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Numerical investigations of the dynamic problem in
thin thermoelastic plates

REMUS ENE AND IOANA DRAGOMIRESCU

ABSTRACT. An operatorial approach for the equations obtained by the homogenization method
in the case of thin thermoelastic porous plates is introduced. Based on this formulation an uniqueness
theorem concerning the solution is deduced. The dynamical equations obtained by the homogeniza-
tion method for thin thermoelastic porous plates are numerically investigated showing a stabilization
of the solution.

1. INTRODUCTION

The new interest in thin thermoelastic plates is motivated in part by the ob-
servation that thermoelasticity can be in certain circumstances a dominant and
unavoidable source of dissipation and noise. The two dimensional nature of
thin thermoelastic plates introduce flexure in two directions which imply 3-
dimensional mathematical models and more complicated analytical and numeri-
cal investigations [7]. This complexity is in fact main reason for the the derivation
of simpler governing equations including thermal effects (thermal stress, strain
and deformation) and similar to the Kirchhoff equations [2], [10]. In [3], following
the theory of Lord-Shulman [8] and Green-Lindsay [6] for thermoelastic plates,
numerical evaluations on the thermal stresses in a thin porous plate due to the
radiations of a thermal source are given.

Here our main interest is to obtain an uniqueness result for the solution of
the corresponding dynamical problem. The mathematical model governing the
thermoelasticity of the homogeneous plate is obtained using the homogeniza-
tion method. The uniqueness theorem is based on the following result: the
conduction-convection tensor is a positive definite operator. The design of struc-
tures operating at an elevated temperature such as nuclear operators, chemical
plants are a serious motivation for the investigation of plane thermal stresses in
a multiply-connected region. In [12] the proposed method for the solution of the
plane thermoelastic problem is based on the necessary integral conditions for the
single-valuedness of solution and displacement. In our case, the temperature and
the displacement field are used to clarify numerically some stability aspects of the
solution.
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2. THE MATHEMATICAL MODEL

Let us consider the following Dirichlet problem [9]

L(x, D)u = f, (2.1)
u|∂Ω = 0. (2.2)

In our particular case, the equation (2.1) defines the governing dynamical equa-
tion of the homogeneous and isotropic media and it is given by

3∑
j=1

∂

∂xj

( 3∑
k,l=1

aijkl · ekl − βθδij

)
= ρ0

∂2ui

∂t2
, i = 1, 2, 3.

In (2.1)-(2.2), the equation is the divergence equation, so the entire problem is
called the homogeneous Dirichlet problem for the divergence equation.

Due to a relaxation condition concerning the smoothness of the solution of
the problem (2.1)-(2.2), in [9] some generalized solutions are obtained. This type
of solutions are very useful not only in technical and physical applications but
also for other branches in mathematics. The uniqueness and existence theorems
of the generalized solution of the Dirichlet (or Neumann) divergence problem
deduced in [9] are based on the existence of eigenvalues and corresponding
eigenvectors. Conditions for the existence of eigenvalues and eigenvectors are
also given.

Nomenclature

t − time ; x− the coordinate vector of a point in Ω ⊂ R
3;

β − a constitutive material coefficient ; ce − the specific heat ;
ct − the heat transfer coefficient ; k − the conduction-convection coefficient ;
S∗ − the heat source, assumed constant; σ − the Stefan-Boltzmann constant;
aHijkl − the elasticity tensor; L, l, h0 − the dimensions of the plate ;

aijkl = λδijδkl + μ(δikδjl + δilδjk); λ, μ− Lamé constants;
T = [0, t1]− time interval, t1 > 0; Σ+,Σ− − upper and inner surface of the plate;

Ω = [0, L]× [0, l]× [−h0

2
,
h0

2
]− the plate domain ; Σi, i = 1, 4− the lateral faces of the plate;

δij − the Kronecker symbol;
ekl(u) =

1

2

( ∂ui

∂xj
+

∂uj

∂xi

)
−

the small deformations tensor;
θ0 − the main term in the asymptotic expression
of the absolute temperature of the plate
given by the homogenization method [11];

u0 − the main term in the asymptotic
expression of the displacement vector
given by the homogenization method [11];

