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The crossing number of P 2
5 × Cn

MARIÁN KLEŠČ1,2 AND DANIELA KRAVECOVÁ2

ABSTRACT. Patil and Krishnnamurthy established family of graphs for which power graphs have
crossing number one. This is the only result concerning crossing numbers of power of some graphs.
Let P 2

m denote the power of the path Pm. We start to determine crossing numbers of a new infinite
family of graphs, concretely for the Cartesian products P 2

m × Cn where m ≥ 2 and n ≥ 3. The main
result of the paper is that the crossing number of the graph P 2

5 × Cn is 4n for all n ≥ 3.

1. INTRODUCTION

The crossing number cr(G) of a simple graph G with vertex set V and edge set
E is defined as the minimum number of crossings among all possible projections
of G on the R 2 plane. The investigation on the crossing number of graphs is a clas-
sical and however very difficult problem. The structure of Cartesian products of
graphs makes Cartesian products of special graphs one of few graph classes for
which the exact values of crossing numbers were obtained. (For a definition of
Cartesian product, see [1].) Let Cn be the cycle on n vertices andPm be the path on
m + 1 vertices. There are known exact values of crossing numbers for Cartesian
products of paths with all graphs of order at most five as well as for Cartesian
products of cycles and all graphs of order at most four. In addition, for some
graphs G on five vertices the crossing numbers of G× Cn are known.

A drawing with the minimum number of crossings (an optimal drawing) must
be a good drawing; that is, each two edges have at most one point in common,
which is either a common end-vertex or a crossing. Let D be a good drawing of
the graph G. We denote the number of crossings in D by crD(G). Let Gi and
Gj be edge–disjoint subgraphs of G. We denote by crD(Gi, Gj) the number of
crossings between edges of Gi and edges of Gj , and by crD(Gi) the number of
crossings among edges of Gi in D.

In the paper [5], Patil and Krishnnamurthy established family of graphs for
which power graphs have crossing number one. This is the only result concerning
crossing numbers of power of some graphs. Let P 2

m denote the power of the path
Pm. We start to determine crossing numbers of a new infinite family of graphs,
concretely for the Cartesian products P 2

m × Cn where m ≥ 2 and n ≥ 3.
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For m = 2, the graph P 2
2 × Cn is isomorphic to the graph C3 × Cn. Since

cr(C3 × Cn) = n [7], we have cr(P 2
2 × Cn) = n. As the graph P 2

3 × Cn contains
the graph C4 ×Cn as a subgraph and cr(C4 ×Cn) = 2n, n ≥ 4 [1], for all integers
n greater than 3 we know that cr(P 2

3 × Cn) ≥ 2n. The drawing of the graph
P 2
3 × Cn with 2n crossings shows that, for n ≥ 4, cr(P 2

3 × Cn) ≤ 2n. This,
together with the result cr(P 2

3 × C3) = 6 [2], confirms that cr(P 2
3 × Cn) = 2n for

all n ≥ 3. For the graph P 2
4 × Cn one can find the drawing with 3n crossings,

hence cr(P 2
4 × Cn) ≤ 3n. As the graph P 2

4 × Cn contains the graph C5 × Cn as a
subgraph and, for n ≥ 5, cr(C5 ×Cn) = 3n [4], we have that the crossing number
of the graph P 2

4 ×Cn is 3n for all n ≥ 5. The graph P 2
4 is the special graph on five

vertices and it is proved in [3] that cr(P 2
4 × C3) = 9 and cr(P 2

4 × C4) = 12. This
confirms that cr(P 2

4 × Cn) = 3n for all n ≥ 3.
The extension of the drawing in Figure 1(b) shows that the crossing number of

the Cartesian product P 2
m × Cn is at most n(m− 2). The main result of the paper

is that the crossing number of the graph P 2
5 × Cn is 4n for all n ≥ 3.

