Dedicated to Professor Iulian Coroian on the occasion of his $70^{\text {th }}$ anniversary

The crossing number of $P_{5}^{2} \times C_{n}$

Marián Klešč ${ }^{1,2}$ and Daniela Kravecová ${ }^{2}$

Abstract

Patil and Krishnnamurthy established family of graphs for which power graphs have crossing number one. This is the only result concerning crossing numbers of power of some graphs. Let P_{m}^{2} denote the power of the path P_{m}. We start to determine crossing numbers of a new infinite family of graphs, concretely for the Cartesian products $P_{m}^{2} \times C_{n}$ where $m \geq 2$ and $n \geq 3$. The main result of the paper is that the crossing number of the graph $P_{5}^{2} \times C_{n}$ is $4 n$ for all $n \geq 3$.

1. Introduction

The crossing number $c r(G)$ of a simple graph G with vertex set V and edge set E is defined as the minimum number of crossings among all possible projections of G on the \mathbb{R}^{2} plane. The investigation on the crossing number of graphs is a classical and however very difficult problem. The structure of Cartesian products of graphs makes Cartesian products of special graphs one of few graph classes for which the exact values of crossing numbers were obtained. (For a definition of Cartesian product, see [1].) Let C_{n} be the cycle on n vertices and P_{m} be the path on $m+1$ vertices. There are known exact values of crossing numbers for Cartesian products of paths with all graphs of order at most five as well as for Cartesian products of cycles and all graphs of order at most four. In addition, for some graphs G on five vertices the crossing numbers of $G \times C_{n}$ are known.

A drawing with the minimum number of crossings (an optimal drawing) must be a good drawing; that is, each two edges have at most one point in common, which is either a common end-vertex or a crossing. Let D be a good drawing of the graph G. We denote the number of crossings in D by $c r_{D}(G)$. Let G_{i} and G_{j} be edge-disjoint subgraphs of G. We denote by $c r_{D}\left(G_{i}, G_{j}\right)$ the number of crossings between edges of G_{i} and edges of G_{j}, and by $c r_{D}\left(G_{i}\right)$ the number of crossings among edges of G_{i} in D.

In the paper [5], Patil and Krishnnamurthy established family of graphs for which power graphs have crossing number one. This is the only result concerning crossing numbers of power of some graphs. Let P_{m}^{2} denote the power of the path P_{m}. We start to determine crossing numbers of a new infinite family of graphs, concretely for the Cartesian products $P_{m}^{2} \times C_{n}$ where $m \geq 2$ and $n \geq 3$.

[^0]For $m=2$, the graph $P_{2}^{2} \times C_{n}$ is isomorphic to the graph $C_{3} \times C_{n}$. Since $\operatorname{cr}\left(C_{3} \times C_{n}\right)=n$ [7], we have $\operatorname{cr}\left(P_{2}^{2} \times C_{n}\right)=n$. As the graph $P_{3}^{2} \times C_{n}$ contains the graph $C_{4} \times C_{n}$ as a subgraph and $\operatorname{cr}\left(C_{4} \times C_{n}\right)=2 n, n \geq 4$ [1], for all integers n greater than 3 we know that $\operatorname{cr}\left(P_{3}^{2} \times C_{n}\right) \geq 2 n$. The drawing of the graph $P_{3}^{2} \times C_{n}$ with $2 n$ crossings shows that, for $n \geq 4, \operatorname{cr}\left(P_{3}^{2} \times C_{n}\right) \leq 2 n$. This, together with the result $\operatorname{cr}\left(P_{3}^{2} \times C_{3}\right)=6$ [2], confirms that $\operatorname{cr}\left(P_{3}^{2} \times C_{n}\right)=2 n$ for all $n \geq 3$. For the graph $P_{4}^{2} \times C_{n}$ one can find the drawing with $3 n$ crossings, hence $\operatorname{cr}\left(P_{4}^{2} \times C_{n}\right) \leq 3 n$. As the graph $P_{4}^{2} \times C_{n}$ contains the graph $C_{5} \times C_{n}$ as a subgraph and, for $n \geq 5, \operatorname{cr}\left(C_{5} \times C_{n}\right)=3 n$ [4], we have that the crossing number of the graph $P_{4}^{2} \times C_{n}$ is $3 n$ for all $n \geq 5$. The graph P_{4}^{2} is the special graph on five vertices and it is proved in [3] that $\operatorname{cr}\left(P_{4}^{2} \times C_{3}\right)=9$ and $\operatorname{cr}\left(P_{4}^{2} \times C_{4}\right)=12$. This confirms that $\operatorname{cr}\left(P_{4}^{2} \times C_{n}\right)=3 n$ for all $n \geq 3$.

