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ABSTRACT. Real problems which arise in Health Economy are mathematically modeled by means
of dynamic optimization problems of transport type. The aim of this paper is to study them and to
give some methods to solve them.

1. INTRODUCTION

The transport problem has the largest applicability among all the other opti-
mization problems. Its study had generated the duality in the linear program-
ming and, consequently, the method (or technique) of potential plans has been
developed. Starting with the solving of a problem of planning the mammogra-
phy in the frame of a screening program for the mammal cancer, in [1] a par-
ticular type of dynamic optimization problem, named Lexicographic Bi-criteria
Dynamic Transport Problem of Cost-Time Type, has been obtained. Also, an-
other particular type of lexicographical dynamic optimization problem, applied
in cervical cancer screening, is presented in [2].

In the domain of Health Economy, there exist many other problems whose
mathematical model is, in essence, an optimization problem of transport type.
For instance, the persons who suffer from a chronic disease are obliged to make
a special analysis which can be done only in specialized places (laboratories).
Given the home addresses of the patients, the addresses of the laboratories, the
cost transport between the towns (if one laboratory is in another city than the
city where the patient lives) and the number of days when all the patients have
to make the analysis, we get a problem of planning this activity according to the
days, such as the total cost for the transport to be minimum (supposing that the
cost is supported by the screening program). In the case when the patient pays
for the travel, it is important to plan (according to the days) this activity such as
the greatest cost that he (or she) pays to be the lowest possible one. These two
situations generate two different types of optimization problems. As far as we
know, these types of transport problems have not been studied in literature.

In both cases we consider the problem as a dynamic discrete and finite pro-
cess, with the number of states equal to the number of days in which the whole
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L1 L2 L3

First day 1 4 7
Second day 10 4 8
Thirty day 10 10 10
TABLE 1. Capacity of labs

L1 L2 L3

S1 1 3 7
S2 8 5 2

TABLE 2. Transport costs

activity takes place. The static and dynamic equations will be the same, the dif-
ference being only in the computation of the economical effect on the stages and
the total economical effect. In our paper, we give a method for solving each of
these problems, indicating by means of some examples, the necessity of studying
such problems.

Example 1.1. Let’s suppose that in the city S1 there exist 20 patients and in the
city S2, 15 patients. During 3 days they have to make an analysis at one of the
three laboratories L1, L2 or L3. The maximum number of analysis that can be
make in the 3 days at every laboratory is given in Table 1.

The cost between cities, given in Table 2, is also known.
We want to plan the patients at the 3 laboratories such that in the 3 days, all the

analysis to be made and the transport cost to be minimum. Denoting by xkij the
number of patients from the city Si, i ∈ {1, 2}, which in the day k, k ∈ {1, 2, 3},
make the analysis at lab Lj , j ∈ {1, 2, 3}, the following problem has to be solved:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
k=1

(xk
11 + 3xk

12 + 7xk
13 + 8xk

21 + 5k22 + 2xk
23) → min

3∑
k=1

(xk
11 + xk

12 + xk
13) = 20

3∑
k=1

(xk
21 + xk

22 + xk
23) = 15

x1
11 + x1

21 ≤ 1
x1
12 + x1

22 ≤ 4
x1
13 + x1

23 ≤ 7
x2
11 + x2

21 ≤ 10
x2
12 + x2

22 ≤ 4
x2
13 + x2

23 ≤ 8
x3
11 + x3

21 ≤ 10
x3
12 + x3

22 ≤ 10
x3
13 + x3

23 ≤ 10
xk
ij ∈ N, for all i ∈ {1, 2}, j ∈ {1, 2, 3}, k ∈ {1, 2, 3}.
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Relaxing this problem by substituting the request xkij ∈ N by xk
ij ≥ 0 for all i ∈

{1, 2}, j ∈ {1, 2, 3}, k ∈ {1, 2, 3}, we get a linear optimization problem which can
be solved by means of the simplex algorithm. In addition, in case of existence, the
obtained optimal solution, being a vertex of the admissible solutions polyhedral,
will satisfy also the integrity condition, which means that will be the optimal
solution of our initial problem.

Because in practice the number of variables is great and the restrictions of the
problem are similar to those of a transport problem, we give a specific method
for solving it. It is based on two algorithms: one, which uses the potential plans
technique, and another, generated by approaching our problem as a dynamic
process with a finite number of stages.