ρ0 − the density value at t = 0
assumed constant ;

ε ∈ (0, 1]− a parameter depending
on the material(for instance ε = 1
for black);

σH
ij − the stress tensor given by

the homogenization method;
∂Ω = Σ+

⋃
Σ− ⋃ 4⋃

j=1
Σj − the boundary of Ω;

n− exterior normal to surface ∂Ω;
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The governing equations of the dynamical problem for thermoelastic thin
porous plates are obtained using the homogenization method [11]; they repre-
sent o genelization of the above⎧⎪⎪⎨

⎪⎪⎩
∂

∂xj

[
aHijkl · ekl − β · θ0 · δij

]
= ρ0 ·

∂2u0
i

∂t2
,

ρ0 · ce ·
∂θ0

∂t
=

∂

∂xj

(
kHij · ∂θ

0

∂xi

) (2.3)

in which the elasticity tensor
(
aHijkl

)3

i,j,k,l=1
given by the homogenization

method has the expression aHijkl =
1

|P | ·
∫
P

aijmh

[
δmkδhl + emhy(w

kl)
]
dy and

the conduction-convection tensor also given by the homogenization method(
kHij

)3
i,j=1

is defined by kHij = k ·
(
δij +

1

|P | ·
∫
P

∂βj

∂yi
dy

)
. Following the homoge-

nization theory concepts from [11], we assume that P is a parallelepipedic cell of
dimension ε0 << 1.

Let us define the Hilbert space H̃1
per(P )(with respect to the norm from H1),

H̃1
per(P ) = {v ∈ H1(P ) : v is a P − periodic function,

1

|P | ·
∫
P

vdy = 0}.

The vector fields (wkl)3k,l=1, (βj)
3
j=1 are solutions for the following variational

problems⎧⎨
⎩

wkl ∈ H̃1
per(P )∫

P

aijmh · emhy(w
kl) · eijy(v)dy =

∫
P

∂aijkl
∂yi

· vjdy, ∀v ∈ H̃1
per(P )

(2.4)

respectively ⎧⎨
⎩

βk ∈ H̃1
per(P )∫

P

∂βk

∂yi
· ∂v

∂yi
dy =

∫
P

∂v

∂yk
dy, ∀v ∈ H̃1

per(P ).
(2.5)

The problem (2.3) with the corresponding boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑3
j=1 σ

H
ij · nj = 0, (i = 1, 3), on ∂Ω∑3

j=1 nj · kHij · ∂θ
0

∂xi
+ ε · σ · (θ04 − S∗4) = 0, on Σ+ : x3 =

h0

2∑3
j=1 nj · kHij · ∂θ

0

∂xi
+ ct · (θ0 − S∗) = 0, on

4⋃
j=1

Σj ;

θ0 = S∗, on Σ− : x3 = −h0

2

(2.6)

and the following initial conditions [4]:{
u0
i (x, 0) = ũi, i = 1, 3, x ∈ Ω

θ0(x, 0) = θ̃, x ∈ Ω
(2.7)

is an initial boundary value problem.
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A variational formulation for the dynamical problem (2.3) has been written in
H̃1

per(P ) space. Following [1] the functional defining the variational formulation
is assumed to be a positive definite quadratic form.

3. THE UNIQUENESS OF THE SOLUTION

In order to formulate the result based on the energy partition, it is useful to
introduce the following functions depending on t, t ∈ T

K(t) =
1

2

∫
Ω

ρ0 · u̇0
i (x, t) · u̇0

i (x, t)dx, W (t) =
1

2

∫
Ω

[σH
ij · eij(u0) + θ0

2
(x, t)]dx.

(3.8)

P (s) = ε · σ
∫
Σ+

θ0 · (S∗4 − θ0
4
)da. (3.9)

Lemma 3.1. For each solution (u0, θ0) of the initial-boundary value problem (2.3)-(2.6)-
(2.7) the functions W and K from (3.8) satisfy the identity

W (t) +K(t) +

∫ t

0

∫
Ω

1

ρ0 · ce
· kHij · ∂θ

0

∂xi
· ∂θ

0

∂xj
dxds −

∫ t

0

P (s)ds = W (0) +K(0).

