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The crossing number of P? x C,

MARIAN KLESCY2 AND DANIELA KRAVECOVA?2

ABSTRACT. Patil and Krishnnamurthy established family of graphs for which power graphs have
crossing number one. This is the only result concerning crossing numbers of power of some graphs.
Let P,2 denote the power of the path P,,,. We start to determine crossing numbers of a new infinite
family of graphs, concretely for the Cartesian products P,2 x Cy, where m > 2 and n > 3. The main
result of the paper is that the crossing number of the graph P52 X Chp, is 4n for all n > 3.

1. INTRODUCTION

The crossing number cr(G) of a simple graph G with vertex set VV and edge set
E is defined as the minimum number of crossings among all possible projections
of G on the R? plane. The investigation on the crossing number of graphs is a clas-
sical and however very difficult problem. The structure of Cartesian products of
graphs makes Cartesian products of special graphs one of few graph classes for
which the exact values of crossing numbers were obtained. (For a definition of
Cartesian product, see [1].) Let C,, be the cycle on n vertices and P,, be the path on
m + 1 vertices. There are known exact values of crossing numbers for Cartesian
products of paths with all graphs of order at most five as well as for Cartesian
products of cycles and all graphs of order at most four. In addition, for some
graphs G on five vertices the crossing numbers of G x C,, are known.

A drawing with the minimum number of crossings (an optimal drawing) must
be a good drawing; that is, each two edges have at most one point in common,
which is either a common end-vertex or a crossing. Let D be a good drawing of
the graph G. We denote the number of crossings in D by ¢rp(G). Let G; and
G, be edge-disjoint subgraphs of G. We denote by crp(G;, G;) the number of
crossings between edges of G; and edges of G, and by c¢rp(G;) the number of
crossings among edges of G; in D.

In the paper [5], Patil and Krishnnamurthy established family of graphs for
which power graphs have crossing number one. This is the only result concerning
crossing numbers of power of some graphs. Let P? denote the power of the path
P,,. We start to determine crossing numbers of a new infinite family of graphs,
concretely for the Cartesian products P,2 x C,, where m > 2and n > 3.
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For m = 2, the graph P, x C,, is isomorphic to the graph C3 x C,. Since
er(Cs x Cy,) = n [7], we have er(P2 x C,,) = n. As the graph P x C,, contains
the graph C, x C,, as a subgraph and ¢r(Cy x C,,) = 2n, n > 4 [1], for all integers
n greater than 3 we know that cr(P? x C,,) > 2n. The drawing of the graph
P2 x C, with 2n crossings shows that, for n > 4, er(P? x C,) < 2n. This,
together with the result cr(P? x C3) = 6 [2], confirms that cr(P7 x C,,) = 2n for
all n > 3. For the graph P2 x C, one can find the drawing with 3n crossings,
hence cr(P2? x C,,) < 3n. As the graph P2 x C,, contains the graph Cs x C,, as a
subgraph and, for n > 5, cr(Cs x C,,) = 3n [4], we have that the crossing number
of the graph P2 x C,, is 3n for all n > 5. The graph P? is the special graph on five
vertices and it is proved in [3] that cr(P? x C3) = 9 and er(P? x Cy) = 12. This
confirms that cr(P? x C,,) = 3n forall n > 3.

The extension of the drawing in Figure 1(b) shows that the crossing number of
the Cartesian product P,2 x C,, is at most n(m — 2). The main result of the paper
is that the crossing number of the graph PZ x C,, is 4n for all n > 3.

