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ABSTRACT. In this paper we recall the concept of multivalued weakly Picard operator. Then we
present a fixed points result for multivalued contractive type operators with respect to a w-distance.

1. INTRODUCTION

The concept of multivalued weakly Picard operator (briefly MWP operator)
was introduced in close connection with the successive approximation method
and the data dependence phenomenon for the fixed point set of multivalued
operators on complete metric space, by I. A. Rus, A. Petruşel and A. Sântămărian,
see [9]. In 1966 A. I. Perov introduced the concept of generalized metric space
and obtained a generalization of the Banach principle for contractive operators
on spaces endowed with vector-valued metrics, see [7].

In [8] the theory of multivalued weakly Picard operators in L-spaces is pre-
sented. In 1976, Caristi [1] proved a fixed point theorem in the framework of
complete metric spaces which is a generalization of the Banach contraction prin-
ciple. Another interesting results in different spaces was obtain in [11], [13], [3].
Later, in 1996, O. Kada, T. Suzuki and W. Takahashi [4] introduced the concept
of w-distance on a metric space and by using this new concept they obtained a
generalization of Caristi’s fixed point theorem.

The purpose of this paper is to define the notion of generalized w-distance
in a generalized metric space and to present fixed point results for multivalued
weakly Picard operators in generalized complete metric spaces endowed with a
generalized w-distance.

2. PRELIMINARIES

Let (X, d) be a complete metric space. We will use the following notations:
P (X) - the set of all nonempty subsets of X;
P(X) = P (X)

⋃ ∅
Pcl(X) - the set of all nonempty closed subsets of X;
Pb(X) - the set of all nonempty bounded subsets of X;
Pb,cl(X) - the set of all nonempty bounded and closed, subsets of X;
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For two subsets A,B ∈ Pb(X) we recall the following functionals.
D : P(X) × P(X) → R+,D(Z, Y ) = inf{d(x, y) : x ∈ Z , y ∈ Y } - the gap

functional.
δ : P(X) × P(X) → R+, δ(A,B) := sup{d(a, b)|x ∈ A, b ∈ B} - the diameter

functional;
ρ : P(X)× P(X) → R+, ρ(A,B) := sup{D(a,B)|a ∈ A} - the excess functional;
H : P(X)× P(X) → R+, H(A,B) := max{sup

a∈A
inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} - the

Pompeiu-Hausdorff functional;
First we define the concept of L-space.

Definition 2.1. Let X be a nonempty set and s(X) := {(xn)n∈N|xn ∈ X,
n ∈ N}. Let c(X) ⊂ s(X) a subset of s(X) and Lim : c(X) → X an operator. By
definition the triple (X, c(X),Lim) is called an L-space if the following conditions
are satisfied:

(i) If xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences,

(xni)i∈N, of (xn)n∈N we have that (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.
By the definition an element of c(X) is convergent and x := Lim(xn)n∈N is the

limit of this sequence and we can write xn → x as n → ∞.
We will denote an L-space by (X,→).
Let us give some examples of L-spaces, see [8].

Example 2.1. (L-structures on Banach spaces). Let X be a Banach space. We
denote by → the strong convergence in X and by ⇀ the weak convergence in X .
Then (X,→), (X,⇀) are L-spaces.

Example 2.2. (L-structures on function spaces). Let X and Y be two
metric spaces. Let M(X,Y ) the set of all operators from X to Y . We denote by
p→ the pointwise convergence on M(X,Y ), by

unif→ the uniform convergence and

by cont→ the convergence with continuity. Then (M(X,Y ),
p→), (M(X,Y ),

unif→ ) and
(M(X,Y ),

cont→ ) are L-spaces.

Definition 2.2. Let (X,→) be an L-space. Then T : X → P (X) is a multivalued
weakly Picard operator(briefly MWP operator)if for each x ∈ X and each
y ∈ T (x) there exists a sequence (xn)n∈N in X such that:

(i)x0 = x, x1 = y;
(ii)xn+1 ∈ T (xn), for all n ∈ N;
(iii)the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Let us give some examples of MWP operators, see [8],[9].

