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On some existence and uniqueness theorems for
Fredholm and Volterra equations with modified
argument

MONICA LAURAN

ABSTRACT. In this paper some existence and uniqueness theorems for a Fredholm, respectively, a
Volterra integral equation, are given by using the contraction mapping principle and the generalized
contraction principle, respectively. These integral equations arise in several concrete applications such
as theory of optimal control, economics and etc.

1. INTRODUCTION

In the paper [7], the authors study a Volterra type integral equation of the form

x(t) = g(t, x(t)) + f

⎛
⎝t,

t∫

0

K(t, s, x(s))ds, x(α(t))

⎞
⎠ (1.1)

using Darbo‘s fixed point theorem and several others concepts, like the Kura-
towski measure of noncompactness. Their main result may be stated as follows:

Theorem 1.1. Assume that the following conditions are satisfied:
(H1) g : [0, a]× R → R and f : [0, a]× R × R → R are continuous and there exist

nonnegative constants μ, γ, λ such that

|g(t, 0)| ≤ μ,
|f(t, 0, x(α(t))| ≤ γ + λ · |x(t)|

for t ∈ [0, a].
(H2) there exist the continuous functions a1, a2, a3 : [0, a] → [0, a] such that

|g(t, x1)− g(t, x2)| ≤ a1(t) |x1 − x2| ,
|f(t, y1, x)− f(t, y2, x)| ≤ a2(t) |y1 − y2| ,
|f(t, y, x1)− f(t, y, x2)| ≤ a3(t) |x1 − x2| ,

for all xi, yi ∈ R ,i = 1, 2 and t ∈ [0, a] and let k = max
j

{|aj(t)| : t ∈ [0, a]}
for j = 1, 2, 3.

(H3) K(t, s, x) : [0, a] × [0, a] × R → R is continuous and satisfies a sublinear
condition, that is there exist the constant α and β such that

|K(t, s, x)| ≤ α+ β |x| ,
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for all t, s ∈ [0, a] and x ∈ R

(H4)

k ≤ 1− λ

2(1 + aβ)

Then equation (1.1) has at least one solution in the Banach algebra C[0, a].

Starting from this theorem, in the present paper, we obtain a similar result for
a simpler Fredholm integral equation of the form:

x(t) = f(t, x(t)) +

a∫

0

K(t, s, x(s))ds, t ∈ [0, a] (1.2)

using the mapping contraction principle. For other similar existence and unique-
ness results for Fredholm integral equations based on the technique of Picard
operators or weakly Picard operators, see for example, the recent papers [4], [5]
and references therein.

2. AN EXISTENCE AND UNIQUENESS THEOREM FOR A FREDHOLM INTEGRAL
EQUATION

In this section we recall some basic results which we will need in the following
section.
Let (X, d) be a metric space, where X be a nonempty set, T : X → X an operator
and let us denote FT := {x ∈ X/Tx = x}, the fixed point set of T .

Definition 2.1. An operator T : X → X is called a Picard operator if then exists
x∗ ∈ X such that

(i) FT = {x∗};
(ii) the sequence {T n(x0)}n∈N converges to x∗, for all x0 ∈ X .

Definition 2.2. A mapping T : X → X is said to be:

(i) Lipschitzian if there exist L > 0 such that d(Tx, T y) ≤ L · d(x, y), for all
x, y ∈ X ;

(ii) contraction if it is Lipschitzian with L < 1.

The next theorem is the main tool used in this paper, see for example [2].

Theorem 2.2. (Contraction mapping principle) Let (X, d) be a complete metric
space and T : X → X be a given a-contraction, that is an operator satisfying

d(Tx, T y) ≤ ad(x, y),

for any x, y ∈ X with a ∈ [0, 1) fixed.
Then

(i) T has a unique fixed point x∗, that is, FT = x∗;
(ii) the Picard iteration associated to T, i.e., the sequence {xn}n≥0, defined by

xn = T (xn−1) = T n(x0), n = 1, 2, ...

converge to x∗, for any initial guess x0 ∈ X ;
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(iii) The priori and a posteriori error estimates

d(xn, x
∗) ≤ an

1− a
· d(x0, x1), n = 0, 1, 2, ...

d(xn, x
∗) ≤ a

1− a
· d(xn−1, xn), n = 0, 1, 2, ...

hold.
(iv) The rate of convergence is given by

d(xn, x
∗) ≤ a · d(xn−1, x

∗) ≤ an · d(x0, x
∗), n = 1, 2, ...

Now, we shall study the integral equation (1.2) and we shall establish a result
concerning the existence and uniqueness of solutions of this equation in the set
C[0, a] .

Assume that the following assumptions are satisfied:
(i) f : [0, a]× R → R, K : [0, a]× R× R → R are continuous functions;

(ii) there exist the continuous functions a1, a2 : [0, a] → R+ such that:

|f(t, x1)− f(t, x2)| ≤ a1(t) |x1 − x2| ,
|K(t, s, x1)−K(t, s, x2)| ≤ a2(t) |x1 − x2| ;

(iii) there exist the real numbers k1, k2 such that a1(t) ≤ k1, a2(t) ≤ k2, for
t ∈ [0, a];

(iv) k1 + a · k2 < 1.

