 1] is a continuous function such that, for all
x ∈ CF ,

∑mi+1
j=1 λi,j(x) = 1 and λi,j(x) = 0, for all x /∈ intT−1

i (yi,j).
In other words, λi,j(x) 	= 0 if and only if x ∈ intT−1

i (yi,j) ⊆ T−1
i (yi,j), that is

yi,j ∈ Ti(x), for each j = 1, . . . ,mi + 1 and each i ∈ I .
We consider in Rmi+1, the standard mi-simplex Δmi with vertices

ei,1, . . . , ei,mi+1, each ei,j being the jth unit vector of Rmi+1, hence Δmi =
co(ei,1, . . . , ei,mi+1). Consider also the continuous function fi : CF → Δmi de-
fined by

fi(x) :=
∑mi+1

j=1 λi,j(x)ei,j , for each x ∈ CF .
Now, for each i ∈ I and Yi = {yi,1, . . . , yi,mi+1} we define the map gi : Δmi →
co(Yi) ⊆ CFi , by

gi(
∑mi+1

j=1
μi,jei,j) :=

∑mi+1

j=1
μi,jyi,j ,

where μi,j ≥ 0, for each i ∈ I and j ∈ {1, 2, . . . ,mi + 1}, and
∑mi+1

j=1 μi,j = 1.
Then, for each i ∈ I , it follows that gi is continuous.

Let Ji(x) be the set {j ∈ {1, 2, . . . ,mi + 1} : λi,j(x) 	= 0}. For each
x ∈ CF , we have: (gi ◦ fi)(x) = gi(

∑mi+1
j=1 λi,j(x)ei,j) =

∑mi+1
j=1 λi,j(x)yi,j =∑

j∈Ji(x)
λi,j(x)yi,j ∈ coTi(x) = Ti(x), because Ti is convex-valued. Hence

(gi ◦ fi)(x) ∈ Ti|CF (x).
Now, we consider Zi = span(Δmi), i ∈ I , Z =

∏
i∈I Zi, K =

∏
i∈I Δmi (a

compact convex set in Z), and the (continuous) maps ϕ : K → CF and ψ : CF →
K , defined by ϕ((zi)i∈I) := (gi(zi))i∈I and ψ(x) := (fi(x))i∈I (for x ∈ CF ). Then,
applying the Tychonoff’s fixed-point theorem, see [5], to the (well-defined and
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continuous) map θ : K → K , θ := ψ ◦ ϕ, there exists an element z̃ = (z̃i)i∈I ∈ K
such that z̃ = θ(z̃). Denoting ϕ (z̃) = x̃ ∈ X , it follows that z̃ = ψ(x̃). Hence, for
each i ∈ I , z̃i = fi(x̃) and x̃i = gi(z̃i) = gi(fi(x̃)) ∈ Ti(x̃). �

The following collectively fixed-point result (see for example [3]) can be
proved with understanding changes in the proof of the Proposition 2.1 and gen-
eralizes Theorem 1 of [2].

Proposition 2.2. For each i ∈ I , let Si, Ti : X → 2Xi be two nonempty-valued mul-
timaps, such that:

(0) for each i ∈ I and each x ∈ X , coSi(x) ⊆ Ti(x);

(1) for each i ∈ I , X can be covered with the interiors of all fibers of Si, that is

X =
⋃

{intXS−1
i (yi) : yi ∈ Xi};

(2) if X is not compact, assume that for each i ∈ I and for each finite subset Fi of
Xi, there exists a nonempty compact convex set CFi in Xi such that CFi ⊇ Fi

and
X \ C ⊆

⋃
{intXS−1

i (yi) : yi ∈ CFi}.
Then, there exists x̃ = (x̃i)i∈I ∈ X , such that x̃i ∈ Ti(x̃), for each i ∈ I .

Remark 2.1. Obviously, according to the condition ”(0)”, only Si must be a
nonempty-valued multimap. As a simple consequence of the Proposition 2.2,
we obtain the following result (see [2], Theorem 1).

Corollary 2.1. For each i ∈ I , let Si, Ti : X → 2Xi be two nonempty-valued multimaps,
such that:

(0) for each i ∈ I and each x ∈ X , coSi(x) ⊆ Ti(x);

(1) for each i ∈ I , X can be covered with the interiors of all fibers of Si, that is

X =
⋃

{intXS−1
i (yi) : yi ∈ Xi};

(2) if X is not compact, assume that for each i ∈ I , there exists a nonempty compact
convex subset Ci of Xi such that X \ C ⊆ ⋃{intXS−1

i (yi) : yi ∈ Ci}.

Then, there exists x̃ = (x̃i)i∈I ∈ X , such that x̃i ∈ Ti(x̃), for each i ∈ I .