2. DYNAMIC TRANSPORT PROBLEMS OF COST TYPE AND OF TIME TYPE

Let m, n, p, ai, i ∈ {1, ...,m} and bkj , j ∈ {1, ..., n}, k ∈ {1, ..., p} be natural (non
null) numbers, and let cij , tij , i ∈ {1, ...,m}, j ∈ {1, ..., n}, be non negative real
numbers.

Let us denote

I = {1, ...,m}, J = {1, ..., n}, K = {1, ..., p},
S0 = {(a1, ..., am)}, (2.1)

and
Sp = {(0, ..., 0)}. (2.2)

For each k ∈ {1, ..., p− 1}, let us set

Sk := {0, 1, ..., a1} × ...× {0, 1, ..., am}. (2.3)

Also, if k ∈ {1, ..., p− 1}, and sk−1 ∈ Sk−1, by Λk(s
k−1), we denote the set of the

solutions of the system
m∑
i=1

xk
ij ≤ bkj , for all j ∈ {1, ..., n}, (2.4)

n∑
j=1

xk
ij ≤ sk−1

i , for all i ∈ {1, ...,m}, (2.5)

xk
ij ∈ N, for all i ∈ {1, ...,m}, j ∈ {1, ..., n}. (2.6)

If k = p, and sp−1 ∈ Sp−1, we denote by Λp(s
p−1), the set of the solutions of the

system
m∑
i=1

xp
ij ≤ bpj , for all j ∈ {1, ..., n}, (2.7)

n∑
j=1

xp
ij = sp−1

i , for all i ∈ {1, ...,m}, (2.8)

xp
ij ∈ N, for all i ∈ {1, ...,m}, j ∈ {1, ..., n}. (2.9)
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A dynamic transport problem is a discrete finite stages decision problem, its dy-
namic equations and its static equations having the following expressions:

ski = sk−1
i −

n∑
j=1

xk
ij , for all i ∈ {1, ...,m}, and k ∈ {1, ..., p}, (2.10)

sk ∈ Sk, for all k ∈ {0, 1, ..., p}, (2.11)

Xk = [xk
ij ] ∈ Λ(sk−1), for all k ∈ {1, ..., p}. (2.12)

Sk, the set of all states of the system in the stage k ∈ {0, 1, ..., p}, is given by (2.1),
(2.2), (2.3). The set Λ(sk−1) denotes the set of all decisions which may be taken in
the stage k, if the system is in the state sk−1; it is equal to the set of the solutions
of the system (2.4)-(2.6), if k ∈ {1, ..., p− 1}, and to the set of the solutions of the
system (2.7)-(2.9), if k = p.

A sequence (X1, ..., Xp), where Xk ∈ Xk(s
k−1), for every k ∈ {1, ..., p}, is

called a policy of the dynamic transport problem. The set of all the policies of the
dynamic transport problem will be denoted by Pol.

We will say that a dynamic transport problem is of the cost type and we denote
such problem by (DTC), if

C1. at each stage k ∈ {1, ..., p}, if we take the decision Xk = [xk
ij ] ∈ Λk(s

k−1),
the obtained utility, denoted by fk(X

k), is given by

fC
k (Xk) =

m∑
i=1

n∑
j=1

cij · xk
ij . (2.13)

C2. the total utility function F : Pol → R is given by

FC(X1, ..., Xp) =

p∑
k=1

fk(X
k) =

p∑
k=1

m∑
i=1

n∑
j=1

cij · xk
ij . (2.14)

We say that a dynamic transport problem is of the time type and we denote such a
problem by (DTT), if

T1. at each stage k ∈ {1, ..., p}, if we take the decision Xk = [xk
ij ] ∈ Λk(s

k−1),
the obtained utility, denoted by fk(X

k), is given by

fT
k (Xk) = max{tij · sign(xkij) | i ∈ I, j ∈ J}. (2.15)

T2. the total utility function F : Pol → R is given by

FT (X1, ..., Xp) = max{tij · sign(xkij) | i ∈ I, j ∈ J, k ∈ K}. (2.16)

3. GLOBAL PROBLEMS ATTACHED TO THE PROBLEMS (DTC) AND (DTT)

Let

b∗j :=

p∑
k=1

bkj , for all j ∈ {1, ..., n}, (3.17)
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We consider the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
i=1

wij ≤ b∗j , for all j ∈ {1, ..., n},
n∑

j=1

wij = ai, for all i ∈ {1, ...,m},
wij ∈ N, for all i ∈ {1, ...,m}, j ∈ {1, ..., n},

(3.18)

A solution of this system will be denoted by W = [wij ] and the set of all its
solutions by W.