Theorem 2.3. Under the assumptions (i)-(iv) above the equation (1.2) has a unique
solution in C[0, a] and the iterative approximations sequence associated to the Fredholm
operator that is,

xn+1(t) = f(t, xn(t)) +

a∫

0

K(t, s, xn(s))ds, n ≥ 0

converge to x∗, ∀x0 ∈ C[0, a], and we have the estimate

‖xn − x∗‖ ≤ (k1 + a · k2)n
1− k1 − a · k2 · ‖x1 − x0‖ , n ≥ 1.

Proof. The proof of this result uses Theorem 2.2 as the main tool. We define the
operator H on the space C[0, a], in the following way: H : C[0, a] → C[0, a],

(Hx)(t) = f(t, x(t)) +

a∫

0

K(t, s, x(s))ds t ∈ [0, a].

Let us fix x, y ∈ C[0, a], then using our assumptions for t ∈ [0, a], we get:

|(Hx)(t) − (Hy)(t)| =
∣∣∣∣∣∣f(t, x(t)) +

a∫
0

K(t, s, x(s))ds− f(t, y(t))−
a∫

0

K(t, s, y(s))ds

∣∣∣∣∣∣

≤ |f(t, x(t))− f(t, y(t))|+
a∫

0

|K(t, s, x(s))−K(t, s, y(s))| ds
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≤ a1(t)·|x(t) − y(t)|+a2(t)·
a∫

0

|x(s) − y(s)| ds < k1·|x(t) − y(t)|+k2·
a∫

0

|x(s)− y(s)| ds

Applying the norm in the previous inequality, we obtain

‖Hx−Hy‖ < (k1 + a · k2) ‖x− y‖ .
In view of the assumptions above we have:

‖Hx−Hy‖ < L · ‖x− y‖ , L = k1 + a · k2 < 1,

so the operator H is a contraction and the conclusion follows by Theorem 2.2.
�

Theorem 2.4. If the hypothesis (ii) in Theorem 2.3 is replaced by

(ii‘) there exist the continuous functions a1, a2 : [0, a] → R+ such that

|f(t, x1)− f(t, x2)| ≤ a1(t) |x1 − x2|

|K(t, s, x1)−K(t, s, x2)| ≤ a2(s) |x1 − x2| ,
for any t, s ∈ [0, a]
and (iii) is replaced by

(iii‘) there exists a real number k, such that

a1(t) +

a∫
0

a2(s)ds ≤ k < 1,

then the equation (1.2) has a unique solution in C[0, a].

Proof. With H in the proof of theorem 2.3, we have for x, y ∈ C[0, a]:

|(Hx)(t) − (Hy)(t)| =
∣∣∣∣∣∣f(t, x(t)) +

a∫

0

K(t, s, x(s))ds− f(t, y(t))−
a∫

0

K(t, s, y(s))ds

∣∣∣∣∣∣

≤ |f(t, x(t))− f(t, y(t))|+
a∫

0

|K(t, s, x(s))−K(t, s, y(s))| ds

≤ a1(t) · |x(t)− y(t)|+
a∫

0

a2(s) |x(s)) − y(s)| ds

Using the norm in the previous inequality and the assumption (iii‘), we get:

‖Hx−Hy‖ ≤
⎛
⎝a1(t) +

a∫
0

a2(s)ds

⎞
⎠ · ‖x− y‖ ≤ k · ‖x− y‖

Then H is a contraction operator and now apply again Theorem 2.2. �
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Remark 2.1. Similary to Theorem 2.3 the iterative approximations sequence, that
is,

xn+1(t) = f(t, xn(t)) +

a∫
0

K(t, s, xn(s))ds, n ≥ 0

converge to x∗, ∀x0 ∈ C[0, a], and we have the estimate

‖xn − x∗‖ ≤ kn

1− k
· ‖x1 − x0‖ , n ≥ 1.

3. AN EXISTENCE AND UNIQUENESS THEOREM FOR A VOLTERRA INTEGRAL
EQUATION

Definition 3.1. A function φ : R+ → R+ which satisfies:
(i) φ is monotone increasing (t1 ≤ t2 ⇒ φ(t1) ≤ φ(t2));

(ii) φn(t) → 0 for any t ≥ 0;
is called a comparison function.

Definition 3.2. A function φ which satisfies:
(i) φ is monotone increasing (t1 ≤ t2 ⇒ φ(t1) ≤ φ(t2));

(ii)
∞∑
i=1

φk(t) is convergent for t ≥ 0 is called c - comparison function.

Definition 3.3. Let (X, d) metric space. A application T : X → X is said to be a φ
- contraction if there exist a comparison function φ : R+ → R+ such that

d(Tx, T y) ≤ φ(d(x, y))

for any x, y ∈ X

The following theorems and corollaries were given in [2].

Theorem 3.1. Let us consider (X, d) is a metric space and the map T : X → X is a φ -
contraction. Then T is an Picard operator.