Example 2.3. Let (X, d) be a complete metric space and T : X → Pcl(X) be a
Reich type multivalued operator, i.e. there exists α, β, γ ∈ R+ with
α+ β + γ < 1 such that

H(T (x), T (y)) ≤ αd(x, y) + βD(x, T (x)) + γD(y, T (y)),

for all x, y ∈ X. Then T is a MWP operator.

Example 2.4. Let (X, d) be a complete metric space and T : X → Pcl(X) be a
closed multifunction for which there exists α, β ∈ R+ with α + β < 1 such that
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H(T (x), T (y)) ≤ αd(x, y) + βD(y, T (y)), for every x ∈ X and every y ∈ T (x).
Then T is a MWP operator.

Example 2.5. Let (X, d) be a complete metric space and T1, T2 : X → Pcl(X) for which
there exists α ∈]0, 12 [ such that

H(T1(x), T2(y)) ≤ α[D(x, T1(x)) +D(y, T2(y))],

for each x, y ∈ X . Then T1 and T2 are a MWP operators.

For the proof of the main result we need the following theorem, see [10].

Theorem 2.1. Let A ∈ Mn,n(R). The following statements are equivalent:
(i)Ak → 0 as k → ∞.
(ii)The eigenvalues of A are in the open unit disc.
(iii)The matrix I −A is an invertible matrix and

(I −A)−1 = I +A+ ...+An + ...,

where I is the unit matrix.

The concept of w-distance was introduced in [4] as follows:
A mapping w : X×X → R+ is said to be w-distance on the metric space (X, d)

if the following axioms are satisfied:
(w1) For any x, y, z ∈ X the inequality w(x, z) ≤ w(x, y) + w(y, z) holds;
(w2) For every x ∈ X, the map w(x, .) : X → R+ is lsc;
(w3) For any ε > 0, there exists δ > 0 such that if w(z, x) ≤ δ and w(z, y) ≤ δ,

then d(x, y) ≤ ε.
Examples of non trivial w-distances can be found in [4].
A crucial result in order to obtain fixed point theorems by using a w-distance

is the following:

Lemma 2.1 (see [4]). Let (X, d) be a metric space, and let w be a w-distance on X . Let
(xn) and (yn) be two sequences in X, let (αn), (βn) be sequences in [0,+∞[ converging
to zero and let x, y, z ∈ X. Then the following hold:

(1) If w(xn, y) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then y = z.
(2) If w(xn, yn) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then (yn) converges to z.
(3) If w(xn, xm) ≤ αn for any n,m ∈ N with m > n, then (xn) is a Cauchy

sequence.
(4) If w(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

The above lemma is used to prove the following generalization of Caristi’s
fixed point theorem [1]:

Theorem 2.2. Let (X, d) be a complete metric space, let w be a w-distance on X and let
T : X → X be a mapping such that there exists r ∈ [0, 1) satisfying

w(T (x), T 2(x)) ≤ rw(x, T (x))

for every x ∈ X and that

inf{w(x, y) + w(x, T (x)) : x ∈ X} > 0,

for every y ∈ X with y �= T (y). Then T has a fixed point.
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3. GENERALIZED W-DISTANCE

Recall first the concept of generalized metric in Perov’s sense, see [7] and
[10].

We consider in R
m the natural order relation, i.e., if x, y ∈ R

m,
x = (x1, x2, ...xm), y = (y1, y2, ...ym) then x ≤ y if and only if xi ≤ yi, for i = 1,m.

Definition 3.1. Let X be a set. A mapping d̃ : X×X → R
m
+ is called a generalized

metric if there are accomplished the following conditions:
(i) d̃(x, y) ≥ 0 for every x, y ∈ X ; in particular if d̃(x, y) = 0 then x = y;
(ii) d̃(x, y) = d̃(y, x) for every x, y ∈ X ;
(iii) d̃(x, y) ≤ d̃(x, z) + d̃(z, y) for every x, y, z ∈ X .

Definition 3.2. A set X together with a generalized metric d̃ defined above forms
a generalized metric space.

Remark 3.1. The notions of convergent sequence, fundamental sequence, gener-
alized complete metric space, generalized metric induced by a generalized norm
are defined in the same way than for the usual metric spaces.

We will introduce now the concept of generalized w-distance.