Proof. For each i ∈ I and each finite subset Fi of Xi, we define CFi = co(Ci ∪
Fi). Therefore, it follows that CFi ⊇ Fi and the set CFi is compact and convex,
according, for example to [1, Corollary 5.30]. Now, we apply Proposition 2.2. �

3. MAIN RESULTS

In this section, we will apply Corollary 2.1 to the existence of the equilibrium
points (and maximal elements) for general abstract economies (respectively qual-
itative games). The index set I will be any set (countable or not) of agents (or
players). The choice set (the strategy set) Xi will be the nonempty set of actions
available to the agent i, and for each x ∈ X and i ∈ I , Ai(x) (respectively Bi(x))
will be the state attainable for the agent i , at x , under the constraint Ai (respec-
tively Bi) and Pi(x) is the state preference by the agent i, at x.
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In the following theorem, we will consider X =
∏

i∈I Xi and K =
∏

i∈I Ki,
where, for each i ∈ I , Ki is a nonempty compact subset of Xi (and hence K is a
nonempty compact subset of X).

Theorem 3.1. Let Γ = (Xi, Ai, Bi, Pi)i∈I be a generalized abstract economy (or a gen-
eralized game) such that:

(1) for each i ∈ I , Xi is a nonempty convex subset of a locally convex topological
vector space Ei and Ki is a nonempty compact subset of Xi, such that coKi lies
in a complete metrizable subset of Ei;

(2) for each i ∈ I and x ∈ X , coAi(x) ⊆ Bi(x) ⊆ Ki and Pi(x) ⊆ Ki;
(3) for each i ∈ I , X =

⋃{intX(A−1
i (yi) ∩ (P−1

i (yi) ∪ Gi)) : yi ∈ Ki}, where
Gi = {x ∈ X : Ai(x) ∩ Pi(x) = ∅};

(4) for each x = (xi)i∈I ∈ X , xi /∈ coPi(x).
Then Γ has an equilibrium point in X , that is there exists x̃ ∈ X such that for each

i ∈ I , x̃i ∈ Bi(x̃) and Ai(x̃) ∩ Pi(x̃) = ∅ (hence x̃i ∈ Gi).

Proof. For each i ∈ I , we consider the following sets and multimaps: Fi = {x ∈
X : Ai(x) ∩ Pi(x) 	= ∅}, and Si, Ti : X → 2Xi defined by:

Si (x) =

{
Ai(x) ∩ coPi(x) , x ∈ Fi

Ai(x) , x ∈ Gi
,

Ti (x) =

{
Bi(x) ∩ coPi(x) , x ∈ Fi

Bi(x) , x ∈ Gi
.

Then we can prove that the hypothesis of Corollary 2.1 are fulfilled. Indeed,
the condition (0) of Corollary 2.1 holds, i.e. for each i ∈ I and x ∈ X , coSi(x) ⊆ Ti(x).
Let xi ∈ coSi(x). It follows that xi =

∑n
j=1 αjxi,j with αj > 0,

∑n
j=1 αj = 1 and

xi,j ∈ Si(x), for all j = 1, n.
Case 1. If x ∈ Fi, then for each j = 1, n, we have xi,j ∈ Ai(x) ∩ coPi(x) and

therefore xi ∈ coAi(x) ⊆ Bi(x) and xi ∈ coPi(x), that is xi ∈ Bi(x) ∩ coPi(x) =
Ti(x).

Case 2. If x ∈ Gi, then for each j = 1, n, we have xi,j ∈ Si(x) = Ai(x) and
hence xi ∈ coAi(x) ⊆ Bi(x). So, xi ∈ Ti(x).

Now, let us prove that the condition (1) of Corollary 2.1 holds, even forKi instead
of Xi, that is X =

⋃{intS−1
i (yi) : yi ∈ Ki}. We remark that for each i ∈ I and

yi ∈ Ki, we have:

S−1
i (yi) = (A−1

i (yi) ∩ (coPi)
−1(yi) ∩ Fi) ∪ (A−1

i (yi) ∩Gi). (I)

Indeed, if x ∈ S−1
i (yi) then yi ∈ Si(x) and hence yi ∈ Ai(x) ∩ coPi(x), if x ∈ Fi

or yi ∈ Ai(x), if x ∈ Gi. Then, x ∈ A−1
i (yi) and x ∈ (coPi)

−1(yi) and x ∈ Fi, or
x ∈ A−1

i (yi) and x ∈ Gi, hence the equality (I) is valid.
But (coPi)

−1(yi) ⊇ P−1
i (yi), hence, from (I) we obtain:

S−1
i (yi) ⊇ (A−1

i (yi) ∩ P−1
i (yi) ∩ Fi) ∪ (A−1

i (yi) ∩Gi) =

= (A−1
i (yi) ∩ P−1

i (yi)) ∪ (A−1
i (yi) ∩Gi) = A−1

i (yi) ∩ (P−1
i (yi) ∪Gi). (II)
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Now, if x ∈ X , then from the hypothesis (3), it follows that for each i ∈ I , there
exists yi ∈ Ki such that x ∈ int(A−1

i (yi) ∩ (P−1
i (yi) ∪Gi)) ⊆(II) intS−1

i (yi), hence
x ∈ ⋃{intS−1

i (yi) : yi ∈ Ki}.
Finally, we remark that the condition (2) of Corollary 2.1 holds, that is for each

i ∈ I , there exists a nonempty compact convex subset Ci of Xi such that X \K ⊆⋃{intS−1
i (yi) : yi ∈ Ci}. We apply our hypothesis (3), putting Ci = coKi, which

is a compact set, according to [1, Theorem 5.35]. Then, we can apply Corollary
2.1, obtaining the existence of an element x̃ = (x̃i)i∈I ∈ X , such that x̃i ∈ Ti(x̃),
for each i ∈ I , hence: x̃ ∈ Fi and x̃i ∈ Bi(x̃) ∩ coPi(x̃) or x̃ ∈ Gi and x̃i ∈ Bi(x̃).
But from the hypothesis (4), x̃i /∈ coPi(x̃). Then, it follows that x̃i ∈ Bi(x̃) and
x̃ ∈ Gi, that is Ai(x̃) ∩ Pi(x̃) = ∅. �

The following result, a maximal element theorem for a qualitative game, is
actually a consequence of our Theorem 3.1.

Theorem 3.2. Let Γ = (Xi, Pi)i∈I be a qualitative game, X =
∏

i∈I Xi and suppose
that:

(1) for each i ∈ I , Xi is a nonempty convex subset of a locally convex topological
vector space Ei, andKi is a nonempty compact subset of Xi, such that coKi lies
in a complete metrizable subset of Ei and Pi : X → 2Ki ;

(2) for each i ∈ I , X =
⋃{intX(P−1

i (yi) ∪Gi) : yi ∈ Ki}, where Gi = {x ∈ X :
Pi(x) = ∅};

(3) for each x = (xi)i∈I ∈ X , xi /∈ coPi(x).

Then, Γ has a maximal element (an equilibrium point) inX , that is, there exists x̃ ∈ X
such that Pi(x̃) = ∅, for each i ∈ I .

Proof. For each i ∈ I , we define the constraint multimaps Ai, Bi : X → 2Xi by
Ai(x) = Bi(x) = Ki for all x ∈ X . It follows that for each i ∈ I and yi ∈ Ki,
A−1

i (yi) = X (for each x ∈ X , x ∈ A−1
i (yi) because yi ∈ Ai(x) = Ki).

Therefore, the conditions (2) and (3) of Theorem 3.1 are fulfilled. Indeed, for
example, (2) of Theorem 3.2 implies (3) of Theorem 3.1, because

X =
⋃

{intX(P−1
i (yi)∪Gi) : yi ∈ Ki} =

⋃
{int(X∩(P−1

i (yi)∪Gi)) : yi ∈ Ki} =

=
⋃

{int(A−1
i (yi) ∩ (P−1

i (yi) ∪Gi)) : yi ∈ Ki}.
Applying Theorem 3.1, we find x̃ ∈ X such that, for each i ∈ I , x̃i ∈ Bi(x̃) = Ki

and Ki ∩ Pi(x̃) = Ai(x̃) ∩ Pi(x̃) = ∅.
But Pi : X → 2Xi . If x̃ ∈ X is such that Pi(x̃) � Ki, then x̃ /∈ P−1

i (yi) for each
yi ∈ Ki and according to the hypothesis (2) it follows that Pi(x̃) = ∅. If x̃ ∈ X is
such that Pi(x̃) ⊆ Ki, then ∅ = Ki ∩ Pi(x̃) = Pi(x̃). Hence, certainly, Pi(x̃) = ∅.
Therefore, x̃ ∈ X is a maximal point of the game (Xi, Pi)i∈I . �
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[3] Dăneţ, R.-M., Popovici, I.-M. and Voicu, F., Some Applications of a Collectively Fixed Point Theorem
for Multimaps, Fixed Point Theory, 10 (2009), No. 1, 99-109

[4] Lin, L.- J., Yu, Z.- T., Ansari, Q.H. and Lai, L.P., Fixed Point and Maximal Element Theorems with
applications to Abstract Economies and Minimax Inequalities. J. Math. Anal. Appl., 284 (2003), 656-671

[5] Tychonoff, A., Ein Fixpunktsatz. Math. Ann., 111 (1935), 767-776

DEPARTMENT OF MATHEMATICS AND

COMPUTER SCIENCE

TECHNICAL UNIVERSITY OF CIVIL

ENGINEERING OF BUCHAREST

124 LACUL TEI BLVD.
036296 BUCHAREST, ROMANIA

E-mail address: rodica.mihaela@danet.ro
E-mail address: popescu.marianvalentin@gmail.com