2. THE GRAPH P2 x (),

Let P by the path of length five, that is Ps has six vertices. Figure 1(a) shows
the power graph P2. For the simpler labelling let, in this paper, H denote the
graph P2

We assume n > 3 and find it convenient to consider the graph P? x C,, in the
following way: it has 6n vertices and edges that are the edges in the n copies
Hi i =1,2,...,n, and in the six cycles of length n. Fori = 1,2,...,n, let a;
and d; be the vertices of H* of degree two, b; and ¢; the vertices of degree three,
and p; and ¢; the vertices of degree four as shown in Figure 1(a). Thus, for z €
{a,b,c,d,p,q}, the n—cycle C2 isinduced by the vertices 1, z2, ..., z,,. Let T (T'%)
be the subgraph of the graph P? x C,, consisting of the cycle C2 (C9) together
with the vertices of C% and C? (CS and C4¢) and of the edges joining C2 (C4
with C% and C? (C¢ and C9). Denote by %Y, x,y € {b,c,p,q}, the subgraph of
P2 x C,, consisting of the vertices in V(C%) U V(C¥) and of the edges {x;,y;} for
alli =1,2,...,n. Itis not difficult to see that

P2xC,=T UClUCPUIPUIPUTMUT®UT*UCEUCIUT.

od
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(a) (b)
Fig. 1. The graph P2, and the Cartesian product P2 x C,,.
The main result of the paper is the next Theorem 2.1.
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Theorem 2.1. cr(P? x C,,) = 4n forn > 3.

Proof. In Figure 1(b) there is the drawing of the graph P2 x C,, with 4n crossings
and therefore cr(P2 x C,,) < 4n. As for n > 6 the graph P2 x C,, contains the
subgraph Cs x C,, and it was proved in [6] that cr(Cs x C,,) = 4n, the proof is
done for all n > 6. The cases n = 3,4 and 5 we prove as separate Theorems in the
rest of the paper. a

Let us consider the graph K ; 2 in which  and s be the vertices of degree three
and u and v be the vertices of degree two. The graph P? x C,, contains several
subgraphs isomorphic to the graph K ;2 x C,,. Special subgraphs of the graph
K112 x Cy, we will denote in the similar way as in the graph P2 x C,.

Lemma 2.1. Let D be a good drawing of the graph K ; » x Cs3 in which every of the
subgraphs I™, I, I°*, I*Y, and I"® has at most two crossings on its edges. Let for
each pair 2,y € {r,s,u,v} the 3-cycles C¥ and Cj do not cross each other and let
erp(C5UI™UCS) =1. Then erp(CY UI™ U IS CYUI™ U IY) #0.

Proof. By hypothesis, the only crossing in the subgraph C% U I U C5 can appear
between two edges of I”® or between an edge of 1™ and an edge of C or C3.
Suppose first that two edges, say {r;, s;} and {r;, s;}, of I"® cross each other. In
this case, in D, the vertex-disjoint cycles r;u;s;r; and r;v;s;r; cross each other
at least two times and the vertex-disjoint cycles r;v;s;7; and rju;s;r; cross each
other at least two times. As at most two crossings can appear on the edges {r;, s; }
and {r;, s;}, the edges of I"™ U I*" cross the edges of I U I°V, and therefore
erp(CYUT™ U I, CYUI™ U I%) #0.

I S I S

w
1 S n S.
I3 S3 1§} S3

@ ® © @
Fig. 2. The possible subdrawings of C5 U I"* U C5 and some edges of
cyuI™uylr.

Consider now that, without loss of generality, an edge of I"° crosses an edge of
the 3-cycle C3. The subdrawing D’ induced from D by the subgraph C;UI™UC3
in unique up to the isomorphism, see Figure 2(a). The cycles C§ and C3 do not
cross the edges of C5 UI™*UC4 and at most one of the subgraphs 7™, I**, I"", and
I°Y can cross the edges of 1"°. Let, without loss of generality, crp(I"™UI%%, I"%) =
0. Since crp(I"™,CE U C3) < 2and erp (I, C5 U CS) < 2, the cycle C¥ can only
lie in D in the unbounded region in the view of the subdrawing D’. The edge
{uz, s2} does not cross C5 U I U C3 and the edge {us, 2} can cross the cycle Cf
once or it crosses the cycle C5 two times. In the first case we have the subdrawing
of D shown in Figure 2(b). It is easily seen that, in D, both paths rvyver2 and
81010282 Cross the cycle roussore and therefore at least one of them crosses the
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path rouss,. In the second case, the edge {ug, r2} crosses the cycle Cj two times
as shown in Figure 2(c). Since the edges of /"* are crossed two times and C'§ does
not cross the edges of C% U I U C3, Figure 2(d) shows that the vertices s; and s3
are separated in D by the edges of C; U I"™ U C¥. The cycle C§ does not cross the
edges of C5 U I™ U C5 U I™ U C¥ and therefore, in D, the cycle C3 is placed in
one region of the subdrawing shown in Figure 2(d). It is easily seen that if, in D,
the path s;v1v252 does not contain more than two crossings on the edges {s1,v1 }
and {sz2,v2}, then crp(CY U I™ U I**,CY U I™ U I°Y) # 0. This completes the
proof. |