Definition 3.3. Let (X, d) a generalized metric space. The mapping
w̃ : X × X → R

m
+ defined by w̃(x, y) = (v1(x, y), v2(x, y), ..., vm(x, y)) is called

generalized w-distance if the following conditions hold:
(w1) w̃(x, y) ≤ w̃(x, z) + w̃(z, y), for every x, y, z ∈ X ;
(w2) vi : X ×X → R+ is lower semicontinuous for i = 1,m;
(w3) For any ε := (ε1, ε2, ..., εm) ∈ R

∗
+ (where m ∈ N

∗), there exists
δ := (δ1, δ2, ..., δm) ∈ R

∗
+ such that w̃(z, x) ≤ δ and w̃(z, y) ≤ δ implies d̃(x, y) ≤ ε.

Let us translate the crucial lemma for w-distance in the terms of generalized
w-distance.

Lemma 3.1. Let (X, d̃) be a generalized metric space, and let w̃ : X × X → R
m
+ be a

generalized w-distance on X . Let (xn) and (yn) be two sequences in X, let
αn = (α

(1)
n , α

(2)
n , ..., α

(m)
n ) ∈ R+ and βn = (β

(1)
n , β

(2)
n , ..., β

(m)
n ) ∈ R+ be two se-

quences such that α(i)
n and β

(i)
n converge to zero for each i = 1,m. Let x, y, z ∈ X. Then

the following assertions hold:
(1) If w̃(xn, y) ≤ αn and w̃(xn, z) ≤ βn for any n ∈ N, then y = z.
(2) If w̃(xn, yn) ≤ αn and w̃(xn, z) ≤ βn for any n ∈ N, then (yn) converges to z.
(3) If w̃(xn, xm) ≤ αn for any n,m ∈ N with m > n, then (xn) is a Cauchy

sequence.
(4) If w̃(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

Let us present some examples of generalized w-distance.

Example 3.1. Let (X, d̃) be a generalized metric space, and let
w̃ : X ×X → R

m
+ be a generalized w-distance on X . Then w̃ = d̃ is a generalized

w-distance on X .

Proof. The condition (w1) are accomplish for all di(x, y) with i = 1,m, for
m ∈ N, from the positions of the generalized metric d̃(x, y) by the triangle
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inequality of the definition of a usual metric. Thus d̃(x, y) ≤ d̃(x, z) + d̃(z, y), for
every x, y, z ∈ X .

Let {yp}p∈N be a convergent sequence in X and let y ∈ X be the limit of this
sequence.

d̃(x, y) = (d1(x, y), d2(x, y), ..., dn(x, y)) ≤
≤ ( lim

p→∞ d1(x, yp), lim
p→∞ d2(x, yp), ..., lim

p→∞ dm(x, yp)) ≤ lim
p→∞ d̃(x, yp)

Then the application d̃(x, ·) : X → R
m
+ is l.s.c. and is accomplished the second

condition (w2) of the definition of generalized w-distance.
Let ε := (ε1, ε2, ..., εm) ∈ R

∗
+ be given for m ∈ N and put δ := (δ1, δ2, ..., δm) ∈

R
∗
+ such that δ = ε

2 .Then we have true d̃(z, x) ≤ δ and d̃(z, y) ≤ δ. Then by
triangle inequality and the symmetry of the usual metric result

d̃(x, y) ≤ d̃(x, z) + d̃(z, y) ≤ δ + δ = ε

In this case d̃(x, y) accomplish the condition (w3) of the definition of
generalized w-distance. �
Example 3.2. Let w1, ..., wm : X ×X → R+ be w-distances. Then
w̃ : X ×X → R

m
+ defined by w̃(x, y) = (w1(x, y), w2(x, y), ..., wm(x, y)) is a

generalized w-distance.

Proof. It is easy to remark that the conditions (w1) and (w3) from the definition
of generalized w-distance are satisfied of each w-distance wi, for i = 1,m. The
second condition (w2) from the definition of generalized w-distance result by the
lower semicontinuity of the w-distances w1, w2, ...wm. �

4. MAIN RESULTS

The first result of our paper is a generalization of Theorem 1 from [12] in
the terms of Perov-type theorems for generalized metric spaces endowed with a
generalized w-distance.

