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The stability conditions associated to the jump
processes

RADU MOLERIU

ABSTRACT. In this paper we study the evolution solutions of the stochastic differential equation
associated to a Poisson process. As well, we present the conditions for the exponentially stability
making connections between the norm of the operators which appears in the stochastic differential
equation and the increase index associated to the semigroup operators.

1. INTRODUCTION

Let (Ω,�,P) be a complete probability space, H is a real Hilbert separable
space with the scalar product < ·, · >, the induced norm ‖ · ‖‖, N - the natural set
of numbers and I ⊂ R+ an interval.

Definition 1.1. It is called a Poisson process with μ > 0 parameter, the process
N : I × Ω → N with the following properties:
� N(0) = 0,
� N(·) - is a stationary process with independent increases,
� P{N(h) = 1} = μh+ o(h), P{N(h) ≥ 2} = o(h).
� (o(h) - is a positive continuous function with limh→0 o(h) = 0).

We introduce the random variables sequences {τn}n∈N, {Sn}n∈N where {τn}
- is the interarrival time and Sn = τ1 + τ2 + ... + τn is the waiting time of the
”n” event , S0 = 0 . For a Poisson process {N(t)}t≥0 with μ > 0 parameter the
random variables {τn}n∈N∗ are independent and identically distributed, with an
exponential distribution of 1

μ parameter and P{Sn ≤ t} = P{N(t) ≥ n}.

Lemma 1.1 (1). Let {N(t)}t≥0 be a Poisson process with μ > 0 parameter. Then the
next properties take place:

i. pn(t) = P{N(t) = n} = (μt)n

n! e−μt;
ii. E{N(t)} = μt and V ar{N(t)} = μt ;
iii. E{eixN(t)} = eμt(exp(ix)−1) ;
iv. E{xN(t)} = eμt(x−1), (∀)x ∈ R, x > 0.

If we consider a function f ∈ L2([0, T ], L(H)) and the martingale processes
m(t) = N(t) − μt then we can define an integral, associated to the function f ,of
the form

∫ T

0
f(s)dm(s), with the following properties:(more details in [2])

i.
∫ T

0
f(s)dm(s) ∈ L2([0, T ]× Ω, H) and E{∫ T

0
f(s)dm(s)} = 0
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ii. E{‖ ∫ T

0
f(s)dm(s)‖2} = μ

∫ T

0
‖f(s)‖2ds

iii. E{
∫ t

0

f(r)dm(r) ⊗
∫ s

0

f(r)dm(r)} = μ

∫ s

0

f(r)f∗(r)dr, 0 ≤ s < t < T (1.1)

In this way the stochastic integral can be extended to a Poisson process using
the next relation: ∫ t

0

f(s)dN(s) =

∫ t

0

f(s)dm(s) +

∫ t

0

f(s)μds (1.2)

The differential stochastic equation has this form :

dX(t) = A(t,X(t))dt+B(t,X(t))dN(t), (1.3)

where A : [0,∞)×H → H , B : [0,∞)×H → L(H) are bounded and continuous
operators.

The equation (1.3) has an unique solution called cádlág (the trajectories X(t)
are continuous on the right side and have limit on the left side) and the value of
the jumps are given by the B operator.

2. THE STABILITY OF THE JUMP DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

We consider a stochastic process X : [0, T ]× Ω → H which verifies the follow-
ing differential equation:

dX(t) = AX(t)dt+BX(t)dN(t), X(0) = x0 (2.4)

where A : D(A) ⊂ H → H is an infinitesimal generator of C0 semigroup
{T (t)}t≥0, B ∈ L(H), x0 ∈ H and {N(t)}t≥0 is a real Poisson process with μ > 0
parameter.

Lemma 2.1. The evolution solution associated to the differential equation (2.4) is:

X(t) =

N(t)∏
i=1

(I +B)T (t)X(0), (2.5)

where
N(t)∏
i=1

(I +B) = (I + B) · (I +B) · ... · (I +B)︸ ︷︷ ︸
N(t)−ori

, I ∈ L(H), Ix = x, (∀)x ∈ H.