Theorem 2.2. cr(PZ x C3) = 12.

Proof. In Figure 1(b) it is possible to see that cr(P2 x C3) < 12. To prove the
reverse inequality assume that there is a drawing of the graph P2 x C5 with fewer
than 12 crossings and let D be such a drawing. The drawing D has the following
properties:

Property 1. The subgraph C% U IP4 U IP* (C§ U IP2 U 1%¢) has at most four crossings
on its edges.

Otherwise removing the edges of C% U 177 U TP (C4 U IP9 U 149€) from D results in
the drawing of the subgraph homeomorphic to K7 ; , x C3 with fewer than seven
crossings, where K7 ; , is obtained from K7 1 » by an elementary subdivision of
an edge of the 4-cycle. This is in contradiction with cr(K7 ; , x C3) = 7, see [3].
Property 2. The subgraph C U IP* U C§ U TP (C§ U 19U C4 U IP9) has at most five
crossings on its edges.

Otherwise removing the edges of C3 U 1P U C% U IP? (C§ U 19¢ U CF U IP9) results
in the drawing of the graph homeomorphic to K ; » x Cs with fewer than six
crossings. This contradicts the fact that cr(K; 1 2 x C3) = 6, see [2].

Property 3. The subgraph C% U I** (C§ U I9¢) has at most two crossings on its edges.
Otherwise one can obtain the drawing of the subdivision of the graph P? x Cj3
with fewer than nine crossings, a contradiction with cr(P? x Cs) = 9, see [3].
Property 4. The subgraph 7% (T%) has at most two crossings on its edges.

Otherwise by deleting the edges of 7 (T'%) we have the drawing of the graph
P? x Cs with fewer than nine crossings again.

Property 5. In D there are at most two crossings on the edges of 77¢ (14°).

Otherwise deleting the edges of I7¢ (1) results in the drawing of the union of
two graphs C3 x C3 and K 12 x Cs with one common C%-cycle (C4-cycle) with
fewer than nine crossings. This contradicts the fact that such union of graphs has
at least 3 + 6 crossings, because none of crossings on the common 3-cycle appears
in both graphs.

Property 6. In D there are at most five crossings on the edges of 77 U IP9 U 19¢,
Otherwise D contains the subdrawing of Cs x C3 with fewer than six crossings.
This is in contradiction with ¢r(Cs x C3) = 6, see [6].

Property 7. crp(CYUIPIUCY) # 0, erp(CYUIPPUCS) # 0,and erp (CLUTCUCE) #
0.

If crp (CYUIPIUCY) = 0, then none of crossings on the edges CYUIP?UCY appears
in both subgraphs 7*UCtU TP UT?P UCTUTPIUCE and TAUCSUT*UTPCUCE U
IP1uCy. As both these subgraphs are isomorphic with the graph K 1 » x C with
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crossing number six, D has more than eleven crossings on its edges. The similar
contradiction can by obtained for crp(C§ UIP*UCE) = 0 (crp(CLUT?UCS) = 0)
using subgraphs isomorphic with P? x C3 and Cs x C3 which crossing numbers
are nine and three, respectively.