2. THE GRAPH P 2
5 × Cn

Let P5 by the path of length five, that is P5 has six vertices. Figure 1(a) shows
the power graph P 2

5 . For the simpler labelling let, in this paper, H denote the
graph P 2

5 .
We assume n ≥ 3 and find it convenient to consider the graph P 2

5 × Cn in the
following way: it has 6n vertices and edges that are the edges in the n copies
Hi, i = 1, 2, . . . , n, and in the six cycles of length n. For i = 1, 2, . . . , n, let ai
and di be the vertices of H i of degree two, bi and ci the vertices of degree three,
and pi and qi the vertices of degree four as shown in Figure 1(a). Thus, for x ∈
{a, b, c, d, p, q}, the n–cycle Cx

n is induced by the vertices x1, x2, . . . , xn. Let T a (T d)
be the subgraph of the graph P 2

5 × Cn consisting of the cycle Ca
n (Cd

n) together
with the vertices of Cb

n and Cp
n (Cc

n and Cq
n) and of the edges joining Ca

n (Cd
n)

with Cb
n and Cp

n (Cc
n and Cq

n). Denote by Ixy , x, y ∈ {b, c, p, q}, the subgraph of
P 2
5 × Cn consisting of the vertices in V (Cx

n) ∪ V (Cy
n) and of the edges {xi, yi} for

all i = 1, 2, . . . , n. It is not difficult to see that

P 2
5 × Cn = T a ∪ Cb

n ∪ Cp
n ∪ Ipb ∪ Ipc ∪ Ipq ∪ Iqb ∪ Iqc ∪ Cc

n ∪ Cq
n ∪ T d.

a

b

c

d

p

q

(a) (b)

Fig. 1. The graph P 2
5 , and the Cartesian product P 2

5 × Cn.
The main result of the paper is the next Theorem 2.1.
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Theorem 2.1. cr(P 2
5 × Cn) = 4n for n ≥ 3.

Proof. In Figure 1(b) there is the drawing of the graph P 2
5 × Cn with 4n crossings

and therefore cr(P 2
5 × Cn) ≤ 4n. As for n ≥ 6 the graph P 2

5 × Cn contains the
subgraph C6 × Cn and it was proved in [6] that cr(C6 × Cn) = 4n, the proof is
done for all n ≥ 6. The cases n = 3, 4 and 5 we prove as separate Theorems in the
rest of the paper. �

Let us consider the graph K1,1,2 in which r and s be the vertices of degree three
and u and v be the vertices of degree two. The graph P 2

5 × Cn contains several
subgraphs isomorphic to the graph K1,1,2 × Cn. Special subgraphs of the graph
K1,1,2 × Cn we will denote in the similar way as in the graph P 2

5 × Cn.

Lemma 2.1. Let D be a good drawing of the graph K1,1,2 × C3 in which every of the
subgraphs Iru, Irv, Isu, Isv , and Irs has at most two crossings on its edges. Let for
each pair x, y ∈ {r, s, u, v} the 3-cycles Cx

3 and Cy
3 do not cross each other and let

crD(Cr
3 ∪ Irs ∪Cs

3) = 1. Then crD(Cu
3 ∪ Iru ∪ Isu, Cv

3 ∪ Irv ∪ Isv) �= 0.

Proof. By hypothesis, the only crossing in the subgraph Cr
3 ∪ Irs ∪Cs

3 can appear
between two edges of Irs or between an edge of Irs and an edge of Cr

3 or Cs
3 .

Suppose first that two edges, say {ri, si} and {rj , sj}, of Irs cross each other. In
this case, in D, the vertex-disjoint cycles riuisiri and rjvjsjrj cross each other
at least two times and the vertex-disjoint cycles rivisiri and rjujsjrj cross each
other at least two times. As at most two crossings can appear on the edges {ri, si}
and {rj , sj}, the edges of Iru ∪ Isu cross the edges of Irv ∪ Isv , and therefore
crD(Cu

3 ∪ Iru ∪ Isu, Cv
3 ∪ Irv ∪ Isv) �= 0.

u2

u2 u2
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3s
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3r
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2s

3s

(a) (c) (d)(b)

Fig. 2. The possible subdrawings of Cr
3 ∪ Irs ∪ Cs

3 and some edges of
Cu

3 ∪ Iru ∪ Isu.