(3.10)

Proof. The proof of the Lemma is based on the identity

1

2
· d

dt
[σH

ij · eij(u0) + θ0
2
(x, t)] = σH

ij · ėij(u0) + θ0(x, t) · θ̇0(x, t).

The above relation is integrated over Ω and taking into account all the equations
that define the dynamical problem (2.3), the definition of the eij tensor and the
divergence theorem, we get

d

dt
[W (t) +K(t)] = ε · σ

∫
Σ+

θ0 · (S∗4 − θ0
4
)da−

∫
Ω

1

ρ0 · ce
· kHij · ∂θ

0

∂xi
· ∂θ

0

∂xj
dx.

Integrating the above relation over [0, t] the result of the theorem is proved. �

Theorem 3.1. For r, s ∈ T let us introduce the new function Y (r, s) defined by

Y (r, s) := ε · σ
∫
Σ+

θ0(x, r) · (S∗4 − θ0
4
(x, s))dx.

Then W (t)−K(t) = 1
2

∫ t

0

1

ρ0 · ce
· [Y (t+ s, t− s)− Y (t− s, t+ s)]ds+

+
1

2

∫
Ω

[σH
ij (2t) · eij(0) + θ0(2t) · θ0(0)]dx− 1

2

∫
Ω

ρ0 · u̇i(2t) · u̇i(0)dx. (3.11)

Proof. For arbitrary t, s ∈ T we can introduce the following notation

E(t, s) = σH
ij (t+ s) · eij(t− s) + θ0(t+ s) · θ0(t− s)
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in which, in order to simplify the symbolic writing, the argument x was elimi-
nated. The expressions of the σH

ij and eij tensors, lead to

∂

∂s
E(t, s) = σ̇H

ij (t+ s) · eij(t− s)− σH
ij (t+ s) · ėij(t− s) + θ̇0(t+ s) · θ0(t− s)−

−θ0(t+ s) · θ̇0(t− s) = aHijkl · ėkl(t+ s) · eij(t− s)− σH
ij (t+ s) · ėij(t− s)+

+θ̇0(t+ s) · θ0(t− s)− θ0(t+ s) · θ̇0(t− s) = [σH
kl(t− s) · ėkl(t+ s) + θ̇0(t+ s)·

·θ0(t− s)]− −[σH
ij (t+ s) · ėij(t− s) + θ̇0(t− s) · θ0(t+ s)].

(3.12)
Integrating over Ω and taking into account the boundary conditions (2.6), we get∫
Ω

∂

∂s
E(t, s)dx =

∂

∂s

∫
Ω

ρ0 · u̇i(t+ s) · u̇i(t− s)dx+
1

ρ0 · ce
·[Y (t−s, t+s)−Y (t+s, t−s)].

Another integration step over [0, t] of the above expression give us the result
of the theorem �

Theorem 3.2. The conduction-convection tensor (kH
ij ) is a positive definite tensor.

Proof. Each component βj , j = 1, 2, 3 from the definition of the conduction-
convection tensor is the solution of the following equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�yβj = 0, in P
n · ∇yβj = −nj, on ∂P
βj P − periodic

< βj >= 0,with < βj >=
1

|P | ·
∫
P

βj(y)dy.

(3.13)

This imply
∫
P

∂βj

∂yi
dy = −

∫
P

∇yβj · ∇yβidy so the conduction tensor kHij is a

symmetric operator, i.e. kHij = kHji = k ·
(
δij −

1

|P | ·
∫
P

∇yβj · ∇yβidy

)
.

In addition, let us define Bj = −βj − yj in P . The conduction-convection tensor
can be written kHij = kHji = k· < ∇yBi · ∇yBj > . With the representation we
have

∑3
i=1

∑3
j=1 k

H
ij ξiξj ≥ 0 which establish the positivity of the conduction-

convection tensor. �

Theorem 3.3. Let ρ0 > 0. Then the initial-boundary value problem (2.3) - (2.6) - (2.7)
has a unique solution.