The extension of the drawing in Figure 1(b) shows that the crossing number of the Cartesian product $P_{m}^{2} \times C_{n}$ is at most $n(m-2)$. The main result of the paper is that the crossing number of the graph $P_{5}^{2} \times C_{n}$ is $4 n$ for all $n \geq 3$.

2. The graph $P_{5}^{2} \times C_{n}$

Let P_{5} by the path of length five, that is P_{5} has six vertices. Figure 1(a) shows the power graph P_{5}^{2}. For the simpler labelling let, in this paper, H denote the graph P_{5}^{2}.

We assume $n \geq 3$ and find it convenient to consider the graph $P_{5}^{2} \times C_{n}$ in the following way: it has $6 n$ vertices and edges that are the edges in the n copies $H^{i}, i=1,2, \ldots, n$, and in the six cycles of length n. For $i=1,2, \ldots, n$, let a_{i} and d_{i} be the vertices of H^{i} of degree two, b_{i} and c_{i} the vertices of degree three, and p_{i} and q_{i} the vertices of degree four as shown in Figure 1(a). Thus, for $x \in$ $\{a, b, c, d, p, q\}$, the n-cycle C_{n}^{x} is induced by the vertices $x_{1}, x_{2}, \ldots, x_{n}$. Let $T^{a}\left(T^{d}\right)$ be the subgraph of the graph $P_{5}^{2} \times C_{n}$ consisting of the cycle $C_{n}^{a}\left(C_{n}^{d}\right)$ together with the vertices of C_{n}^{b} and $C_{n}^{p}\left(C_{n}^{c}\right.$ and $\left.C_{n}^{q}\right)$ and of the edges joining $C_{n}^{a}\left(C_{n}^{d}\right)$ with C_{n}^{b} and $C_{n}^{p}\left(C_{n}^{c}\right.$ and $\left.C_{n}^{q}\right)$. Denote by $I^{x y}, x, y \in\{b, c, p, q\}$, the subgraph of $P_{5}^{2} \times C_{n}$ consisting of the vertices in $V\left(C_{n}^{x}\right) \cup V\left(C_{n}^{y}\right)$ and of the edges $\left\{x_{i}, y_{i}\right\}$ for all $i=1,2, \ldots, n$. It is not difficult to see that

$$
P_{5}^{2} \times C_{n}=T^{a} \cup C_{n}^{b} \cup C_{n}^{p} \cup I^{p b} \cup I^{p c} \cup I^{p q} \cup I^{q b} \cup I^{q c} \cup C_{n}^{c} \cup C_{n}^{q} \cup T^{d} .
$$

(a)

(b)

Fig. 1. The graph P_{5}^{2}, and the Cartesian product $P_{5}^{2} \times C_{n}$.
The main result of the paper is the next Theorem 2.1.

Theorem 2.1. $\operatorname{cr}\left(P_{5}^{2} \times C_{n}\right)=4 n$ for $n \geq 3$.
Proof. In Figure 1(b) there is the drawing of the graph $P_{5}^{2} \times C_{n}$ with $4 n$ crossings and therefore $\operatorname{cr}\left(P_{5}^{2} \times C_{n}\right) \leq 4 n$. As for $n \geq 6$ the graph $P_{5}^{2} \times C_{n}$ contains the subgraph $C_{6} \times C_{n}$ and it was proved in [6] that $\operatorname{cr}\left(C_{6} \times C_{n}\right)=4 n$, the proof is done for all $n \geq 6$. The cases $n=3,4$ and 5 we prove as separate Theorems in the rest of the paper.

Let us consider the graph $K_{1,1,2}$ in which r and s be the vertices of degree three and u and v be the vertices of degree two. The graph $P_{5}^{2} \times C_{n}$ contains several subgraphs isomorphic to the graph $K_{1,1,2} \times C_{n}$. Special subgraphs of the graph $K_{1,1,2} \times C_{n}$ we will denote in the similar way as in the graph $P_{5}^{2} \times C_{n}$.

Lemma 2.1. Let D be a good drawing of the graph $K_{1,1,2} \times C_{3}$ in which every of the subgraphs $I^{r u}, I^{r v}, I^{s u}, I^{s v}$, and $I^{r s}$ has at most two crossings on its edges. Let for each pair $x, y \in\{r, s, u, v\}$ the 3 -cycles C_{3}^{x} and C_{3}^{y} do not cross each other and let $c r_{D}\left(C_{3}^{r} \cup I^{r s} \cup C_{3}^{s}\right)=1$. Then $c r_{D}\left(C_{3}^{u} \cup I^{r u} \cup I^{s u}, C_{3}^{v} \cup I^{r v} \cup I^{s v}\right) \neq 0$.