Theorem 4.1. Let (X, d̃) be a complete generalized metric space and
w̃ : X × X → R

m
+ be a generalized w-distance on X . Let T : X → Pcl(X) be a

multivalued operator. Suppose that there exists A ∈ Mm,m(R+) with An → 0 as
n → ∞ such that for each x, y ∈ X and each u ∈ T (x) there exists v ∈ T (y) with the
following property

w̃(u, v) ≤ Aw̃(x, y)

Then there exists x∗ ∈ X such that x∗ ∈ T (x∗) and, moreover, w(x∗, x∗) = 0.

Proof. Let x0 ∈ X and x1 ∈ T (x0). Then exists x2 ∈ T (x1) for which we have
w̃(x1, x2) ≤ Aw̃(x0, x1). Thus we can define the sequence (xn)n∈N ∈ X such that
xn+1 ∈ T (xn) and w̃(xn, xn+1) ≤ Anw̃(xn−1, xn) for every n ∈ N.

Then we have, for any n ∈ N,

w̃(xn, xn+1) ≤ Aw̃(xn−1, xn) ≤ ... ≤ Anw̃(x0, x1).

Hence, for any m,n ∈ N with m > n, and using Theorem 2.8. result:

w̃(xn, xn+m) ≤ w̃(xn, xn+1) + w̃(xn+1, xn+2) + ...+ w̃(xn+m−1, xn+m) ≤
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≤ Anw̃(x0, x1) +An+1w̃(x0, x1) + ...+An+m−1w̃(x0, x1) ≤
≤ An(I −A)−1w̃(x0, x1).

From hypothesis we have that An → 0 as n → ∞. Using Lemma 3.5.(3) we
have that the sequence (xn)n∈N is a Cauchy sequence. Thus x0 = x, x1 = y and
xn+1 ∈ T (xn).

Since (X, d̃) is a complete space then the sequence (xn)n∈N it is a convergent
sequence. Let z ∈ X be the limit of the sequence (xn)n∈N.

For m > n we have the inequality:

w̃(xn, xm) ≤ w̃(xn, xn+1) + w̃(xn+1, xn+2) + ...+ w̃(xm−1, xm) ≤
≤ Anw̃(x0, x1) +An+1w̃(x0, x1) + ...+Am−1w̃(x0, x1) ≤

≤ An(I −A)−1w̃(x0, x1).

By the Lemma 3.5.(3) we have that the sequence (xn)n∈N is a Cauchy sequence.
Since (X, w̃) is a complete metric space then there exists x∗ ∈ X such that
lim
n→∞xn = x∗.

Since for each xn ∈ X the operator w̃(xn, .) : X → R
m
+ is l.s.c. for every m ∈ N

we derive

w̃(xn, x
∗) ≤ lim inf

m→∞ w̃(xn, xm) ≤ An(I −A)−1w̃(x0, x1).

Thus, for every n ∈ N, w̃(xn, x
∗) ≤ An(I −A)−1w̃(x0, x1).

For x∗ ∈ X and xn ∈ T (xn−1) there exists un ∈ T (x∗) such that

w̃(xn, un) ≤ Aw̃(xn−1, x
∗) ≤ ... ≤ Anw̃(x0, x1)

Therefore, we obtain that:
w̃(xn, un) ≤ Anw̃(x0, x1)
w̃(xn, x

∗) ≤ An(I −A)−1w̃(x0, x1)

Then, by the Lemma 3.5.(2), we obtain that un
d→ x∗. As un ∈ T (x∗) and using

the closure of T result that x∗ ∈ T (x∗).
For x∗ ∈ X and x∗ ∈ T (x∗), using the hypothesis, there exists z1 ∈ T (x∗) such

that
w̃(x∗, z1) ≤ Aw̃(x∗, x∗).

For x∗, z1 ∈ X and x∗ ∈ T (x∗) there exists z2 ∈ T (z1) such that

w(x∗, z2) ≤ Aw̃(x∗, z1).

By induction we get a sequence (zn)n∈N ∈ X such that
(i) zn+1 ∈ T (zn), for every n ∈ N;
(ii) w̃(x∗, zn) ≤ Aw̃(x∗, zn−1), for every n ∈ N \ {0}.