Proof. Assume that two solution of the the initial boundary value problem (2.3)
- (2.6) - (2.7) exists and denote these solutions with {u1

i , θ1} and {u2
i , θ2} respec-

tively. Then, the difference between the two solutions, i.e. {ui, θ}, satisfies the
equation (2.3), but with homogeneous initial and boundary conditions. Let us as-
sume that for a fixed value of t > 0 we have θ1 ≥ θ2. Substracting the expressions
from (3.10)-(3.11) and evaluating the result for the difference of the two solutions,
(ui, θ), the equation reduces to

2K(t) +

∫ t

0

∫
Ω

1

ρ0 · ce
· kHij · ∂θ

∂xi
· ∂θ

∂xj
dxds +

1

2

∫ t

0

∫
Σ+

ε · σ
ρ0 · ce

· f(r) · g(r)dadr = 0.

(3.14)
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Here f(r) = θ1(r)− θ2(r) and g(r) = [θ1(r) + θ2(r)] · [θ21(r) + θ22(r)] · [(θ1(2t− r)−
θ1(r))− (θ2(2t− r)− θ2(r))]− [θ1

4(2t− r) + θ1
4(r)− θ2

4(2t− r)− θ2
4(r)]. In these

conditions, there exists a value ξ ∈ (0, t) such that

2K(t) +

∫ t

0

∫
Ω

1

ρ0 · ce
· kHij · ∂θ

∂xi
· ∂θ

∂xj
dxds+

1

2

∫
Σ+

g(ξ)

∫ t

0

ε · σ
ρ0 · ce

· f(r)drda = 0,

(3.15)
and, for ρ0 > 0 and (kHij ) - a positive definite operator, we obtain K(t) = 0. We

can also write
∫ t

0

∫
Ω

1

ρ0 · ce
· kHij · ∂θ

∂xi
· ∂θ

∂xj
dxds = 0. This lead us to u̇i = 0, which

imply that ui = 0, on Ω × T . Similarly, we can write the relation for (ui, θ) and
obtain W (t) = 0, t ∈ T and θ = 0, on Ω × T . This proves that the solution of
the initial-boundary value problem (2.3) - (2.6) - (2.7) is unique. �

4. NUMERICAL INVESTIGATIONS AND CONCLUSIONS

The physical domain characterizing the thin porous plates ( a magnesium plate
in our case) is given by [0, L] × [0, l] × [−h0/2, h0/2], L = 400mm, l = 250mm,
h0 = 8mm and with S∗ = 800K . A complete characterization of the dynam-
ical problem is given here by the isovalues for the vertical displacement fields.
displacementfield : iteration2

IsoValue
1.49072e-024
4.47217e-024
7.45362e-024
1.04351e-023
1.34165e-023
1.6398e-023
1.93794e-023
2.23609e-023
2.53423e-023
2.83238e-023
3.13052e-023
3.42867e-023
3.72681e-023
4.02496e-023
4.3231e-023
4.62125e-023
4.91939e-023
5.21754e-023
5.51568e-023
5.81383e-023

depl2: iteration 2 at moment: 0.002

Figure 1. Numerical isovalues for the absolute temperature and the displacement fields in the
case of a magnesium porous plates

The curves represented in Figure 1 are the isotherms curves connecting the
points with the same displacement field. They are obtained using the Freefm++
soft based on the finite element method. In our case, even for the deformation
process, the medium is a periodic one, so the porosity is considered as a constant
value. Due to this periodicity propriety the isovalues are similar for an initial or a
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deformed domain. A natural conclusion is pointed out numerically: an increase
of the temperature field until it reaches its maximum leads to an increase of the
displacement field.

Another important aspect can be pointed here: we obtain a thermal equilib-
rium state which imply that the solution of the dynamical problem is stable in
time. For the numerical study, the problem is reduced to the 2-dimensional case,
using the micropolar theory of Eringen [5]. As the absolute temperature inside
the plate is growing, the plate is deforming more and more until it reaches the
thermal equilibrium state.
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