Proof. By hypothesis, the only crossing in the subgraph $C_{3}^{r} \cup I^{r s} \cup C_{3}^{s}$ can appear between two edges of $I^{r s}$ or between an edge of $I^{r s}$ and an edge of C_{3}^{r} or C_{3}^{s}. Suppose first that two edges, say $\left\{r_{i}, s_{i}\right\}$ and $\left\{r_{j}, s_{j}\right\}$, of $I^{r s}$ cross each other. In this case, in D, the vertex-disjoint cycles $r_{i} u_{i} s_{i} r_{i}$ and $r_{j} v_{j} s_{j} r_{j}$ cross each other at least two times and the vertex-disjoint cycles $r_{i} v_{i} s_{i} r_{i}$ and $r_{j} u_{j} s_{j} r_{j}$ cross each other at least two times. As at most two crossings can appear on the edges $\left\{r_{i}, s_{i}\right\}$ and $\left\{r_{j}, s_{j}\right\}$, the edges of $I^{r u} \cup I^{s u}$ cross the edges of $I^{r v} \cup I^{s v}$, and therefore $c r_{D}\left(C_{3}^{u} \cup I^{r u} \cup I^{s u}, C_{3}^{v} \cup I^{r v} \cup I^{s v}\right) \neq 0$.

Fig. 2. The possible subdrawings of $C_{3}^{r} \cup I^{r s} \cup C_{3}^{s}$ and some edges of $C_{3}^{u} \cup I^{r u} \cup I^{s u}$.

Consider now that, without loss of generality, an edge of $I^{r s}$ crosses an edge of the 3 -cycle C_{3}^{s}. The subdrawing D^{\prime} induced from D by the subgraph $C_{3}^{r} \cup I^{r s} \cup C_{3}^{s}$ in unique up to the isomorphism, see Figure 2(a). The cycles C_{3}^{u} and C_{3}^{v} do not cross the edges of $C_{3}^{r} \cup I^{r s} \cup C_{3}^{s}$ and at most one of the subgraphs $I^{r u}, I^{s u}, I^{r v}$, and $I^{s v}$ can cross the edges of $I^{r s}$. Let, without loss of generality, $c r_{D}\left(I^{r u} \cup I^{s u}, I^{r s}\right)=$ 0 . Since $c r_{D}\left(I^{r u}, C_{3}^{r} \cup C_{3}^{s}\right) \leq 2$ and $c r_{D}\left(I^{s u}, C_{3}^{r} \cup C_{3}^{s}\right) \leq 2$, the cycle C_{3}^{u} can only lie in D in the unbounded region in the view of the subdrawing D^{\prime}. The edge $\left\{u_{2}, s_{2}\right\}$ does not cross $C_{3}^{r} \cup I^{r s} \cup C_{3}^{s}$ and the edge $\left\{u_{2}, r_{2}\right\}$ can cross the cycle C_{3}^{r} once or it crosses the cycle C_{3}^{s} two times. In the first case we have the subdrawing of D shown in Figure 2(b). It is easily seen that, in D, both paths $r_{1} v_{1} v_{2} r_{2}$ and $s_{1} v_{1} v_{2} s_{2}$ cross the cycle $r_{2} u_{2} s_{2} r_{2}$ and therefore at least one of them crosses the
path $r_{2} u_{2} s_{2}$. In the second case, the edge $\left\{u_{2}, r_{2}\right\}$ crosses the cycle C_{3}^{s} two times as shown in Figure 2(c). Since the edges of $I^{r u}$ are crossed two times and C_{3}^{u} does not cross the edges of $C_{3}^{r} \cup I^{r s} \cup C_{3}^{s}$, Figure 2(d) shows that the vertices s_{1} and s_{3} are separated in D by the edges of $C_{3}^{r} \cup I^{r u} \cup C_{3}^{u}$. The cycle C_{3}^{v} does not cross the edges of $C_{3}^{r} \cup I^{r s} \cup C_{3}^{s} \cup I^{r u} \cup C_{3}^{u}$ and therefore, in D, the cycle C_{3}^{v} is placed in one region of the subdrawing shown in Figure 2(d). It is easily seen that if, in D, the path $s_{1} v_{1} v_{2} s_{2}$ does not contain more than two crossings on the edges $\left\{s_{1}, v_{1}\right\}$ and $\left\{s_{2}, v_{2}\right\}$, then $c r_{D}\left(C_{3}^{u} \cup I^{r u} \cup I^{s u}, C_{3}^{v} \cup I^{r v} \cup I^{s v}\right) \neq 0$. This completes the proof.