Consider now that, without loss of generality, an edge of Irs crosses an edge of
the 3-cycle Cs

3 . The subdrawing D′ induced from D by the subgraph Cr
3 ∪Irs∪Cs

3

in unique up to the isomorphism, see Figure 2(a). The cycles Cu
3 and Cv

3 do not
cross the edges of Cr

3 ∪Irs∪Cs
3 and at most one of the subgraphs Iru, Isu, Irv, and

Isv can cross the edges of Irs. Let, without loss of generality, crD(Iru∪Isu, Irs) =
0. Since crD(Iru, Cr

3 ∪ Cs
3) ≤ 2 and crD(Isu, Cr

3 ∪ Cs
3) ≤ 2, the cycle Cu

3 can only
lie in D in the unbounded region in the view of the subdrawing D′. The edge
{u2, s2} does not cross Cr

3 ∪ Irs ∪ Cs
3 and the edge {u2, r2} can cross the cycle Cr

3

once or it crosses the cycle Cs
3 two times. In the first case we have the subdrawing

of D shown in Figure 2(b). It is easily seen that, in D, both paths r1v1v2r2 and
s1v1v2s2 cross the cycle r2u2s2r2 and therefore at least one of them crosses the
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path r2u2s2. In the second case, the edge {u2, r2} crosses the cycle Cs
3 two times

as shown in Figure 2(c). Since the edges of Iru are crossed two times and Cu
3 does

not cross the edges of Cr
3 ∪ Irs ∪Cs

3 , Figure 2(d) shows that the vertices s1 and s3
are separated in D by the edges of Cr

3 ∪ Iru ∪Cu
3 . The cycle Cv

3 does not cross the
edges of Cr

3 ∪ Irs ∪ Cs
3 ∪ Iru ∪ Cu

3 and therefore, in D, the cycle Cv
3 is placed in

one region of the subdrawing shown in Figure 2(d). It is easily seen that if, in D,
the path s1v1v2s2 does not contain more than two crossings on the edges {s1, v1}
and {s2, v2}, then crD(Cu

3 ∪ Iru ∪ Isu, Cv
3 ∪ Irv ∪ Isv) �= 0. This completes the

proof. �

Theorem 2.2. cr(P 2
5 × C3) = 12.

Proof. In Figure 1(b) it is possible to see that cr(P 2
5 × C3) ≤ 12. To prove the

reverse inequality assume that there is a drawing of the graph P 2
5 ×C3 with fewer

than 12 crossings and let D be such a drawing. The drawing D has the following
properties:
Property 1. The subgraph Cp

3 ∪ Ipq ∪ Ipb (Cq
3 ∪ Ipq ∪ Iqc) has at most four crossings

on its edges.
Otherwise removing the edges of Cp

3 ∪ Ipq ∪ Ipb (Cq
3 ∪ Ipq ∪ Iqc) from D results in

the drawing of the subgraph homeomorphic to Ks
1,1,2×C3 with fewer than seven

crossings, where Ks
1,1,2 is obtained from K1,1,2 by an elementary subdivision of

an edge of the 4-cycle. This is in contradiction with cr(Ks
1,1,2 × C3) = 7, see [3].

Property 2. The subgraph Cb
3 ∪ Ipb ∪Cp

3 ∪ Ipq (Cc
3 ∪ Iqc ∪Cq

3 ∪ Ipq) has at most five
crossings on its edges.
Otherwise removing the edges of Cb

3 ∪ Ipb ∪Cp
3 ∪ Ipq (Cc

3 ∪ Iqc ∪Cq
3 ∪ Ipq) results

in the drawing of the graph homeomorphic to K1,1,2 × C3 with fewer than six
crossings. This contradicts the fact that cr(K1,1,2 × C3) = 6, see [2].
Property 3. The subgraph Cb

3 ∪ Ipb (Cc
3 ∪ Iqc) has at most two crossings on its edges.

Otherwise one can obtain the drawing of the subdivision of the graph P2
4 × C3

with fewer than nine crossings, a contradiction with cr(P2
4 × C3) = 9, see [3].

