
CREATIVE MATH. & INF.
17 (2008), No. 3, 420 - 426

Online version at http://creative-mathematics.ubm.ro/

Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

Quality evaluation of the software product approach

MARA HAJDU-MĂCELARU

ABSTRACT. We will provide in this paper an approach of evaluating the quality of the software
product, using in the planning and developing phase of the product the two approaches that exists
in the literature: Quality Function Deployment approach (QFD) and Goal Question Metric approach
(GQM).

1. INTRODUCTION

The Goal Question Metric (GQM) approach is based upon the assumption that
for an organization to measure in a purposeful way it must first specify the goals
for itself and its projects, then it must trace those goals to the data that are in-
tended to define those goals operationally, and finally provide a framework for
interpreting the data with respect to the stated goals. Thus it is important to
make clear, at least in general terms, what informational needs the organization
has, so that these needs for information can be quantified whenever possible,
and the quantified information can be analyzed a to whether or not the goals are
achieved, [1].

QFD was developed initially by Akao in Japan in 1966. Akao (1990) defined it
as a method for developing a design quality aims at satisfying the customer and then
translating the customer’s demands into design targets and major quality assurance
points to be used throughout the production stage.

We will present an approach of evaluating the quality of the software product
based on this two approaches.

2. QUALITY EVALUATION OF THE SOFTWARE PRODUCT APPROACH

Using the QFD algorithm approach we will plan the specification, the require-
ments that will be met in the final software product. In order to have a quality
product customer requirements have to be considered. Let’s suppose we have n
customers for our product.

Notation: We will consider U = {u1, u2, . . . , un} as being the set of our cus-
tomers.

We will apply the algorithm from the QFD approach. Each user defines a set
of requirements that he will need to have in the final software product. The same
requirement can be asked to be implemented in the final software product by
different customers.

Received: 11.09.2008. In revised form: 03.05.2009. Accepted: 21.05.2009.
2000 Mathematics Subject Classification. 68N30.
Key words and phrases. Software quality evaluation, metrics, requirements.

420



Quality evaluation of the software product approach 421

Notation: We will consider C = {c1, c2, . . . , cm} the total set of requirements
defined by the set of customers, where m is the total number of requirements
asked to be implemented in the software product.

Definition 2.1. We define the Matrix of customer importance ratings of the requirements
U [i, j], i = 1, n; j = 1,m; define as follows:

• U [i, j] = 0, if the customer ui did not ask for the requirement cj to be imple-
mented in the software product

• U [i, j] = 1, if the customer ui ask for the requirement cj to be implemented in
the software product with the importance rate quantified through the numerical
value 1. (the least important)

• U [i, j] = 2, if the customer ui ask for the requirement cj to be implemented in
the software product with the importance rate quantified through the numerical
value 2. (quite important)

• U [i, j] = 3, if the customer ui ask for the requirement cj to be implemented in
the software product with the importance rate quantified through the numerical
value 3. (important)

• U [i, j] = 4, if the customer ui ask for the requirement cj to be implemented in
the software product with the importance rate quantified through the numerical
value 4. (very important)

• U [i, j] = 5, if the customer ui ask for the requirement cj to be implemented in
the software product with the importance rate quantified through the numerical
value 5. (the most important requirement)

Definition 2.2. We define the V RT [j] for j = 1,m the Total Importance Rating of
the requirement cj , j = 1,m as being the importance rate cj for all the customers from
the Set of our customers U = {u1, u2, ..., un}. The computation formula for the Total
Importance Rating of the requirement cj , j = 1,m is:

V RT [j] =

n∑

i=1

U [i, j], j = 1,m. (2.1)

We know that V RT [j] > 0 for all j = 1,m; because at least one user has asked
for the cj , j = 1,m to be implemented in the software product otherwise it will
not appear in the set of requirements.

The vector V RT elements sums represent the maxim quality degree from the
user point of view. If all the requirements that the customers asked to be imple-
mented in the software product are retrieve in the final product, and are correctly
implemented we will have a 100% customers satisfaction.

Notation: GCm to be the Maximum Quality Degree from customer’s point of
view.

GCm =
m∑

j=1

V RT [j]. (2.2)

Because in the real life, not all the customer’s requirements can be implemented,
rarely the software product will have a 100% customer’s satisfaction. In many
cases it may happen that not all the customer’s requirements can be implemented
mostly because of technical limitation, or because the time needed to implement
a specific request is too long and it does not worth from cost of the product point



422 Mara Hajdu-Măcelaru

of view. Using the QFD approach, we will make a separation of the requirements,
as follows:

(1) The degree of technical implementation difficulty of the requirement in
the development phase of the software

(2) The relationship between the requirements, meaning which requirements
support one another and which are in conflict. (Correlation Matrix from
the QFD approach)

This is made by the development team that is going to make the implementation
of the software product.