Proof. Let {Y (t)}t≥0 be a process which verifies the jump equation dY (t) =
BY (t)dN(t), Y (0) = x0 and the realisation times {τi}. Then the solution of this
equation can be written as: Y (t) = x0 for t ∈ [0, τ1); Y (t) = Y (t) + BY (t) =
(I +B)x0 for t ∈ [τ1, τ2) ; ... ; Y (t) = (I +B)nx0 for t ∈ [τn, τn+1).

In conclusion we have

Y (t) =

N(t)∏
i=1

(I +B)x0,
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and so, it results that

X(t) = Y (t)T (t) =

N(t)∏
i=1

(I +B)T (t)x0.

�

Remark 2.1. As an immediately result we obtain that:

E{B ·B · ... ·B}︸ ︷︷ ︸
N(t)−ori

= exp{λ(B − I)t}, B ∈ L(H).

Theorem 2.1. We suppose that the semigroup {T (t)}t≥0 is uniformly exponentially
stable ((∃)k > 0 and ω0 > 0 such that ‖T (t)‖ ≤ ke−ω0t, (∀)t ≥ 0). Then the
following properties take place:
i. The mean of the {X(t)}t≥0 process is uniformly exponentially stable if and only if
μ‖B‖ < ω0.
ii. The solution of the equation (2.4) is mean stable if the relation λ‖B‖ < ω0 takes
place. Mutually, if the solution of the equation (2.4) is mean stable, then the semigroup
{T (t)}t≥0 is uniformly exponentially stable.

Proof. i. By passing to mean in the equation (2.4) we obtain the differential equa-
tion:

dE{X(t)} = (A+ μB)E{X(t)}, E{X(0)} = x0 (2.6)

From Phillips theorem [3] it results that if B ∈ L(H), then the operator A + μB

is a generator of C0 semigroup {T̃ (t)}n≥0 with D(A + μB) = D(A) and verifies
the property (∃)k, ω ≥ 0 such that ‖T (t)‖ ≤ keωt ⇒ ‖T̃ (t)‖ ≤ ke(ω+μ‖B‖)t. If
E{X(t)} is uniformly exponentially stable, then the semigroup T̃ (t) is uniformly
exponentially stable. It results that T (t) is uniformly exponentially stable. Mutu-
ally, if T (t) is uniformly exponentially stable, then ‖T̃ (t)‖ ≤ ke−ω0t+μ‖B‖t, and so
μ‖B‖ < ω0 ⇒ ‖T̃ (t)‖ is uniformly exponentially stable.

ii. By passing to norm in the relation (2.5) we obtain :

‖X(t)‖ ≤ ‖T (t)‖ · ‖
N(t)∏
i=1

(B + I)x0‖ ≤ ‖T (t)‖ · (‖B‖+ 1)N(t)‖x0‖

⇒ E{‖X(t)‖} ≤ ‖T (t)‖eμ‖B‖t.

If {T (t)}n≥0 is uniformly exponentially stable, then E{‖X(t)‖} ≤
ke−ω0t+μ‖B‖t ⇒ μ‖B‖ < ω0, and the conclusion is obtained immediately.

Mutually, the proof is obtained immediately using the stability definition.
�

Lemma 2.2. If B is a normal operator, then the covariance operator associated to the
solution of the equation (2.4), denoted by Q̃ ∈ L(H), is given by the relation :

〈Q̃(t)y, z〉 = 〈T̃ (t)(eμBB∗t − I)(T̃ (t))∗y, z〉, (∀)y, z ∈ H (2.7)



476 Radu Moleriu

Proof. Using the processes m(t) = N(t)− μ(t) we obtain the following equation :

{
d X(t) = (A+ μB)X(t)dt+BX(t)dm(t)
X(0) = x0

, (2.8)

which is equivalent with the equation (2.4) .
We consider the stochastic processes {Y (t)}t∈I which verifies the differential

equation :

{
d Y (t) = BY (t)dm(t)
X(0) = x0

, (2.9)

with the next integral form: Y (t) = x0 +
∫ t

0
BY (s)dm(s) and E{Y (t)} = x0.

Because E{Y (t)⊗ Y (t)} − x0 ⊗ x0 =
∫ t

0
μBE{Y (s)⊗ Y (s)}B∗ds and the fact that

B is a normal operator it results that: E{Y (t)⊗Y (t)} = eμBB∗tx0 ⊗x0, (∀) t ≥ 0
and
〈covY (t)y, z〉 = 〈(eμBB∗t − I)x0 ⊗ x0y, z〉, (∀) y, z ∈ H .