Theorem 2.2. $\operatorname{cr}\left(P_{5}^{2} \times C_{3}\right)=12$.
Proof. In Figure 1(b) it is possible to see that $\operatorname{cr}\left(P_{5}^{2} \times C_{3}\right) \leq 12$. To prove the reverse inequality assume that there is a drawing of the graph $P_{5}^{2} \times C_{3}$ with fewer than 12 crossings and let D be such a drawing. The drawing D has the following properties:
Property 1. The subgraph $C_{3}^{p} \cup I^{p q} \cup I^{p b}\left(C_{3}^{q} \cup I^{p q} \cup I^{q c}\right)$ has at most four crossings on its edges.
Otherwise removing the edges of $C_{3}^{p} \cup I^{p q} \cup I^{p b}\left(C_{3}^{q} \cup I^{p q} \cup I^{q c}\right)$ from D results in the drawing of the subgraph homeomorphic to $K_{1,1,2}^{s} \times C_{3}$ with fewer than seven crossings, where $K_{1,1,2}^{s}$ is obtained from $K_{1,1,2}$ by an elementary subdivision of an edge of the 4-cycle. This is in contradiction with $\operatorname{cr}\left(K_{1,1,2}^{s} \times C_{3}\right)=7$, see [3].
Property 2. The subgraph $C_{3}^{b} \cup I^{p b} \cup C_{3}^{p} \cup I^{p q}\left(C_{3}^{c} \cup I^{q c} \cup C_{3}^{q} \cup I^{p q}\right)$ has at most five crossings on its edges.
Otherwise removing the edges of $C_{3}^{b} \cup I^{p b} \cup C_{3}^{p} \cup I^{p q}\left(C_{3}^{c} \cup I^{q c} \cup C_{3}^{q} \cup I^{p q}\right)$ results in the drawing of the graph homeomorphic to $K_{1,1,2} \times C_{3}$ with fewer than six crossings. This contradicts the fact that $\operatorname{cr}\left(K_{1,1,2} \times C_{3}\right)=6$, see [2].
Property 3. The subgraph $C_{3}^{b} \cup I^{p b}\left(C_{3}^{c} \cup I^{q c}\right)$ has at most two crossings on its edges. Otherwise one can obtain the drawing of the subdivision of the graph $P_{4}^{2} \times C_{3}$ with fewer than nine crossings, a contradiction with $\operatorname{cr}\left(P_{4}^{2} \times C_{3}\right)=9$, see [3].
Property 4. The subgraph $T^{a}\left(T^{d}\right)$ has at most two crossings on its edges.
Otherwise by deleting the edges of $T^{a}\left(T^{d}\right)$ we have the drawing of the graph $P_{4}^{2} \times C_{3}$ with fewer than nine crossings again.
Property 5. In D there are at most two crossings on the edges of $I^{p c}\left(I^{q b}\right)$.
Otherwise deleting the edges of $I^{p c}\left(I^{q b}\right)$ results in the drawing of the union of two graphs $C_{3} \times C_{3}$ and $K_{1,1,2} \times C_{3}$ with one common C_{3}^{p}-cycle (C_{3}^{q}-cycle) with fewer than nine crossings. This contradicts the fact that such union of graphs has at least $3+6$ crossings, because none of crossings on the common 3-cycle appears in both graphs.
Property 6. In D there are at most five crossings on the edges of $I^{p b} \cup I^{p q} \cup I^{q c}$.
Otherwise D contains the subdrawing of $C_{6} \times C_{3}$ with fewer than six crossings. This is in contradiction with $c r\left(C_{6} \times C_{3}\right)=6$, see [6].
Property 7. $c r_{D}\left(C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}\right) \neq 0, c r_{D}\left(C_{3}^{p} \cup I^{p b} \cup C_{3}^{b}\right) \neq 0$, and $c r_{D}\left(C_{3}^{q} \cup I^{q c} \cup C_{3}^{c}\right) \neq$ 0.

If $c r_{D}\left(C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}\right)=0$, then none of crossings on the edges $C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}$ appears in both subgraphs $T^{a} \cup C_{3}^{b} \cup I^{p b} \cup I^{q b} \cup C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}$ and $T^{d} \cup C_{3}^{c} \cup I^{q c} \cup I^{p c} \cup C_{3}^{p} \cup$ $I^{p q} \cup C_{3}^{q}$. As both these subgraphs are isomorphic with the graph $K_{1,1,2} \times C_{3}$ with
crossing number six, D has more than eleven crossings on its edges. The similar contradiction can by obtained for $c r_{D}\left(C_{3}^{p} \cup I^{p b} \cup C_{3}^{b}\right)=0\left(c r_{D}\left(C_{3}^{q} \cup I^{q c} \cup C_{3}^{c}\right)=0\right)$ using subgraphs isomorphic with $P_{4}^{2} \times C_{3}$ and $C_{3} \times C_{3}$ which crossing numbers are nine and three, respectively.

