
CREATIVE MATH. & INF.
17 (2008), No. 3, 427 - 430

Online version at http://creative-mathematics.ubm.ro/

Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

A Perov-type fixed point theorem in generalized
ordered metric spaces
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ABSTRACT. In this paper we prove a Perov-type fixed point theorem in generalized ordered metric
spaces.

1. INTRODUCTION

In 1966 Perov formulated a fixed point theorem which extends the well-known
contraction mapping principle for the case when the metric d takes values in R

m
+ ,

that is, in the case when we have a generalized metric space.
The full statement of Perov’s fixed point theorem, see [5] is the following:

Theorem P. Let (X, d) be a generalized complete metric space (d(x, y) ∈ R
m
+ ) and f :

X → X a mapping which satisfies the condition

d(f(x), f(y)) ≤ Ad(x, y), ∀x, y ∈ X (1.1)

where A ∈ Mm×m(R+) is a matrix convergent to zero.
Then

(i) Ff = {x∗}, Ff = {x ∈ X |f(x) = x};
(ii) The sequence of successive approximations xn = fn(x0) is convergent and

lim
n→∞xn = x∗, for any x0 ∈ X ;

(iii) We have the estimation

d(xn, x
∗) ≤ An(I −A)−1d(x0, x1)

In [4] A. C. M. Ran and M. C. B. Reurings generalized the Banach’s fixed point
theorem from usual metric spaces to ordered metric spaces.

In the present paper we give a Perov-type fixed point theorem in generalized
ordered metric spaces. In this setting, the map assumed to be monotone satisfies
a Lipschitz type condition with a matrix A. This condition is assumed to hold
only on elements that are comparable with respect to the partial order. It is also
assumed that f is continuous.We show that under such conditions a Perov-type
fixed point theorem still hold.
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2. MAIN RESULT

In this section we will prove the following fixed point theorem

Theorem 2.1. Let X be a partially ordered set such that every pair x, y ∈ X has a lower
and an upper bound. Furthermore, let d be a metric on X such that (X, d) is a generalized
complete metric space (d(x, y) ∈ R

m
+ ). If the map f : X → X is continuous, monotone

(i.e., increasing or decreasing) such that
1) f satisfies a Lipschitz type condition with a matrix A ∈ Mm×m(R+)

d(f(x), f(y)) ≤ Ad(x, y), ∀x ≥ y; (2.1)

2) An → O, n → ∞;
3) ∃ x0 ∈ X such that x0 ≤ f(x0) or x0 ≥ f(x0).

Then
(i) Ff = {x∗};
(ii) The sequence of successive approximations xn = fn(x) is convergent and

lim
n→∞ fn(x) = x∗, ∀x ∈ X .

Proof. Let x0 ∈ X be such that x0 ≤ f(x0) or x0 ≥ f(x0). The monotonicity of f
implies that fn(x0) ≤ fn+1(x0) or fn(x0) ≥ fn+1(x0), for n = 0, 1, 2, . . .

From x0 ≤ f(x0) or x0 ≥ f(x0) by (2.1) we have

d(f(f(x0)), f(x0)) ≤ Ad(f(x0), x0). (2.2)

We suppose that d(fn(x0), f
n−1(x0)) ≤ An−1d(f(x0), x0) and prove that

d(fn+1(x0), f
n(x0)) ≤ And(f(x0), x0).

From (2.1) we have

d(f(fn(x0)), f(f
n−1(x0))) ≤ Ad(fn(x0), f

n−1(x0))

≤ A · An−1d(f(x0), x0) = And(f(x0), x0).

In conclusion,

d(fn+1(x0), f
n(x0)) ≤ And(f(x0), x0), ∀n ∈ N. (2.3)

Now, we will prove that the sequence of successive approximations is Cauchy
sequence

d(fn(x0), f
n+p(x0)) ≤ d(fn(x0), f

n+1(x0)) + d(fn+1(x0), f
n+2(x0)) + . . .

+ d(fn+p−1(x0), f
n+p(x0))

(2.3)

≤ And(x0, f(x0)) +An+1d(x0, f(x0)) + . . .