Using the lemma 2.2 , we obtain:

〈Q̃(t)y, z〉 = 〈T̃ (t)covY (t)T̃ (t)∗y, z〉
�

Theorem 2.2. The solution of the equation (2.4) is uniformly exponentially stable if
the semigroup {T (t)}n≥0 is uniformly exponentially stable and the exponential increase
index verifies the relation:

2μ‖B‖2 < ω0 (2.10)

Proof. From Philips theorem we consider that the operator A+ μB is a generator
of C0 semigroup {T̃ (t)}n≥0 with the following property ‖T̃ (t)‖ ≤ ke−ω0t+μ‖B‖t ,
where ‖T (t)‖ ≤ ke−ω0t, k, ω0 > 0. By passing to the integral form in the equation
(2.8) it results : X(t) = T̃ (t)x0 +

∫ t

0 T̃ (t− s)BX(s)dm(s)

⇒ E{‖X(t)‖2} ≤ 2‖T̃ (t)‖2‖x0‖2 + 2μ
∫ t

0 ‖T̃ (t− s)‖2‖B‖2E{‖X(s)‖2}ds
⇒ ‖T̃ (t)‖−2E{‖X(t)‖2} ≤ 2‖x0‖2 + 2μ

∫ t

0 ‖T̃ (s)‖−2‖B‖2E{‖X(s)‖2}ds.
From Gronwall lemma applied to the next function f(t) =

‖T̃ (t)‖−2E{‖X(t)‖2} we obtain that E{‖X(t)‖2} ≤ 2‖x0‖2k2e(−2ω0+4μ‖B‖2)t

.
In conclusion , X(t) is uniformly exponentially stable if 2μ‖B‖2 < ω0. �

Lemma 2.3. Let {X(t)}t≥0 be a stable stochastic uniformly exponentially process asso-
ciated to the equation (2.4). Then the Lyapunov associated equation is written like this:

{
Ṗ (t) + (A+ μB)P (t) + P (t)(A + μB)∗ + μBP (t)B∗ = 0

P (0) = x0 ⊗ x0

and it has an unique solution in the space of bounded and positive operators given by the
relation P (t) + Q̃(t) = −T̃ (t) · T̃ (t)∗.
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3. THE STABILITY OF THE JUMP DIFFERENTIAL EQUATIONS IN THE CASE OF
TIME DEPENDENT OPERATORS

Let B : [0, T ] → L(H) be an integral bounded function having operators as
values and the stochastic differential equation:

dY (t) = B(t)Y (t)dN(t), Y (0) = x0 ∈ H (3.11)

Lemma 3.1. The evolution solution of the equation (3.11) is given by the following for-
mula:

Y (t) =

N(t)∏
i=1

(I +B(τi))x0

and has the next properties:
i. E{Y (t)} = exp{μ ∫ t

0 B(s)ds}x0 ;
ii. If B(t) is a normal operator, (∀)0 ≤ t ≤ T , then:

covY (t) = exp(μ

∫ t

0

B(s)ds)(exp{μ
∫ t

0

B(s)B∗(s)ds}−I)(exp(μ

∫ t

0

B(s)ds))∗·x0⊗x0;

iii. E{‖Y (t)‖2} ≤ eμt‖|B‖|2 · ‖x0‖2, where ‖|B‖| = sups∈[0,T ] ‖B(s)‖ is the supre-
mum norm.