Definition 2.3. We define the Vector of Implementation Degree of the Requirements
R[j], j = 1,m; define as follows:

• R[j] = 1, the requirement cj is very easy to be implemented from the technical
(development) point of view

• R[j] = 2, the requirement cj is easy to be implemented from the technical (devel-
opment) point of view

• R[j] = 3, the requirement cj is achievable to be implemented from the technical
(development) point of view

• R[j] = 4, the requirement cj is difficult to be implemented from the technical
(development) point of view

• R[j] = 5, the requirement cj is very difficult/almost impossible to be imple-
mented from the technical (development) point of view

For the requirements for which R[j] = 5, in the VRT vector (Total Importance
Rating vector), we make the change V RT [j] := 0, meaning that the requirement
was eliminated due to the difficulty of its implementation.

Definition 2.4. We define the Correlation Matrix MC[j1, j2], j1 = 1,m, j2 = 1,m as
follows :

• MC[j1, j2] = 0, if j1 = j2, meaning that there is no way to have a correlation
between the requirements as the requirements are the same

• MC[j1, j2] = 1, if requirement cj1 supports the requirement cj2 , meaning that
there is no conflict between the two requirements

• MC[j1, j2] = −1, if requirement cj1 does not support the requirement cj2 ,
meaning that there is a conflict between the two requirements

We need to solve the conflict between the requirements. For this, we cross all
the matrix values and if the value is −1 (meaning that we have a conflict) we
compute for both the requirements that are in conflict, the ratio between the Total
Importance Rating of the requirement cj which is V RT [j] and the corresponding
value of the requirement cj from the Vector of Implementation Degree of the Re-
quirements R[j] and compare the two values that we receive. The requirement
for which the ratio that is greater, that is the one that will remain, and in case the
ratios are equal we compare the Total Importance Rating values for both require-
ments and the one for which the value is greater that will be the one that will
remain.



Quality evaluation of the software product approach 423

For example, if we have that MC[j1, j2] = −1, then we compute and compare
the following ratios:

V RT [j1]/R[j1] with V RT [j2]/R[j2]

If V RT [j1]/R[j1] > V RT [j2]/R[j2]
then
Begin

V RT [j2] := 0;
MC[j2, j1] := 0;

end ;
Meaning that the cj2 requirement was eliminated as the cj1 requirement is more
advantageous to remain. Also the attribution MC[j2, j1] := 0; was made, as the
matrix is symmetrical to the diagonal.

If V RT [j1]/R[j1] < V RT [j2]/R[j2]
then
Begin

V RT [j1] := 0
MC[j2, j1] := 0;

end ;
Meaning that the cj1 requirement was eliminated as the requirement cj2 is

more advantageous to remain. Also the attribution MC[j2, j1] := 0; was made, as
the matrix is symmetrical to the diagonal.

If V RT [j1]/R[j1] = V RT [j2]/R[j2]
then
Begin

if V RT [j1] >= V RT [j2]
then V RT [j2] := 0
else V RT [j1] := 0;

MC[j2, j1] := 0;
end;

Meaning that in case the ratios values are equal we compare the values corre-
sponding values of the cj1 , and cj2 requirements from the Vector of Total Impor-
tance Rating, and the one with the greater importance remains. Also the attribu-
tion MC[j2, j1] := 0; was made, as the matrix is symmetrical to the diagonal.

As it can be noticed above, we have assign the value 0 in the Total Importance
Rating vector - V RT [j], j = 1,m, for the requirements that were eliminated, so
because of technical limitation not all the requirements will be implemented.

Definition 2.5. We define the Quality Implementation Degree - Gci in the software
product, based on the customer requirements and technical limitation, define as follows:

Gci =

m∑

j=1

V RT [j]. (2.3)



424 Mara Hajdu-Măcelaru

Definition 2.6. We define the achievable quality degree from the customer requirements
and technical limitation that can be implemented in the software product pu and we com-
pute it as follows:

pu =
Gci

GCm
· 100%.

As a conclusion, using the QFD approach we have create a model that com-
putes the achievable quality degree, from the customer’s and development per-
spective.

But there is no guarantee that the achievable quality degree will be the one
that will be realized in the final product, after the implementation of the software
product. We know which will be the user satisfaction if all the functionalities
will be implemented correctly. But it does not assure that the functionality will
be 100% correctly implemented and will work 100% for all the supported input
values.

Using the GQM approach we will provide a method of computing the qual-
ity percentage of the overall software product based on customer requirements,
technical limitation and functional correctness.

Using the GQM approach, we will consider that in our case the targets that will
be measured will be the software product functionalities (requirements). So, we
will suppose that we have to evaluate the overall functionality percentage of the
software product based on the functionalities of the software product. As above
we discussed about requirements, we will consider that each requirement is func-
tionality in our product. Purpose: Which is the functional correctness percent of
a software product for each functionality?