In the next we show that $\operatorname{cr}_{D}\left(C_{3}^{p}, C_{3}^{q}\right)=c r_{D}\left(C_{3}^{p}, C_{3}^{b}\right)=c r_{D}\left(C_{3}^{p}, C_{3}^{c}\right)=$ $\operatorname{cr}_{D}\left(C_{3}^{b}, C_{3}^{q}\right)=c r_{D}\left(C_{3}^{c}, C_{3}^{q}\right)=0$. Assume that $c r_{D}\left(C_{3}^{p}, C_{3}^{q}\right) \neq 0$. In any good drawing, if two vertex-disjoint cycles cross each other, then at least one of them separates two vertices of the other. If C_{3}^{p} separates two vertices of C_{3}^{q}, say q_{i} and q_{j}, then C_{3}^{p} is crossed in D two times by C_{3}^{q} and by all paths $q_{i} b_{i} b_{j} q_{j}, q_{i} c_{i} c_{j} q_{j}$, and $q_{i} d_{i} d_{j} q_{j}$. This contradicts Property 1. The same contradiction is obtain when C_{3}^{q} separates two vertices of C_{3}^{p} and hence $\operatorname{cr}_{D}\left(C_{3}^{p}, C_{3}^{q}\right)=0$. Consider now that $c r_{D}\left(C_{3}^{p}, C_{3}^{b}\right) \neq 0$. The cycle C_{3}^{b} does not separate two vertices of C_{3}^{p}, otherwise it is crossed two times by C_{3}^{p} and by the path $p_{i} a_{i} a_{j} p_{j}$. This contradicts Property 3. If C_{3}^{p} separates two vertices b_{i} and b_{j} of C_{3}^{b}, then the cycle C_{3}^{q} is placed in D in the region with two vertices of C_{3}^{b} on its boundary and therefore one edge of $I^{q b}$ crosses C_{3}^{p}. As C_{3}^{p} is also crossed by the path $b_{i} a_{i} a_{j} b_{j}$ and two times by C_{3}^{b}, Property 1 and the condition $c r_{D}\left(C_{3}^{p}, C_{3}^{q}\right)=0$ imply that $c r_{D}\left(C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}\right)=0$ which contradicts Property 7. Thus, $c r_{D}\left(C_{3}^{p}, C_{3}^{b}\right)=0$. The same arguments give $c r_{D}\left(C_{3}^{q}, C_{3}^{c}\right)=0, c r_{D}\left(C_{3}^{q}, C_{3}^{b}\right)=0$, and $c r_{D}\left(C_{3}^{p}, C_{3}^{c}\right)=0$. This, together with Property 7, implies that there is at least one crossing on the edges of $I^{p b}$ in the subgraph $C_{3}^{b} \cup I^{p b} \cup C_{3}^{p}$, at least one crossing on the edges of $I^{p q}$ in the subgraph $C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}$, and at least one crossing on the edges of $I^{q c}$ in the subgraph $C_{3}^{q} \cup$ $I^{q c} \cup C_{3}^{c}$.

Assume now that in the drawing D there are more than two crossings on the edges of $I^{p q}$. Then, by Property $6, c r_{D}\left(C_{3}^{p} \cup I^{p b} \cup C_{3}^{b}\right)=1$ and $c r_{D}\left(C_{3}^{q} \cup I^{q c} \cup C_{3}^{c}\right)=$ 1. As $\operatorname{cr}\left(C_{3} \times C_{3}\right)=3$, the subgraph T^{a} has its edges crossed at least two times. Thus, removing the edges of T^{a} and $I^{p q}$ from D results in the drawing of the graph $K_{1,1,2}^{s} \times C_{3}$ with fewer than seven crossings, a contradiction. So, $I^{p q}$ has at most two crossings on its edges and every of the subgraphs $T^{a} \cup C_{3}^{b} \cup I^{p b} \cup I^{q b} \cup$ $C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}, T^{d} \cup C_{3}^{c} \cup I^{q c} \cup I^{p c} \cup C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}$, and $C_{3}^{p} \cup I^{p q} \cup I^{p b} \cup I^{p c} \cup$ $C_{3}^{q} \cup I^{q c} \cup I^{q b} \cup C_{3}^{b} \cup C_{3}^{c}$ is in compliance with the assumptions of Lemma 2.1 that every of the subgraphs $I^{x y}, x, y \in\{a, b, c, d, p, q\}$, has at most two crossings. It implies from Properties 6 and 7 that in at least one of the subgraphs $C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}$, $C_{3}^{p} \cup I^{p b} \cup C_{3}^{b}$, and $C_{3}^{q} \cup I^{q c} \cup C_{3}^{c}$ exactly one crossing appears among its edges. If $c r_{D}\left(C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}\right)=1$, then only one common crossing appears in both subgraphs $T^{a} \cup C_{3}^{b} \cup I^{p b} \cup I^{q b} \cup C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}$ and $T^{d} \cup C_{3}^{c} \cup I^{q c} \cup I^{p c} \cup C_{3}^{p} \cup I^{p q} \cup C_{3}^{q}$. As $c r\left(K_{1,1,2} \times C_{3}\right)=6$ and, by Lemma 2.1, $c r_{D}\left(C_{3}^{b} \cup I^{p b} \cup I^{q b}, C_{3}^{c} \cup I^{q c} \cup I^{p c}\right) \neq 0$, every of these subgraphs has its edges crossed at least seven times. Hence, in D there are at least $7+7-2=12$ crossings, a contradiction. The similar arguments in the case when $c r_{D}\left(C_{3}^{p} \cup I^{p b} \cup C_{3}^{b}\right)=1$ or $c r_{D}\left(C_{3}^{q} \cup I^{q c} \cup C_{3}^{c}\right)=1$ together with the facts that $\operatorname{cr}\left(C_{3} \times C_{3}\right)=3$ and $\operatorname{cr}\left(P_{4}^{2} \times C_{3}\right)=9$ gives the same contradiction. This completes the proof.