In the next we show that crp(C%, C§) = crp(CL,C8) = erp(CY,CS) =
erp(C,CY) = crp(C5,C4) = 0. Assume that crp(C%,C§) # 0. In any good
drawing, if two vertex-disjoint cycles cross each other, then at least one of them
separates two vertices of the other. If C% separates two vertices of C?, say ¢; and
q¢;, then C% is crossed in D two times by Cf and by all paths ¢;b;b,q;, qicicjq;,
and ¢;d;d;q;. This contradicts Property 1. The same contradiction is obtain when
C1 separates two vertices of C% and hence crp(C%,CY) = 0. Consider now that
crp(CE,C8) # 0. The cycle C% does not separate two vertices of C%, otherwise it
is crossed two times by C% and by the path p;a;a;p;. This contradicts Property 3.
If C} separates two vertices b; and b; of C%, then the cycle C¥ is placed in D in
the region with two vertices of C% on its boundary and therefore one edge of
I crosses C%. As Cf is also crossed by the path b;a;a;b; and two times by C%,
Property 1 and the condition crp(C%,CY) = 0 imply that crp(CY U IPTUCY) =0
which contradicts Property 7. Thus, crp(C%, C%) = 0. The same arguments give
erp(C4,C5) = 0, erp(C4,C%) = 0, and erp(C%,C5) = 0. This, together with
Property 7, implies that there is at least one crossing on the edges of I?? in the
subgraph C¢ U I** U C%, at least one crossing on the edges of 779 in the subgraph
C% U IP1 U C4, and at least one crossing on the edges of 7%¢ in the subgraph C U
19¢U Cs.

Assume now that in the drawing D there are more than two crossings on the
edges of 774, Then, by Property 6, crp(CYUIP*UCS) = 1and crp(CIUTUCS) =
1. As er(C5 x C3) = 3, the subgraph T has its edges crossed at least two times.
Thus, removing the edges of 7% and 7?7 from D results in the drawing of the
graph K7, , x Cs with fewer than seven crossings, a contradiction. So, /77 has at
most two crossings on its edges and every of the subgraphs 7% U C4 U IP* U I9° U
cturriucy TPuCsuIcuIPcyCy UIPIUCY, and CY U TP U TP U [P U
CIUI°UI%UCEUCsis in compliance with the assumptions of Lemma 2.1 that
every of the subgraphs I*Y, z,y € {a,b,c,d,p,q}, has at most two crossings. It
implies from Properties 6 and 7 that in at least one of the subgraphs C% U 171U CY,
CY U IP* U CE, and C§ U I%¢ U C§ exactly one crossing appears among its edges. If
crp(CYUIPIUCYT) = 1, then only one common crossing appears in both subgraphs
TeUC,UTIPPUI®UCYUIPIUCand TYUCS U T U TP UCE UIPT U CY. As
er(Ki12 x C3) = 6 and, by Lemma 2.1, crp(CS U IPP U T C§ U T9¢ U IP€) # 0,
every of these subgraphs has its edges crossed at least seven times. Hence, in D
there are at least 74+ 7 — 2 = 12 crossings, a contradiction. The similar arguments
in the case when crp(CY U IP* U CY) = 1 or erp(C§ U I9¢ U C5) = 1 together with
the facts that cr(C5 x C3) = 3 and cr(P? x C3) = 9 gives the same contradiction.
This completes the proof. O

Note that for n > 4 there is no good drawing of the subgraph C? U IP? U Cg
(Cru IPb U CP, €4 U I U Ce) with one crossing. In fact, if any two edges of
the graph C? U IP? U C? not incident with the same vertex cross each other, then
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one can find two vertex-disjoint cycles in such a way that every of these cycles
contains exactly one of the considered edges. As two vertex-disjoint cycles cannot
cross each other exactly once, in the drawing there is one additional crossing.

Theorem 2.3. cr(P2 x Cy) = 16.