Property 4. The subgraph T a (T d) has at most two crossings on its edges.
Otherwise by deleting the edges of T a (T d) we have the drawing of the graph
P 2
4 × C3 with fewer than nine crossings again.

Property 5. In D there are at most two crossings on the edges of Ipc (Iqb).
Otherwise deleting the edges of Ipc (Iqb) results in the drawing of the union of
two graphs C3 × C3 and K1,1,2 × C3 with one common Cp

3 -cycle (Cq
3 -cycle) with

fewer than nine crossings. This contradicts the fact that such union of graphs has
at least 3+6 crossings, because none of crossings on the common 3-cycle appears
in both graphs.
Property 6. In D there are at most five crossings on the edges of Ipb ∪ Ipq ∪ Iqc.
Otherwise D contains the subdrawing of C6 × C3 with fewer than six crossings.
This is in contradiction with cr(C6 × C3) = 6, see [6].
Property 7. crD(Cp

3∪Ipq∪Cq
3 ) �= 0, crD(Cp

3∪Ipb∪Cb
3) �= 0, and crD(Cq

3∪Iqc∪Cc
3) �=

0.
If crD(Cp

3∪Ipq∪Cq
3 ) = 0, then none of crossings on the edges Cp

3∪Ipq∪Cq
3 appears

in both subgraphs T a∪Cb
3 ∪Ipb∪Iqb∪Cp

3 ∪Ipq ∪Cq
3 and T d∪Cc

3 ∪Iqc∪Ipc∪Cp
3 ∪

Ipq∪Cq
3 . As both these subgraphs are isomorphic with the graph K1,1,2×C3 with
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crossing number six, D has more than eleven crossings on its edges. The similar
contradiction can by obtained for crD(Cp

3 ∪ Ipb ∪Cb
3) = 0 (crD(Cq

3 ∪ Iqc ∪Cc
3) = 0)

using subgraphs isomorphic with P2
4 × C3 and C3 × C3 which crossing numbers

are nine and three, respectively.
In the next we show that crD(Cp

3 , C
q
3 ) = crD(Cp

3 , C
b
3) = crD(Cp

3 , C
c
3) =

crD(Cb
3, C

q
3 ) = crD(Cc

3 , C
q
3) = 0. Assume that crD(Cp

3 , C
q
3 ) �= 0. In any good

drawing, if two vertex-disjoint cycles cross each other, then at least one of them
separates two vertices of the other. If Cp

3 separates two vertices of Cq
3 , say qi and

qj , then Cp
3 is crossed in D two times by Cq

3 and by all paths qibibjqj , qicicjqj ,
and qididjqj . This contradicts Property 1. The same contradiction is obtain when
Cq

3 separates two vertices of Cp
3 and hence crD(Cp

3 , C
q
3) = 0. Consider now that

crD(Cp
3 , C

b
3) �= 0. The cycle Cb

3 does not separate two vertices of Cp
3 , otherwise it

is crossed two times by Cp
3 and by the path piaiajpj . This contradicts Property 3.

If Cp
3 separates two vertices bi and bj of Cb

3 , then the cycle Cq
3 is placed in D in

the region with two vertices of Cb
3 on its boundary and therefore one edge of

Iqb crosses Cp
3 . As Cp

3 is also crossed by the path biaiajbj and two times by Cb
3 ,

Property 1 and the condition crD(Cp
3 , C

q
3 ) = 0 imply that crD(Cp

3 ∪ Ipq ∪ Cq
3 ) = 0

which contradicts Property 7. Thus, crD(Cp
3 , C

b
3) = 0. The same arguments give

crD(Cq
3 , C

c
3) = 0, crD(Cq

3 , C
b
3) = 0, and crD(Cp

3 , C
c
3) = 0. This, together with

Property 7, implies that there is at least one crossing on the edges of Ipb in the
subgraph Cb

3 ∪ Ipb ∪Cp
3 , at least one crossing on the edges of Ipq in the subgraph

Cp
3 ∪ Ipq ∪ Cq

3 , and at least one crossing on the edges of Iqc in the subgraph Cq
3 ∪

Iqc ∪ Cc
3 .