Note that for $n \geq 4$ there is no good drawing of the subgraph $C_{n}^{p} \cup I^{p q} \cup C_{n}^{q}$ $\left(C_{n}^{p} \cup I^{p b} \cup C_{n}^{b}, C_{n}^{q} \cup I^{q c} \cup C_{n}^{c}\right)$ with one crossing. In fact, if any two edges of the graph $C_{n}^{p} \cup I^{p q} \cup C_{n}^{q}$ not incident with the same vertex cross each other, then
one can find two vertex-disjoint cycles in such a way that every of these cycles contains exactly one of the considered edges. As two vertex-disjoint cycles cannot cross each other exactly once, in the drawing there is one additional crossing.
Theorem 2.3. $\operatorname{cr}\left(P_{5}^{2} \times C_{4}\right)=16$.
Proof. It is easy to see in Figure $1(\mathrm{~b})$ that $\operatorname{cr}\left(P_{5}^{2} \times C_{4}\right) \leq 16$. To prove the reverse inequality assume that there is a drawing of the graph $\bar{P}_{5}^{2} \times C_{4}$ with fewer than 16 crossings and let D be such a drawing. As $\operatorname{cr}\left(K_{1,1,2}^{s} \times C_{4}\right)=12$ and $\operatorname{cr}\left(C_{6} \times C_{4}\right)=$ 12 , see [1] and [3], in a similar way as in the proof of Theorem 2.2 it is easily seen that D has the following properties:
Property 1. The subgraph $C_{4}^{p} \cup I^{p q} \cup I^{p b}\left(C_{4}^{q} \cup I^{p q} \cup I^{q c}\right)$ has at most three crossings on its edges.
Property 2. The subgraph $C_{4}^{b} \cup I^{p b} \cup I^{p q}\left(C_{4}^{c} \cup I^{q c} \cup I^{p q}\right)$ has at most three crossings on its edges.
Property 3. The subgraph $I^{p b} \cup I^{p q} \cup I^{q c}$ has at most three crossings on its edges.
Using the same arguments as in the proof of Theorem 2.2, one can prove the next fact:
Property 4. $c r_{D}\left(C_{4}^{x}, C_{4}^{y}\right)=0$ for all $x, y \in\{b, c, p, q\}$.
If $\operatorname{cr}_{D}\left(C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}\right)=0$, none of crossing among edges of the subgraph $T^{a} \cup C_{4}^{b} \cup I^{p b} \cup I^{q b} \cup C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ is a crossing in the subgraph $T^{d} \cup C_{4}^{c} \cup I^{q c} \cup$ $I^{p c} \cup C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ and vice versa. In this case, as $c r\left(K_{1,1,2} \times C_{4}\right)=8, D$ has at least $8+8=16$ crossings, a contradiction. Using $\operatorname{cr}\left(C_{3} \times C_{4}\right)+\operatorname{cr}\left(P_{4}^{2} \times C_{4}\right)=4+12$, the same contradiction is obtained if $c r_{D}\left(C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}\right)=0$ or $c r_{D}\left(C_{4}^{q} \cup I^{q c} \cup C_{4}^{c}\right)=0$. This proves the following:
Property 5. $c r_{D}\left(C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}\right) \geq 2, c r_{D}\left(C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}\right) \geq 2$ and $c r_{D}\left(C_{4}^{q} \cup I^{q c} \cup C_{4}^{c}\right) \geq$ 2.

