The crossing number of $P_{5}^{2} \times C_{n}$

Marián Klešč ${ }^{1,2}$ and Daniela Kravecová ${ }^{2}$ 【

Abstract

. Patil and Krishnnamurthy established family of graphs for which power graphs have crossing number one. This is the only result concerning crossing numbers of power of some graphs. Let P_{m}^{2} denote the power of the path P_{m}. We start to determine crossing numbers of a new infinite family of graphs, concretely for the Cartesian products $P_{m}^{2} \times C_{n}$ where $m \geq 2$ and $n \geq 3$. The main result of the paper is that the crossing number of the graph $P_{5}^{2} \times C_{n}$ is $4 n$ for all $n \geq 3$.

References

[1] Beineke, L. W. and Ringeisen, R. D., On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980), 145-155
[2] Klešč, M., The crossing number of $\left(K_{4}-e\right) \times C_{3}$, Proceedings of the International Scientific Conference on Mathematics, Herlany 1999, 106-109, Univ. Technol. Košice, Košice, 2000
[3] Klešč, M., Some crossing numbers of products of cycles , Discuss. Math. Graph Theory 25 (2005), 197-210
[4] Klešč, M., Richter, R. B. and Stobert, I., The crossing number of $C_{5} \times C_{n}$, J. Graph Theory 22 (1996), 239-243
[5] Patil, H. P. and Krishnnamurthy, D., On power graphs with crossing number one, Discuss. Math. 12 (1992), 27-37
[6] Richter, R. B. and Salazar, G., The crossing number of $C_{6} \times C_{n}$, Australasian Journal of Combinatorics 23 (2001), 135-144
[7] Ringeisen, R. D. and Beineke, L. W., The crossing number of $C_{3} \times C n$, J. Combin. Theory 24 (B) (1978), 134-136
Technical University of Košice
Department of Mathematics
Faculty of Electrical
Engineering and Informatics
0420 Košice, Slovak Republic
E-mail address: Marian. Klesc@tuke.sk
E-mail address: Daniela.Kravecova@tuke.sk

[^0]
[^0]: Received: 13.11.2008; In revised form: 09.03.2009; Accepted: 20.05.2009.
 2000 Mathematics Subject Classification. 05C10, 05C38.
 Key words and phrases. Graph, power of graph, drawing, crossing number, cycle, Cartesian product.
 ${ }^{1}$ The research was supported by the Slovak VEGA grant No. 1/0636/08.
 ${ }^{2}$ This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0073-07.