Proof. For us to find the evolution solution we will proceed in the same way as in
the proof of the theorem 2.1.
i. Passing to mean in the relation (3.11) , we obtain: dE{Y (t)} =
μB(t)E{Y (t)}dt, from where we have the conclusion. An immediate result is:

E{
N(t)∏
i=1

(I +B(τi)} = exp{μ
∫ t

0

B(s)ds}.

ii. The solving idea remains the same like in the lemma 2.3. �

Lemma 3.2. Let A : D(A) ⊂ H → H be a generator of strong continuous semigroup
{T (t)}, B : [0, T ] → L(H) a bounded integrable family with operators as values and the
equation

{
dX(t) = AX(t)dt+B(t)X(t)dN(t)
X(s) = xs, xs ∈ H, 0 ≤ s < t < T

(3.12)

The equation (3.12) has an unique solution :

X(t) =

N(t)∏
i=N(s)+1

(I + B(τi))T (t)xs (3.13)

with the next properties :
i. E{X(t)} = U(t, s) is an evolution operator of which generator family is

{A+ μB(t)}t≥0.
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So the mean of the process {X(t)}n≥0 is the perturbation of the semigroup {T (t)}t≥0

using the operators {B(t)}t≥0. The integral equation associated to the family of evolution
operators is

U(t, s)x = T (t− s)x+ μ

∫ t

s

T (t− r)B(r)U(r, s)xdr;

ii. In the hypothesis of the lemma 3.5 (ii) we obtain that :

cov{X(t)} = U(t, 0)covY (t)U(t, s)∗.

Proof. We apply the anterior lemma and the lemma 2.2 . �

Theorem 3.1. Let {X(t)}n≥0 be the solution of the equation (3.12) in the case where
s = 0 . We suppose that the semigroup {T (t)}t≥0 is uniformly exponentially stable.
The following implications take place :
i. If μ‖|B‖| < ω0, then the mean of the process {X(t)}n≥0 is uniformly exponentially
stable;
ii. If μ‖|B‖| < ω0, then the process {X(t)}n≥0 is mean stable ;
iii. If 2μ‖|B‖| < ω0, then the process {X(t)}n≥0 is uniformly exponentially stable.

Proof. Is similar with the proof of the theorems 2.1 and 2.2.
The reciprocal of the affirmations (i), (ii) and (iii) are true. Namely, the mean

stability and the uniformly exponentially stability of the process {X(t)}n≥0 in-
volve the uniformly exponentially stability of the semigroup {T (t)}t≥0 .

In the hypothesis in which B ∈ B∞(0, T ;L(H)) , for the equation (3.12), we ob-
tain the following result . The mean of the process {X(t)}t≥0 is well determined
by the evolution operator S(t, s) given by the differential equation :

S(t, s)x0 = T (t− s)x0 +

∫ t

s

μT (t− r)B(r)S(r, s)x0dr, 0 ≤ s ≤ r ≤ t ≤ T. (3.14)

This equation has an unique evolution solution with the property that:

‖S(t, s)‖ ≤ ‖T (t− s)‖+
∫ t

s

μ‖T (t− r)‖ · ‖B‖∞ · ‖U(r, s)dr‖, (3.15)

‖B‖∞ = ess sup
0≤t≤T

‖B(t)‖L(H)

(details in [4]). �

Theorem 3.2. If the semigroup {T (t)}t≥0 is uniformly exponentially stable and verifies
the relation k · μ · ‖B‖∞ < ω0, then the mean of the process is uniformly exponentially
stable.

Proof. In the relation (3.15) we consider s = 0 and we apply Gronwall’s lemma to
the next function:

f(t) = eω0t‖S(t, 0)‖, 0 ≤ t ≤ T.

In this way we obtain the relation

‖S(t, 0)‖ ≤ ke−(ω0−μ·k·‖B‖∞)t

and so the conclusion is verified. �
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For determining the covariance operator associated to the {X(t)}t≥0 process
we use the evolution operator (denoted by S̃(t, s), 0 ≤ s ≤ t) associated to the
generator family {μB(t)B∗(t)}t≥0, in the case where B(t) is a normal operator
(∀)0 ≤ t ≤ T . So

covX(t) = U(t, 0)(S̃(t, 0)− I)U∗(t, 0)x0 ⊗ x0, 0 ≤ t ≤ T.