Proof. It is easy to see in Figure 1(b) that cr(P2 x Cy) < 16. To prove the reverse
inequality assume that there is a drawing of the graph P2 x C, with fewer than 16
crossings and let D be such adrawing. As cr(K7{ ; 5 x Cy) = 12and er(Cs x Cy) =
12, see [1] and [3], in a similar way as in the proof of Theorem 2.2 it is easily seen
that D has the following properties:

Property 1. The subgraph C} U I U IP® (C{ U P2 U I9°) has at most three crossings
on its edges.

Property 2. The subgraph C} U IP® U 1P (C§ U I9¢ U IP?) has at most three crossings
on its edges.

Property 3. The subgraph IP® U IP9 U I9¢ has at most three crossings on its edges.
Using the same arguments as in the proof of Theorem 2.2, one can prove the next
fact:

Property 4. crp(C§,CY) = 0forall z,y € {b,c,p, q}.

If crp(CY U IP7 U C]) = 0, none of crossing among edges of the subgraph
T*UChUIPb U T U CY U IPIUCY is acrossing in the subgraph 74 U C$ U 19€ U
IPeyCyuUIPtJCY and vice versa. In this case, as er(K1.12xCy) = 8, D has at least
8-+8 = 16 crossings, a contradiction. Using cr(C3 x Cy)+cr(PZ x Cy) = 4412, the
same contradiction is obtained if crp (CF UIPPUCY) = 0 or erp(C{UT*UCS) = 0.
This proves the following:

Property 5. crp(CYUIPIUCYT) > 2, crp(CYUIPPUCY) > 2and crp(C{UI*UCY) >
2.

b foh

cf c
(a) (b)
Fig. 3. The possible subdrawings of C} U I?* U C} and C} U IP7 U CY.

Consider now that in the subdrawing of C} U IP* U C} there is no crossing
on the edges of I?*. As crp(C} U IP* U CY) > 2 and erp(CY,C%) = 0, every
of the cycles C} and C? has an internal crossing and the unique subdrawing of
CY U IP* U C% is shown in Figure 3(a). In this case crp(CY, IP?) = 0, otherwise
both C} U P2 U IP® and C% U IP® U 179 have three crossings in the subdrawing of
CY U IPe U IP* U Ch U 1% U Cf and another crossings with the edges of 7. This
contradicts Property 1 and Property 2. Hence, the cycle C{ does not cross in D
the edges of C} UTP* UCY and in Figure 3(a) it is easy to verify that in D the edges
of 174 cross at least two times the edges of C} U IP* U C?. Now a path joining a
vertex of C% with a vertex of C} containing a vertex of C¢ crosses the edges of
C% U IP* U Ct and we have contradiction with Properties 1 and 2 again. Thus, we
conclude that in the subdrawing of C} U I?* U C} an edge of 17 is crossed as well
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as in the subdrawing of C{ U I9¢ U C¥ an edge of 1% is crossed. Property 3 implies
that in D there is at most one crossing on the edges of 179,

In the drawing D there are at least nine crossings among the edges of the sub-
graph T U C U IP* U 19 U C} U 179 U Cf as well as among the edges of the
subgraph T¢U C§ U I U IP¢UCY U TP U CY, because both IP° and 74 are crossed
and cr(Cyx Cy) = 8. This follows that in the subdrawing of the graph CYUIP1UC]
there are at least three crossings among its edges. Otherwise at most two cross-
ings of C} UIP1UCY are counted in both subgraphs T¢UCtUIPP UT®UCYUIPIUCT
and T¢UC§U T U IPeUCY UIPYUCY and D has at least 9 +9 — 2 = 16 cross-
ings, a contradiction. Hence, as crp(CY, C{) = 0 and on the edges of 177 there is
only one crossing, the edges of C} U IP? U C{ cross each other in such a way that
the cycle C7 has an internal crossing and the cycle C has an internal crossing.
The deleting of a crossed edge of 77? gives the unique subdrawing shown in Fig-
ure 3(b). Properties 1 and 2 allow only two another crossings on the edges of the
subdrawing in Figure 3(b) and it is easy to see that it is impossible to place the rest
of the edges of the graph to obtain our considered drawing D. This completes the
proof of Theorem 2.3. O

Theorem 2.4. cr(PZ x C5) = 20.