(a)

(b)

Fig. 3. The possible subdrawings of $C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}$ and $C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$.
Consider now that in the subdrawing of $C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}$ there is no crossing on the edges of $I^{p b}$. As $c r_{D}\left(C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}\right) \geq 2$ and $c r_{D}\left(C_{4}^{p}, C_{4}^{b}\right)=0$, every of the cycles C_{4}^{p} and C_{4}^{b} has an internal crossing and the unique subdrawing of $C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}$ is shown in Figure 3(a). In this case $c r_{D}\left(C_{4}^{q}, I^{p b}\right)=0$, otherwise both $C_{4}^{p} \cup I^{p q} \cup I^{p b}$ and $C_{4}^{b} \cup I^{p b} \cup I^{p q}$ have three crossings in the subdrawing of $C_{4}^{p} \cup I^{p q} \cup I^{p b} \cup C_{4}^{b} \cup I^{q b} \cup C_{4}^{q}$ and another crossings with the edges of T^{a}. This contradicts Property 1 and Property 2. Hence, the cycle C_{4}^{q} does not cross in D the edges of $C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}$ and in Figure 3(a) it is easy to verify that in D the edges of $I^{p q}$ cross at least two times the edges of $C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}$. Now a path joining a vertex of C_{4}^{p} with a vertex of C_{4}^{b} containing a vertex of C_{4}^{a} crosses the edges of $C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}$ and we have contradiction with Properties 1 and 2 again. Thus, we conclude that in the subdrawing of $C_{4}^{p} \cup I^{p b} \cup C_{4}^{b}$ an edge of $I^{p b}$ is crossed as well
as in the subdrawing of $C_{4}^{q} \cup I^{q c} \cup C_{4}^{c}$ an edge of $I^{q c}$ is crossed. Property 3 implies that in D there is at most one crossing on the edges of $I^{p q}$.

In the drawing D there are at least nine crossings among the edges of the subgraph $T^{a} \cup C_{4}^{b} \cup I^{p b} \cup I^{q b} \cup C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ as well as among the edges of the subgraph $T^{d} \cup C_{4}^{c} \cup I^{q c} \cup I^{p c} \cup C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$, because both $I^{p b}$ and $I^{q c}$ are crossed and $\operatorname{cr}\left(C_{4} \times C_{4}\right)=8$. This follows that in the subdrawing of the graph $C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ there are at least three crossings among its edges. Otherwise at most two crossings of $C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ are counted in both subgraphs $T^{a} \cup C_{4}^{b} \cup I^{p b} \cup I^{q b} \cup C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ and $T^{d} \cup C_{4}^{c} \cup I^{q c} \cup I^{p c} \cup C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ and D has at least $9+9-2=16$ crossings, a contradiction. Hence, as $c r_{D}\left(C_{4}^{p}, C_{4}^{q}\right)=0$ and on the edges of $I^{p q}$ there is only one crossing, the edges of $C_{4}^{p} \cup I^{p q} \cup C_{4}^{q}$ cross each other in such a way that the cycle C_{4}^{p} has an internal crossing and the cycle C_{4}^{q} has an internal crossing. The deleting of a crossed edge of $I^{p q}$ gives the unique subdrawing shown in Figure 3(b). Properties 1 and 2 allow only two another crossings on the edges of the subdrawing in Figure 3(b) and it is easy to see that it is impossible to place the rest of the edges of the graph to obtain our considered drawing D. This completes the proof of Theorem 2.3.

Theorem 2.4. $\operatorname{cr}\left(P_{5}^{2} \times C_{5}\right)=20$.
Proof. Figure 1(b) shows that $\operatorname{cr}\left(P_{5}^{2} \times C_{5}\right) \leq 20$. To prove the reverse inequality assume that there is a drawing of the graph $P_{5}^{2} \times C_{5}$ with fewer than 20 crossings and let D be such a drawing. As $\operatorname{cr}\left(C_{5} \times C_{5}\right)=15$, every subgraph $C_{5}^{b} \cup I^{p b} \cup$ $I^{p q} \cup I^{q c}, I^{p b} \cup C_{5}^{p} \cup I^{p q} \cup I^{q c}, I^{p b} \cup I^{p q} \cup C_{5}^{q} \cup I^{q c}$ and $I^{p b} \cup I^{p q} \cup I^{q c} \cup C_{5}^{c}$ has in D at most four crossings on its edges. Moreover, as $\operatorname{cr}\left(C_{6} \times C_{5}\right)=18$, on the edges of $I^{p b} \cup I^{p q} \cup I^{q c}$ there is at most one crossing. Using these restrictions one can show that $\operatorname{cr}_{D}\left(C_{5}^{p}, C_{5}^{q}\right)=0$ and that if two cycles C_{5}^{x} and $C_{5}^{y}, x \in\{p, q\}, y \in\{b, c\}$ cross each other, then the cycle C_{5}^{x} does not have an internal crossing.