Let the functions FC : W → R, FC(W ) =
∑
i∈I

∑
j∈J

cijwij , for all W ∈ W,

and FT : W → R, FT (W ) = max{tij · signwij | i ∈ I, j ∈ J} for all W ∈ W.
We attach to Problem (DTC), respective to Problem (DTT), the following clas-

sical transport problem of cost type, respective of time type.

(GC)

{
FC(W ) → min
W ∈ W

(GT )

{
FT (W ) → min
W ∈ W

We mention that the problems (GC) and (GT ) can be solved using, for example,
the corresponding algorithms given in [3].

Proposition 3.1. If (X 1, ..., Xp) is a policy of a dynamic transport problem (DTC) or
(DTT), then the matrix W = [wij ], where

wij =
∑
k∈K

xk
ij , for all i ∈ I, j ∈ J, (3.19)

is a solution of the system (3.18),

FC(X1, ..., Xp) = FC(W ) (3.20)

and
FT (X1, ..., Xp) = FT (W ). (3.21)

Proof. As (X1, ..., Xp) ∈ Pol, in view of (2.4), (2.7) and (3.17), we have∑
i∈I

wij =
∑
k∈K

∑
i∈I

xk
ij ≤

∑
k∈K

bkj = βj , for all j ∈ J. (3.22)

Let i ∈ I . From (2.8) we get that

∑
k∈K

∑
j∈J

xk
ij =

p−1∑
k=1

∑
j∈J

xk
ij + sp−1

i .

But, from (2.10), we obtain

sp−1
i = s0i −

p−1∑
k=1

∑
j∈J

xk
ij .

Therefore

∑
k∈K

∑
j∈J

xk
ij =

p−1∑
k=1

∑
j∈J

xk
ij + s0i −

p−1∑
k=1

∑
j∈J

xk
ij = s0i .
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But from (2.1), s0i = ai. This implies that, for each i ∈ I , we have

∑
j∈J

wij =

p∑
k=1

⎛
⎝∑

j∈J

xk
ij

⎞
⎠ = ai. (3.23)

As xk
ij ∈ N, for all i ∈ I , j ∈ J ,

wij =
∑
k∈k

xk
ij ∈ N. (3.24)

Therefore, W = [wij ] is a feasible solution.
In addition, from (2.14), we have

FC(W ) =
∑
i∈I

∑
j∈J

cijwij =
∑
i∈I

∑
j∈J

∑
k∈K

cijx
k
ij = FC(X1, ..., Xp).

As
tij · sign(wij) = max{tij · sign(xkij) | k ∈ K},

from (2.16) we get

FT (W ) = max{tij · sign(wij) | i ∈ I, j ∈ J} =
= max{tij · sign(xkij) | i ∈ I, j ∈ J, k ∈ K} = FT (X1, ..., Xp).

�

Proposition 3.2. If W = [wij ] is a feasible solution of the problem (GC), then there is a
policy (X1, ..., Xp) of the dynamic transport problem (DTC) such that (3.19) and (3.20)
hold.

Proof. The proof is based on the following algorithm, named Dynamic Distribu-
tion Algorithm (DDA).
Step 1. Set βk

0j := bkj , for all k ∈ K , j ∈ J , and z0ij := wij , for all i ∈ I , j ∈ J .
Step 2. Set i := 1;
Step 3. Set j := 1;
Step 4. Set k := 1;
Step 5. Set xk

ij := min{βk
i−1,j , z

k−1
ij };

Step 6. Set βk
ij := βk

i−1,j − xk
ij ;

Step 7. Set zkij := zk−1
ij − xk

ij ;
Step 8. Set k := k + 1;
Step 9. If k ≤ p, then go back to Step 5; else proceed;

Step 10. Set j := j + 1;
Step 11. If j ≤ n, then go back to Step 4; else proceed;
Step 12. Set i := i+ 1;
Step 13. If i ≤ m, then go back to Step 3; else proceed;
Step 14. Stop.