Corollary 3.1. Let us suppose (X, d) is a complete metric space and the map T : X → X
for which ∃k ∈ N

∗ such that T k is a φ - contraction. Then FT = {x∗} .
Theorem 3.2. Let (X, d) be a complete metric space and T : X → X is a φ - contraction,
with φ an c- comparison function. Then

(1) FT = {x∗};
(2) the Picard iteration xn = {T nx0}n∈N

converge to x∗ as n → ∞ for any x0 ∈ X ;
(3) d(xn, x

∗) ≤ s(d(xn, xn+1)), n = 0, 1, 2...

where s(t) =
∞∑
i=1

φk(t) is the sum of the series of comparison.

Now, we shall study the integral equation with modified argument

x(t) = f(t) + λ

t∫
−t

K(t, s, x(s), x(g(s)))ds (3.1)

for t ∈ [−T, T ], T > 0, λ ∈ R+.
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We shall establish one result concerning the existence and uniqueness of solu-
tion of this equation in C[−T, T ], using the φ- contraction principle. This equation
has been studied in [4], [5] using the Chebisev norm. In this paper, our result shall
be obtained by using a Bielecki type norm.

Assume that the following conditions are satisfied:
(i) K ∈ C([−T, T ]× [−T, T ]× R

2)
(ii) f ∈ C[−T, T ]

(iii) K(x, s, •, •) : [−T, T ]× [−T, T ] → R increasing for any x, s ∈ [−T, T ]
(iv) there exists the comparison function φ : R+ → R+ with φ(αt) ≤ αφ(t) for

any t ∈ [−T, T ], α ≥ 1 such that

|K(x, s, u1, v1)−K(x, s, u2, v2)| ≤ φ(|u1 − u2|+ |v1 − v2|)
for any t, s ∈ [−T, T ], u1, u2, v1, v2 ∈ R, ui ≤ vi, i = 1, 2

Theorem 3.3. Suppose (i)-(iv) are satisfied. Then the integral equation (3.1) has a
unique solution x∗ in C[−T, T ] and the iterative approximations sequences, defined by

xn+1(t) = f(t) + λ

t∫
−t

K(t, s, xn(s), xn(g(s)))ds

converges to x∗, for each x0 ∈ C[−T, T ],
and the following estimate

‖xn − x∗‖ ≤
(

2·|λ|
τ

)n

1− 2·|λ|
τ

· ‖x1 − x0‖

holds.

Proof. We attach to the integral equation (3.1) the operator A : C[−T, T ] →
C[−T, T ], defined by:

(Ax)(t) := f(t) + λ

t∫
−t

K(t, s, x(s), x(g(s)))ds t ∈ C[−T, T ].

We consider the Bielecki norm ‖x‖B = max
t∈[−T,T ]

∣∣x(t)e−τ(t−T )
∣∣, τ > 0. The set of

the solutions of the integral equation (3.1) coincides with the set of fixed points
of the operator A.

By (iv) we have:

|(Ax1)(t)− (Ax2)(t)| ≤ |λ|
t∫

−t

|K(t, s, x1(s), x1(g(s))) −K(t, s, x2(s), x2(g(s)))| ds

= |λ|
t∫

−t

|K(t, s, x1(s), x1(g(s)))−K(t, s, x2(s), x2(g(s)))| · e−τ(t−T ) · eτ(t−T )ds.

Then
|Ax1 −Ax2| ≤ |λ|·2

τ · φ(‖x1 − x2‖)(eτ(t−T ) − e−τ(t+T ))

≤ |λ|·2
τ · φ(‖x1 − x2‖) · eτ(t−T ).
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So,

|Ax1 −Ax2| · e−τ(t−T ) ≤ |λ| · 2
τ

· φ(‖x1 − x2‖).
Applying maximum in inequalities, we obtained:

‖Ax1 −Ax2‖ ≤ |λ| · 2
τ

· φ(‖x1 − x2‖)

In this case A is an α- Lipschitzian operator with α = 2·|λ|
τ . If we take τ such

that 2·|λ|
τ < 1 ⇔ |λ| < τ

2 , then A is α- contraction and applying the Contraction
Mapping Principle, equation (3.1) has a unique solution. �

4. APPLICATIONS

In this section we present some examples of classical integral and functional
equations considered in nonlinear analysis which are particular cases of (1.2).

Example 4.1. Let us take f : [0, 1]×R → R and K : [0, 1]× [0, 1]×R → R defined
by

f(t, x(t)) = sin a
a+t ,

K(t, s, x(s)) = ats
9 · sinx(s), a ∈ [0, 1]

These functions are continuous and satisfy hypothesis (i)-(iv) with a1 = 0, a2 =
a

9
, max {a1 + a · a2} = 1

9 ≤ 1. Applying the result obtained in Theorem 2.3 ,we

deduce that the equation (1.2) has a unique solution in C[0, 1] which can be ob-
tained by the sequence of successive approximation

xn+1(t) = f(t, xn(t)) +

a∫

0

K(t, s, xn(s))ds, n ≥ 0

For x0 ≡ 0, we get K(t, s, x0(s)) = 0 and x1 = f(t, 0).
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