Assume now that in the drawing D there are more than two crossings on the
edges of Ipq . Then, by Property 6, crD(Cp

3 ∪Ipb∪Cb
3) = 1 and crD(Cq

3 ∪Iqc∪Cc
3) =

1. As cr(C3 × C3) = 3, the subgraph T a has its edges crossed at least two times.
Thus, removing the edges of T a and Ipq from D results in the drawing of the
graph Ks

1,1,2 ×C3 with fewer than seven crossings, a contradiction. So, Ipq has at
most two crossings on its edges and every of the subgraphs Ta ∪Cb

3 ∪ Ipb ∪ Iqb ∪
Cp

3 ∪ Ipq ∪ Cq
3 , T d ∪ Cc

3 ∪ Iqc ∪ Ipc ∪ Cp
3 ∪ Ipq ∪ Cq

3 , and Cp
3 ∪ Ipq ∪ Ipb ∪ Ipc ∪

Cq
3 ∪ Iqc ∪ Iqb ∪Cb

3 ∪Cc
3 is in compliance with the assumptions of Lemma 2.1 that

every of the subgraphs Ixy , x, y ∈ {a, b, c, d, p, q}, has at most two crossings. It
implies from Properties 6 and 7 that in at least one of the subgraphs Cp

3 ∪Ipq∪Cq
3 ,

Cp
3 ∪ Ipb ∪Cb

3 , and Cq
3 ∪ Iqc ∪Cc

3 exactly one crossing appears among its edges. If
crD(Cp

3∪Ipq∪Cq
3 ) = 1, then only one common crossing appears in both subgraphs

T a ∪ Cb
3 ∪ Ipb ∪ Iqb ∪ Cp

3 ∪ Ipq ∪ Cq
3 and T d ∪ Cc

3 ∪ Iqc ∪ Ipc ∪ Cp
3 ∪ Ipq ∪ Cq

3 . As
cr(K1,1,2 × C3) = 6 and, by Lemma 2.1, crD(Cb

3 ∪ Ipb ∪ Iqb, Cc
3 ∪ Iqc ∪ Ipc) �= 0,

every of these subgraphs has its edges crossed at least seven times. Hence, in D
there are at least 7 + 7− 2 = 12 crossings, a contradiction. The similar arguments
in the case when crD(Cp

3 ∪ Ipb ∪Cb
3) = 1 or crD(Cq

3 ∪ Iqc ∪Cc
3) = 1 together with

the facts that cr(C3 × C3) = 3 and cr(P 2
4 × C3) = 9 gives the same contradiction.

This completes the proof. �

Note that for n ≥ 4 there is no good drawing of the subgraph Cp
n ∪ Ipq ∪ Cq

n

(Cp
n ∪ Ipb ∪ Cb

n, Cq
n ∪ Iqc ∪ Cc

n) with one crossing. In fact, if any two edges of
the graph Cp

n ∪ Ipq ∪ Cq
n not incident with the same vertex cross each other, then
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one can find two vertex-disjoint cycles in such a way that every of these cycles
contains exactly one of the considered edges. As two vertex-disjoint cycles cannot
cross each other exactly once, in the drawing there is one additional crossing.

Theorem 2.3. cr(P 2
5 × C4) = 16.

Proof. It is easy to see in Figure 1(b) that cr(P 2
5 × C4) ≤ 16. To prove the reverse

inequality assume that there is a drawing of the graph P 2
5 ×C4 with fewer than 16

crossings and let D be such a drawing. As cr(Ks
1,1,2×C4) = 12 and cr(C6×C4) =

12, see [1] and [3], in a similar way as in the proof of Theorem 2.2 it is easily seen
that D has the following properties:
Property 1. The subgraph Cp

4 ∪ Ipq ∪ Ipb (Cq
4 ∪ Ipq ∪ Iqc) has at most three crossings

on its edges.
Property 2. The subgraph Cb

4 ∪ Ipb ∪ Ipq (Cc
4 ∪ Iqc ∪ Ipq) has at most three crossings

on its edges.
Property 3. The subgraph Ipb ∪ Ipq ∪ Iqc has at most three crossings on its edges.
Using the same arguments as in the proof of Theorem 2.2, one can prove the next
fact:
Property 4. crD(Cx

4 , C
y
4 ) = 0 for all x, y ∈ {b, c, p, q}.