We have to prove that (X1, ..., Xp), where Xk = [xk
ij ] for all k ∈ K , is a policy

of (DTC). As bkj ∈ N, for all j ∈ J , k ∈ K , from steps 1, 5 and 6 we get that
0 ≤ βk

ij ≤ bkj and βk
ij ∈ N, for every i ∈ I , j ∈ J , k ∈ K . Then, from steps 1, 5, and

7 we deduce that, for every i ∈ I , j ∈ J , k ∈ K we have xk
ij ∈ N.
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L1 L2 L3

S1 1 3 7 20
S2 8 5 2 15
S3 0 0 0 29

21 18 25 64

TABLE 3. The table corresponding to the problem (GC)

From step 6 we obtain
m∑
i=1

xk
ij =

m∑
i=1

(βk
i−1,j − βk

ij) = βk
0j − βk

mj ≤ βk
0j = bkj .

Let i ∈ I . From steps 5, 6, 7 and 1 we get that
∑
k∈K

xk
ij = z0ij = wij . This

implies that
∑
k∈K

∑
j∈J

xk
ij =

∑
j∈J

wij = ai, because
∑
j∈J

wij = ai. Then

FC(X1, .., Xp) =
∑
k∈K

∑
j∈J

∑
i∈I

cij · xk
ij =

∑
j∈J

∑
i∈I

cij · wij = FC(W ).

�

It is very easy to see that

Corollary 3.1. If W = [wij ] is an optimal solution of the problem (GC), then the cor-
responding policy (X1, ..., Xp) given by the DDA Algorithm is an optimal policy of the
problem (DTC).

Therefore, if we have to solve the problem (DTC), first we will solve the corre-
sponding (GC). Then we will apply the DDA Algorithm. The policy (X1, ..., Xp)
given by this algorithm is, in view of Corollary 3.1, an optimal policy of the prob-
lem (DTC).

Example 3.2. If we consider the application given in Example 1.1, first we will
solve the classical transport problem of cost type given in the Table 3 where S3 is
a fictive locality. It is introduced in order to transform the initial (GC) problem
in a well-balanced transport problem. An optimal solution of the initial (GC)
problem is the matrix (

20 0 0
0 0 15

)
.

Now, if we apply DDA Algorithm, we obtain successive: x111 := 1, x2
11 := 10,

x3
11 := 9, x1

12 := 0, x2
12 := 0, x3

12 := 0, x1
13 := 0, x2

13 := 0, x3
13 := 0, x1

21 := 0,
x2
21 := 0, x3

21 := 0, x1
22 := 0, x2

22 := 0, x3
22 := 0, x1

23 := 7, x2
23 := 8, x3

23 := 0.
Therefore (X1 = [x1

ij ], X
2 = [x2

ij ], X
3 = [x3

ij ]), is an optimal policy of the our
practical problem.

Proposition 3.3. If W = [wij ] is a feasible solution of the problem (GT), then there is a
policy (X1, ..., Xp) of the dynamic transport problem (DTT) such that (3.19) holds and
FT (X1, ..., Xp) = FT (W ).
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Proof. Applying the DDA Algorithm, we obtain the policy (X1, ..., Xp) which
satisfies (3.19). As

sign(
∑
k∈K

xk
ij) = max{sign(xkij) | k ∈ K}

we get that

FT (X1, ..., Xp) = max{tij · sign(xkij) | i ∈ I, j ∈ J, k ∈ K} =

max{tij · sign(
∑
k∈K

xk
ij) | i ∈ I, j ∈ J} =

FT (W ).

�
Then, the following result holds:

Corollary 3.2. If W = [wij ] is an optimal solution of the problem (GT), then the cor-
responding policy (X1, ..., Xp) given by DDA Algorithm is an optimal policy of the
problem (DTT).

Therefore, if we have to solve the problem (DTT), first we will solve the corre-
sponding (GT) problem. Then we will apply the algorithm 1. In view of Corol-
lary 3.2, the policy (X1, ..., Xp) given by this algorithm is an optimal policy of the
problem (DTT).

Remark 3.1. DDA Algorithm gives, also, the minimum number of days necessary for
the patients to do the analysis.
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