We know that if the edges of the subgraph $C_{5}^{p} \cup I^{p q} \cup C_{5}^{q}\left(C_{5}^{p} \cup I^{p b} \cup C_{5}^{b}\right.$, $\left.C_{5}^{q} \cup I^{q c} \cup C_{5}^{c}\right)$ cross each other in D, then they cross each other at least two times. Using the similar arguments as in the proof of Theorem 2.4, one can show that the condition $c r_{D}\left(C_{5}^{p} \cup I^{p q} \cup C_{5}^{q}\right)=0\left(c r_{D}\left(C_{5}^{p} \cup I^{p b} \cup C_{5}^{b}\right)=0, c r_{D}\left(C_{5}^{q} \cup I^{q c} \cup C_{5}^{c}\right)=0\right)$ contradicts the assumption of the drawing D. Hence, $c r_{D}\left(C_{5}^{p} \cup I^{p q} \cup C_{5}^{q}\right) \geq 2$, $c r_{D}\left(C_{5}^{p} \cup I^{p b} \cup C_{5}^{b}\right) \geq 2$ and $c r_{D}\left(C_{5}^{q} \cup I^{q c} \cup C_{5}^{c}\right) \geq 2$.

Fig. 4. The possible subdrawings of $C_{5}^{p} \cup I^{p q} \cup C_{5}^{q}$.

Consider first that in D there is no crossing on the edges of $I^{p q}$. In this case every of C_{5}^{p} and C_{5}^{q} has exactly one internal crossing or every of C_{5}^{p} and C_{5}^{q} has exactly two internal crossings. The only possible subdrawings of $C_{5}^{p} \cup I^{p q} \cup C_{5}^{q}$ induced from D are shown in Figure 4 . Since both cycles C_{5}^{p} and C_{5}^{q} have internal crossings, it is clear that $\operatorname{cr}_{D}\left(C_{5}^{p}, C_{5}^{b}\right)=\operatorname{cr}_{D}\left(C_{5}^{p}, C_{5}^{c}\right)=\operatorname{cr}_{D}\left(C_{5}^{q}, C_{5}^{b}\right)=$
$c r_{D}\left(C_{5}^{q}, C_{5}^{c}\right)=0$. In Figure 4 it is easily seen that if C_{5}^{c} is placed in one of the regions of the subdrawing of $C_{5}^{p} \cup I^{p q} \cup C_{5}^{q}$, then the edges of $I^{q c}$ are crossed more than once, a contradiction.

If in D there is a crossing (exactly one) on the edges of $I^{p q}$, then there is no crossing on the edges of $I^{p b}$ in the subdrawing of $C_{5}^{p} \cup I^{p b} \cup C_{5}^{b}$, and the similar consideration as in the previous case leads to the same contradiction with the assumption on the drawing D. This completes the proof.

References

[1] Beineke, L. W. and Ringeisen, R. D., On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980), 145-155
[2] Klešč, M., The crossing number of $\left(K_{4}-e\right) \times C_{3}$, Proceedings of the International Scientific Conference on Mathematics, Herłany 1999, 106-109, Univ. Technol. Košice, Košice, 2000
[3] Klešč, M., Some crossing numbers of products of cycles, Discuss. Math. Graph Theory 25 (2005), 197-210
[4] Klešč, M., Richter, R. B. and Stobert, I., The crossing number of $C_{5} \times C_{n}$, J. Graph Theory 22 (1996), 239-243
[5] Patil, H. P. and Krishnnamurthy, D., On power graphs with crossing number one, Discuss. Math. 12 (1992), 27-37
[6] Richter, R. B. and Salazar, G., The crossing number of $C_{6} \times C_{n}$, Australasian Journal of Combinatorics 23 (2001), 135-144
[7] Ringeisen, R. D. and Beineke, L. W., The crossing number of $C_{3} \times C n$, J. Combin. Theory 24 (B) (1978), 134-136

Technical University of Košice
Department of Mathematics
Faculty of Electrical
Engineering and Informatics
0420 Košice, Slovak Republic
E-mail address: Marian. Klesc@tuke.sk
E-mail address: Daniela.Kravecova@tuke.sk

[^0]: Received: 13.11.2008. In revised form: 09.03.2009. Accepted: 20.05.2009.
 2000 Mathematics Subject Classification. 05C10, 05C38.
 Key words and phrases. Graph, power of graph, drawing, crossing number, cycle, Cartesian product.
 ${ }^{1}$ The research was supported by the Slovak VEGA grant No. 1/0636/08.
 ${ }^{2}$ This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0073-07.