If crD(Cp
4 ∪ Ipq ∪ Cq

4 ) = 0, none of crossing among edges of the subgraph
T a ∪ Cb

4 ∪ Ipb ∪ Iqb ∪ Cp
4 ∪ Ipq ∪ Cq

4 is a crossing in the subgraph T d ∪ Cc
4 ∪ Iqc ∪

Ipc∪Cp
4∪Ipq∪Cq

4 and vice versa. In this case, as cr(K1,1,2×C4) = 8, D has at least
8+8 = 16 crossings, a contradiction. Using cr(C3×C4)+cr(P 2

4 ×C4) = 4+12 , the
same contradiction is obtained if crD(Cp

4 ∪Ipb∪Cb
4) = 0 or crD(Cq

4 ∪Iqc∪Cc
4) = 0.

This proves the following:
Property 5. crD(Cp

4∪Ipq∪Cq
4 ) ≥ 2, crD(Cp

4∪Ipb∪Cb
4) ≥ 2 and crD(Cq

4∪Iqc∪Cc
4) ≥

2.

(a) (b)

C
4

p
C

4

p

C4 C4

qb

Fig. 3. The possible subdrawings of Cp
4 ∪ Ipb ∪Cb

4 and Cp
4 ∪ Ipq ∪ Cq

4 .

Consider now that in the subdrawing of Cp
4 ∪ Ipb ∪ Cb

4 there is no crossing
on the edges of Ipb. As crD(Cp

4 ∪ Ipb ∪ Cb
4) ≥ 2 and crD(Cp

4 , C
b
4) = 0, every

of the cycles Cp
4 and Cb

4 has an internal crossing and the unique subdrawing of
Cp

4 ∪ Ipb ∪ Cb
4 is shown in Figure 3(a). In this case crD(Cq

4 , I
pb) = 0, otherwise

both Cp
4 ∪ Ipq ∪ Ipb and Cb

4 ∪ Ipb ∪ Ipq have three crossings in the subdrawing of
Cp

4 ∪ Ipq ∪ Ipb ∪ Cb
4 ∪ Iqb ∪ Cq

4 and another crossings with the edges of T a. This
contradicts Property 1 and Property 2. Hence, the cycle Cq

4 does not cross in D
the edges of Cp

4 ∪Ipb∪Cb
4 and in Figure 3(a) it is easy to verify that in D the edges

of Ipq cross at least two times the edges of Cp
4 ∪ Ipb ∪ Cb

4. Now a path joining a
vertex of Cp

4 with a vertex of Cb
4 containing a vertex of Ca

4 crosses the edges of
Cp

4 ∪ Ipb ∪Cb
4 and we have contradiction with Properties 1 and 2 again. Thus, we

conclude that in the subdrawing of Cp
4 ∪ Ipb ∪Cb

4 an edge of Ipb is crossed as well
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as in the subdrawing of Cq
4 ∪Iqc∪Cc

4 an edge of Iqc is crossed. Property 3 implies
that in D there is at most one crossing on the edges of Ipq .

In the drawing D there are at least nine crossings among the edges of the sub-
graph T a ∪ Cb

4 ∪ Ipb ∪ Iqb ∪ Cp
4 ∪ Ipq ∪ Cq

4 as well as among the edges of the
subgraph T d∪Cc

4 ∪ Iqc ∪ Ipc ∪Cp
4 ∪ Ipq ∪Cq

4 , because both Ipb and Iqc are crossed
and cr(C4×C4) = 8. This follows that in the subdrawing of the graph Cp

4∪Ipq∪Cq
4

there are at least three crossings among its edges. Otherwise at most two cross-
ings of Cp

4∪Ipq∪Cq
4 are counted in both subgraphs T a∪Cb

4∪Ipb∪Iqb∪Cp
4∪Ipq∪Cq

4

and T d ∪ Cc
4 ∪ Iqc ∪ Ipc ∪ Cp

4 ∪ Ipq ∪ Cq
4 and D has at least 9 + 9 − 2 = 16 cross-

ings, a contradiction. Hence, as crD(Cp
4 , C

q
4) = 0 and on the edges of Ipq there is

only one crossing, the edges of Cp
4 ∪ Ipq ∪ Cq

4 cross each other in such a way that
the cycle Cp

4 has an internal crossing and the cycle Cq
4 has an internal crossing.