1. Conceptual level (Goal) First step is to establish the product functionali-
ties/requirements. Let’s suppose that we have a software product with p func-
tionalities/ requirements. We will need to evaluate the functionality percentage
for each of the functionality in part. So we have p goals:

Goal 1 -functional correctness of the functionality 1
Goal 2 - functional correctness of the functionality 2
... ...
Goal p - functional correctness of the functionality p

2. Operational Level (Question) A set of questions is used to characterize the
way the functional correctness is achieved. The questions try to characterize the
component based on the specification, input values and other necessary charac-
teristic to obtain the most suitable characterization of the functional correctness
of the functionality.

Functionality 1 . . . Functionality p
{(car11, p11), (car12, p12), ...} . . . {(carp1, pp1), (carp2, pp2), ...}

Notation: The pair (carij , pij) means carij the characteristic j of the Function-
ality i, and has the importance percent pij , i = 1, p;

In our case, for a better precision in the functional correctness evaluation of
the functionality, for each goal in par is defined a set of characteristics, and also
a importance percent pij of the characteristic in evaluating the goal. (How much



Quality evaluation of the software product approach 425

the achievement of the characteristic counts in the establishment of the functional
correctness of the corresponding functionality) .The sum of all the importance
percentage for a specific Functionality i is 100% , i = 1, p.

3. Quantitative level (METRIC) A set of data is associated with every charac-
teristic in order to answer in a quantitative way. For each characteristic in part,
we choose a set of metrics used to evaluate the characteristic. So, we have:

Functionality 1 . . . Functionality p
{(car11, p11), (car12, p12), ...} . . . {(carp1, pp1), (carp2, pp2), ...}
{(m111,m112, ...), (m121,m122, ...), ...} . . . {(mp11,mp12, ...), ...)}
{f11, f12, ...} . . . {fp1, fp2, ...}

Notation: (mij1,mij2, ...) are the metrics used to evaluate the characteristic
carij , and fij is the quantitative answer to the question, in our case the functional
correctness percent of the Functionality i relative to the characteristic carij .

As an answer to our goal ”Which is the functional correctness percent of a
software product for each functionality?, we have the following definition and
formula.

Definition 2.7. The functional correctness percentage of the Functionality i , i = 1, p
is:

pfi =

ni∑

j=1

(fij · pij) ,

where ni is the number of characteristics that characterize the Functionality i.

We can use the GQM model in our approach by considering a requirement ci
to be corresponding to a functionality i, i = 1,m.

The achievable quality degree that could be realized in the software product if
all the requirements/functionality were 100% functional correctness was:

pu =
Gci

GCm
· 100%.

So, if the functional correctness percentage is pfi = 100%, meaning that all the
requirements were implemented without errors, than the overall quality percent
of the product based on customer requirements, technical limitation and func-
tional correctness is equal with the achievable quality degree. But unfortunately,
in software industry the realization of functionalities to be 100% functional cor-
rect is almost impossible. We can compute based on the Quality Implementation
Degree formula, achievable quality degree formula, and functional correctness
percentage formula the overall quality percent.

We can now compute the Overall Quality Percent, for short Pc, of the soft-
ware product based on the customer requirements, development limitation, and
functional correctness, as follows:

Pc =

m∑
i=1

pfi · V RT [i]

GCm
· 100,



426 Mara Hajdu-Măcelaru

where pfi is functional correctness percentage of the Functionality i; V RT [i], i =
1,m is the Total Importance Rating vector; and GCm represents the Maximum
Quality Degree.

We have present an approach that computes the overall quality of the software
product based on the two approaches from the literature GQM and QFD.

3. CONCLUSIONS AND FUTURE DEVELOPMENTS

Following the steps of this approach, the quality of the software product can
be evaluated taking into account the user requirements, and development limita-
tion.

For a software product, it is very important to reach an acceptable level of
quality, but another factor to which we need to pay attention is the time/costs.
How much will cost to reach an acceptable level of quality or a higher level? Does
it make sense to improve the quality of the product if the costs/time is high? This
approach can be improve by adding time/cost metrics in the development phase
that can provide information about the quality level that was reached at a certain
point in the development with the exact costs, and if want to reach higher levels
of quality which will be the costs.

REFERENCES

[1] Basili, V. R., The Goal Question Metric Approach, ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf
[2] Shahin, A., Quality Function Deployment: A Comprehensive Review,

http://www04.homepage.villanova.edu/jessica.byrnes/Quality%20Function%20Deploy/
shahin.pdf

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF MATHEMATICS

AND COMPUTER SCIENCES

VICTORIEI 76
430122 BAIA MARE, ROMANIA

E-mail address: macelarumara@yahoo.com