+An+p−1d(x0, f(x0)) = (An +An+1 + · · ·+An+p−1)d(x0, f(x0))

= An(I +A+ · · ·+Ap−1)d(x0, f(x0))

≤ An(I +A+ · · ·+Ap−1 + . . . )d(x0, f(x0))

= An(I −A)−1d(x0, f(x0)),

d(fn(x0), f
n+p(x0)) ≤ An(I −A)−1d(x0, f(x0)) (2.4)

which shows that the sequence xn = fn(x0) is fundamental sequence. The space
(X, d) is complete, so (xn) is convergent.
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Let x∗ = lim
n→∞xn. We have xn+1 = f(xn) and by letting n → ∞ and f contin-

uous we get

x∗ = lim
n→∞xn+1 = lim

n→∞ f(xn) = f( lim
n→∞xn) = f(x∗)

x∗ = f(x∗), thus x∗ ∈ Ff .
It remains to show that x∗ is the unique fixed point of f . We will show this by

lim
n→∞ fn(x) = x∗, for all x ∈ X .

For x ≤ x0 and x ≥ x0 it is obvious fn(x) ≤ fn(x0) or fn(x) ≥ fn(x0). We get

d(fn(x), fn(x0)) ≤ And(x, x0).

Because An → O, n → ∞ we have

lim
n→∞ fn(x) = lim

n→∞ fn(x0) = x∗.

Let x ∈ X arbitrary and let x1, respective x2, be an upper bound and a lower
bound of x and x0. Then x1 ≥ x ≥ x2 imply

fn(x1) ≥ fn(x) ≥ fn(x2) or fn(x1) ≤ fn(x) ≤ fn(x2) (2.5)

and x2 ≤ x0 ≤ x1 imply fn(x2) ≤ fn(x0) ≤ fn(x1) which yields

lim
n→∞ fn(x1) = lim

n→∞ fn(x2) = x∗. (2.6)

From (2.5) and (2.6) we have lim
n→∞ fn(x) = x∗, ∀x ∈ X . The proof is complete. �

Remark 2.1. Condition (2.1) is weaker than the condition (1.1) in Perov original
fixed point theorem, where it is required that (1.1) is satisfied for all x, y ∈ X .

3. A MAIA-PEROV FIXED POINT THEOREM

We give in this section a Perov-Maia type theorem in generalized ordered met-
ric spaces, see [3], [2].

Theorem 3.1. (Perov-Maia) Let X be a nonempty set, partially ordered, such that every
pair x, y ∈ X has a lower and an upper bound. Let d and ρ be two metrics on X and
f : X → X a mapping. We suppose that

(i) d(x, y) ≤ ρ(x, y), ∀x ≥ y;
(ii) (X, d) is a generalized ordered complete metric space;
(iii) f : (X, d) → (X, d) is continuous mapping;
(iv) f is a monotone mapping;
(v) there exists a matrix A ∈ Mm×m(R+) convergent to zero, such that

ρ(f(x), f(y)) ≤ Aρ(x, y), ∀x ≥ y;

(vi) ∃ x0 ∈ X such that x0 ≤ f(x0) or x0 ≥ f(x0).
Then, Ff = {x∗}.

Proof. Let x0 ∈ X be such that x0 ≤ f(x0) or x0 ≥ f(x0). Using that f is mono-
tone, we get fn(x0) ≤ fn+1(x0) or fn(x0) ≥ fn+1(x0). From (iv) and (v) we
have

ρ(fn(x0), f
n+1(x0)) ≤ Anρ(x0, f(x0))

and using a similar argument like in the proof of Theorem 2.1 we get that (xn),
xn = fn(x0) is Cauchy sequence in (X, ρ).



430 Natalia Jurja

From (i), (xn) is Cauchy sequence in (X, d). Using (ii), (xn) is convergent,
f : (X, d) → (X, d) is continuous mapping, results x∗ ∈ Ff . From (v) we have
Ff = {x∗}. �
Remark 3.1. By Theorem 3.1, in the case d ≡ ρ, we obtain the Perov-type fixed
point theorem, that is, Theorem 2.1.

The fixed point theorems obtained could be used in order to obtain applica-
tions to matrix equations, similarly to the ones given in the paper [4] for contrac-
tion mapping principle in ordered metric spaces.
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