Therefore we have

w̃(x∗, zn) ≤ Aw̃(x∗, zn−1) ≤ A2w̃(x∗, zn−2) ≤ · · · ≤
≤ An−1w̃(x∗, z1) ≤ Anw̃(x∗, x∗).

Thus w̃(x∗, zn) ≤ Anw̃(x∗, x∗).
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When n → ∞, Anw̃(x∗, x∗) converge to 0. Thus, by the Lemma 3.5.(4) we
obtain that (zn)n∈N ∈ X is a Cauchy sequence in (X, d̃) and there exists z∗ ∈ X

such that zn
d→ z∗.

Using the lower semicontinuity of the components of the mapping w̃(x∗, ·), we
have that

0 ≤ w̃(x∗, z∗) ≤ lim
n→∞ inf w̃(x∗, zn) ≤ lim

n→∞Anw̃(x∗, x∗) = 0.

Then w̃(x∗, z∗) = 0.
So, by triangle inequality we have

w̃(xn, z
∗) ≤ w̃(xn, x

∗) + w̃(x∗, z∗) ≤ Anw̃(x0, x1).

Since Anw̃(x0, x1) converge to 0 when n → ∞ we have

w̃(xn, z
∗) ≤ Anw̃(x0, x1)

w̃(xn, x
∗) ≤ Anw̃(x0, x1)

Using Lemma 3.5.(1) we have z∗ = x∗, then w̃(x∗, x∗) = 0. �

Remark 4.1. Notice that, in the conditions of the above theorem, T is a MWP
operator.

The second result is a fixed point theorem for MWP operators in generalized
metric space with respect to a generalized w-distance.

Theorem 4.2. Let (X, d̃) be a complete generalized metric space and
w̃ : X × X → R

m
+ be a generalized w-distance on X . Let T : X → P (X) be a

multivalued operator.
Suppose that:

(i) there exists A ∈ Mm,m(R) with An → 0 as n → ∞ such that for each x, y ∈ X
and each u ∈ T (x) there exists v ∈ T (y) with the following property

w̃(u, v) ≤ Aw̃(x, y)

(ii) for every x, y ∈ X, with y /∈ T (y) we have that

inf{w̃(x, y) +Dw̃(x, T (x)) : x ∈ X} > 0,

where Dw̃(x, T (x)) = inf{w̃(x, y) : y ∈ T (x)}.
Then T is a MWP operator.

Proof. In the same way as in the proof of the Theorem 4.1. we construct a se-
quence (xn)n∈N ∈ X such that

(i) xn+1 ∈ T (xn)
(ii) w̃(xn, xn+1) ≤ Aw̃(xn−1, xn) for every n ∈ N.

For any n ∈ N,

w̃(xn, xn+1) ≤ Aw̃(xn−1, xn) ≤ ... ≤ Anw̃(x0, x1).

Hence, for any m,n ∈ N with m > n and using Theorem 2.8. we have:

w̃(xn, xm) ≤ An(I −A)−1w̃(x0, x1).

From hypothesis (i) we have that An → 0 as n → ∞. Using Lemma 3.5.(3) we
have that the sequence (xn)n∈N is a Cauchy sequence.

Thus x0 = x, x1 = y and xn+1 ∈ T (xn).
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Since (X, d̃) is a complete generalized metric space then the sequence (xn)n∈N

is a convergent sequence. Let x∗ ∈ X be the limit of the sequence (xn)n∈N.
Assume that x∗ /∈ T (x∗). Since for each xn ∈ X the operator w̃(xn, .) : X → R

m
+

is l.s.c. for every m ∈ N, we derive

w̃(xn, z) ≤ lim inf
m→∞ w̃(xn, xm) ≤ An(I −A)−1w̃(x0, x1).

Therefore by hypothesis (ii) and by using the above inequality, we obtain

0 < inf{w̃(x, x∗) +Dw̃(x, T (x)) : x ∈ X}
≤ inf{w̃(xn, x

∗) + w̃(xn, xn+1) : n ∈ N}
≤ inf{2An(I −A)−1w̃(x0, x1) : n ∈ N}
= limn→∞ 2An(I −A)−1w̃(x0, x1) = 0.

Which is a contradiction. Thus we conclude that x∗ ∈ T (x∗).
Then T is a MWP operator. �
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