Remark 3.1. In the study of the stability of {X(t)}n≥0 solution we obtain the
same results as in the theorem 3.3, mentioning that the supremum norm of the
operator B(·) has been changed with the essential supremum norm ‖B‖∞ .

Lemma 3.3. The Lyapunov equation has the next form :

{
Ṗ (t) + (A+ μB(t))P (t) + P (t)(A+ μB(t))∗ + μB(t)P (t)B∗(t) = 0

P (0) = x0 ⊗ x0

(3.16)
If {X(t)} is uniformly exponentially stable, then the equation (3.16) has an unique

solution which verifies the relation

P (t) +Q(t) = −U(t, 0)U∗(t, 0).

For passing from the semigroup {T (t)}t≥0 operator case to the evolution operator case
we are using the Kato-Tanabe hypothesis ([3], [4]) associated to the operator family on H,
{A(t)}t≥0. In this case the equation (2.4) is rewritten like this:

{
dX(t) = A(t)X(t)dt +B(t)X(t)dN(t)
X(s) = xs, xs ∈ H, 0 ≤ s < t < T

(3.17)

Lemma 3.4. i. Let {U(t, s)}, 0 ≤ s ≤ t ≤ T be the evolution operator associated to
the {A(t)}t≥0 family. Then the mean of the process {X(t)}t≥0 is given by the relation:

E{X(t)} = Ũ(t, s),

where Ũ(t, s)x = U(t, s)x+μ
∫ t

s U(t, r)B(r)Ũ (r, s)xdr, (∀)x ∈ H , with the property
that

‖Ũ(t, s)‖ ≤ p(t− s)e(t−s)μ
∫ t
s
‖B(r)‖dr, 0 ≤ s < t < T,

having p : R+ → R+ an increase function [4] ;
ii. The mean of the process {X(t)}n≥0 is uniformly exponentially stable if and only if
the evolution operator {U(t, s)} is uniformly exponentially stable and μ · ‖B‖L1 < ν,
where ‖B‖L1 =

∫ T

0
‖B(r)‖dr.

Proof. i. Can be found in [4];
ii. {U(t, s)} is uniformly exponentially stable if (∃)k > 0, ν > 0 such that

‖U(t, s)‖ ≤ ke−ν(t−s), 0 ≤ s < t < T ⇒ ‖Ũ(t, s)‖ ≤ ke(−ν+μ
∫

t
s
‖B(r)‖dr)(t−s).

So μ‖B‖L1 < ν ⇒ ‖Ũ(t, s)‖ is uniformly exponentially stable.
Mutually the result is obvious.

�
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Theorem 3.3. It can be seen very easily from the previous theorems that we can obtain
the next results :
i. X(t, 0) =

∏N(t)
i=0 (I + B(τi))U(t, 0)X(0) is the evolution solution associated to the

equation (3.17) ;
ii. E{X(t, s)} = Ũ(t, s), 0 ≤ s < t < T ;
iii. covX(t, s) = Ũ(t, s)(S(t, s)− I)Ũ(t, s)∗, 0 ≤ s < t < T ;
iv. {X(t, 0)} is uniformly exponentially stable if and only if the evolution operator is
uniformly exponentially stable and 2μ‖B‖∞ ≤ ν.

REFERENCES

[1] Capasso, V. and Bakstein, D.,An Introduction to Continuous - Time Stochastic Processes, Theory, Mod-
els and Applications to Finance, Biology and Medicine, Birkhauser, Boston, (2005)

[2] Curtain, R. F., Estimation Theory for Abstract Evolution Equations Excited by General White Noise
Processes, SIAM J. Control, 14, 1976, 124-150

[3] Curtain, R. F. and Zwart, H., An Introduction To Infinite Dimensional Linear System Theory, Springer
Verlag, (1995)

[4] Megan, M., Propriétès Qualitatives Des Systèmes Linéaires Contrôlés Dans Les Espaces De Dimension
Infinie, Monographies Mathématiques, Timişoara, 1998
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