The deleting of a crossed edge of Ipq gives the unique subdrawing shown in Fig-
ure 3(b). Properties 1 and 2 allow only two another crossings on the edges of the
subdrawing in Figure 3(b) and it is easy to see that it is impossible to place the rest
of the edges of the graph to obtain our considered drawing D. This completes the
proof of Theorem 2.3. �

Theorem 2.4. cr(P 2
5 × C5) = 20.

Proof. Figure 1(b) shows that cr(P 2
5 × C5) ≤ 20. To prove the reverse inequality

assume that there is a drawing of the graph P 2
5 ×C5 with fewer than 20 crossings

and let D be such a drawing. As cr(C5 × C5) = 15, every subgraph Cb
5 ∪ Ipb ∪

Ipq ∪Iqc, Ipb∪Cp
5 ∪Ipq ∪Iqc, Ipb∪Ipq ∪Cq

5 ∪Iqc and Ipb∪Ipq ∪Iqc∪Cc
5 has in D

at most four crossings on its edges. Moreover, as cr(C6 × C5) = 18, on the edges
of Ipb ∪ Ipq ∪ Iqc there is at most one crossing. Using these restrictions one can
show that crD(Cp

5 , C
q
5 ) = 0 and that if two cycles Cx

5 and Cy
5 , x ∈ {p, q}, y ∈ {b, c}

cross each other, then the cycle Cx
5 does not have an internal crossing.

We know that if the edges of the subgraph Cp
5 ∪ Ipq ∪ Cq

5 (Cp
5 ∪ Ipb ∪ Cb

5,
Cq

5 ∪ Iqc ∪Cc
5) cross each other in D, then they cross each other at least two times.

Using the similar arguments as in the proof of Theorem 2.4, one can show that the
condition crD(Cp

5 ∪Ipq ∪Cq
5 ) = 0 (crD(Cp

5 ∪Ipb∪Cb
5) = 0, crD(Cq

5 ∪Iqc∪Cc
5) = 0)

contradicts the assumption of the drawing D. Hence, crD(Cp
5 ∪ Ipq ∪ Cq

5 ) ≥ 2,
crD(Cp

5 ∪ Ipb ∪ Cb
5) ≥ 2 and crD(Cq

5 ∪ Iqc ∪Cc
5) ≥ 2.

C
p

5 C
p

5

Fig. 4. The possible subdrawings of Cp
5 ∪ Ipq ∪Cq

5 .

Consider first that in D there is no crossing on the edges of Ipq . In this case
every of Cp

5 and Cq
5 has exactly one internal crossing or every of Cp

5 and Cq
5 has

exactly two internal crossings. The only possible subdrawings of Cp
5 ∪ Ipq ∪ Cq

5

induced from D are shown in Figure 4. Since both cycles Cp
5 and Cq

5 have in-
ternal crossings, it is clear that crD(Cp

5 , C
b
5) = crD(Cp

5 , C
c
5) = crD(Cq

5 , C
b
5) =
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crD(Cq
5 , C

c
5) = 0. In Figure 4 it is easily seen that if Cc

5 is placed in one of the
regions of the subdrawing of Cp

5 ∪Ipq ∪Cq
5 , then the edges of Iqc are crossed more

than once, a contradiction.
If in D there is a crossing (exactly one) on the edges of Ipq , then there is no

crossing on the edges of Ipb in the subdrawing of Cp
5 ∪ Ipb ∪ Cb

5, and the similar
consideration as in the previous case leads to the same contradiction with the
assumption on the drawing D. This completes the proof. �
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