Proof. Figure 1(b) shows that cr(P? x Cs) < 20. To prove the reverse inequality
assume that there is a drawing of the graph P2 x C5 with fewer than 20 crossings
and let D be such a drawing. As cr(Cs x C5) = 15, every subgraph Ct U I’ U
Ipayae, PPycturriurec, PPurr yC U and 1P U TP U T UCE hasin D
at most four crossings on its edges. Moreover, as ¢r(Cs x C5) = 18, on the edges
of IP U P9 U I9¢ there is at most one crossing. Using these restrictions one can
show that crp (C?, CY) = 0 and that if two cycles C¥ and C¥, z € {p,q},y € {b,c}
cross each other, then the cycle CZ does not have an internal crossing.

We know that if the edges of the subgraph C¥ U 177 U CZ (C? U 1" U C¢,
CZ U I1°UC¢) cross each other in D, then they cross each other at least two times.
Using the similar arguments as in the proof of Theorem 2.4, one can show that the
condition crp(CEUIPIUCE) =0 (erp(CEUIPPUCE) =0, crp(CEUTUCE) = 0)
contradicts the assumption of the drawing D. Hence, c¢rp(C U 177U CY) > 2,
erp(CEUTPP UCE) > 2and erp(CE U T%° U CE) > 2.

s ciQ

Fig. 4. The possible subdrawings of C¥ U 177 U C7.

Consider first that in D there is no crossing on the edges of I79. In this case
every of C¥ and C? has exactly one internal crossing or every of C? and C? has
exactly two internal crossings. The only possible subdrawings of C? U 177 U CZ
induced from D are shown in Figure 4. Since both cycles C? and C? have in-
ternal crossings, it is clear that crp(CE,C8) = erp(CE,C¢) = crp(CE,CE) =
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erp(CE,C¢) = 0. In Figure 4 it is easily seen that if C¢ is placed in one of the
regions of the subdrawing of C¥ U 1P7U Y, then the edges of 7%¢ are crossed more
than once, a contradiction.

If in D there is a crossing (exactly one) on the edges of I7¢, then there is no
crossing on the edges of I*” in the subdrawing of C¥ U 1P U C2, and the similar
consideration as in the previous case leads to the same contradiction with the
assumption on the drawing D. This completes the proof. O

REFERENCES

[1] Beineke, L. W. and Ringeisen, R. D., On the crossing numbers of products of cycles and graphs of order
four, J. Graph Theory 4 (1980), 145-155

[2] Klesg, M., The crossing number of (K4 — e) x Cs, Proceedings of the International Scientific Con-
ference on Mathematics, Herlany 1999, 106-109, Univ. Technol. KoSice, KoSice, 2000

[3] KleS€, M., Some crossing numbers of products of cycles , Discuss. Math. Graph Theory 25 (2005),
197-210

[4] KleSE, M., Richter, R. B. and Stobert, 1., The crossing number of Cs x Cp,, J. Graph Theory 22 (1996),
239-243

[5] Patil, H. P. and Krishnnamurthy, D., On power graphs with crossing number one, Discuss. Math. 12

(1992), 27-37

Richter, R. B. and Salazar, G., The crossing number of Cs x C),, Australasian Journal of Combina-

torics 23 (2001), 135-144

[7] Ringeisen, R. D. and Beineke, L. W., The crossing number of C's x Cn, J. Combin. Theory 24 (B)
(1978), 134-136

6

—_

TECHNICAL UNIVERSITY OF KOSICE
DEPARTMENT OF MATHEMATICS

FACULTY OF ELECTRICAL

ENGINEERING AND INFORMATICS

0420 KOSICE, SLOVAK REPUBLIC

E-mail address: Marian.Klesc@tuke.sk

E-mail address: Daniela.Kravecova@tuke. sk



