
CREATIVE MATH. & INF.
17 (2008), No. 3, 481 - 486

Online version at http://creative-mathematics.ubm.ro/

Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

Component classification criteria for a platform -
independent component repository

SIMONA MOTOGNA, IOAN LAZĂR, BAZIL PÂRV, ISTVAN CZIBULA, AND L.
LAZĂR

ABSTRACT. Component repository is an essential part of a framework for software component
definition, validation, and composition that we have developed so far. The components are stored
into the repository such that search and retrieve operations will be as efficient as possible. We pro-
pose some classification criteria for components based on their signatures and functionalities. These
criteria also take into consideration the specifications of the platform-independent component model
for dynamic execution environment.

1. BACKGROUND

In component based software development reuse is a driven principle. The
whole idea of developing component based applications is to integrate com-
ponents from different parts in the architecture, with integration, adaption and
modification rules. Component’s degree of reuse depends on its generality, while
the easiness in identification, understanding, and use is affected by the compo-
nent specification.

In our opinion, the main component based development’s challenge is to pro-
vide a general, flexible and extensible model, for both components and software
systems. This model should be language-independent, as well as programming-
paradigm independent, allowing the reuse at design level.

Our solution, ComDeValCo [7] - a conceptual framework for Software Com-
ponent Definition, Validation, and Composition had started by proposing a way
of defining executable models that could be turn in software components. After
such components are defined, they are ready to be used at a design level. Such
definitions should be stored in some way in order to be ready for reuse. The com-
ponent repository will represent the persistent part of the framework, containing
the models of all fully validated components.

Constituents of the conceptual framework are: the modeling language, the
component repository and the toolset. Any model of a software component is de-
scribed by means of a modeling language, programming language-independent,
in which all modeling elements are objects. The component repository stores and
retrieves valid component models. The toolset is aimed to help developers to de-
fine, check, and validate software components and systems, as well as to provide
maintenance operations for the component repository.

Received: 20.09.2008. In revised form: 8.01.2009. Accepted: 26.05.2009.
2000 Mathematics Subject Classification. 68N30, 68P99.
Key words and phrases. Repository, executable models.

481



482 Simona Motogna, Ioan Lazăr, Bazil Pârv, Istvan Czibula and L. Lazăr

The rest of the paper is organized as follows: the next section discusses the
state-of-the-art in repository architecture, Section 3 presents the description and
the specification of the executable models to be stored, together with the reposi-
tory metamodel. In the end, we highlight some conclusions and future work.

2. RELATED WORK

The complexity and the multidisciplinarity of the current software applica-
tions force the developers to search and integrate different components, from
different parts in the application. But this distributed design generates difficul-
ties associated with information sharing and integration. While share product
knowledge has increase, it is still inadequate for developing complex products
by distributed design teams [4].

As executable UML models have become more and more popular in software
development based on extensive modeling, the components’ repositories must be
adapted to support this type of software development.

There is an extensive research and commercial interest in the domain of com-
ponent repositories, but still they are not as performant as we would expect, due,
in principal to factors like [8]: extraction of information that the repository should
contain is mostly manually. Regardless of the used mechanism the characteris-
tics of the components must be specified by the author; search/retrieve techniques:
the repository user is not always satisfied with the result of the search. Usually
several searching or query refinement are needed and still the user has to decide
from several results which will be the best suited component that he/she needs.

As a result, it is possible that interrelated components may exist and be useful,
but they have not been found by the query. The main reason for this situation
is that the repository intern description does not contain semantic information
about the components and semantic relations between components.

One particular framework which supports dynamic availability, and reconfig-
uration of components is the OSGi framework [6] which offers a service-oriented
component model. OSGi components are bound using a service-oriented interac-
tion pattern, and their structure is described declaratively. The OSGi Service Plat-
form specification provides an open, common architecture for different types of
users, such as service providers, developers, software vendors, enabling the de-
velopment, deployment and management of services in a coordinated way. OSGi
targets Java framework, in which the deployed applications are called bundles.

A framework which offers a simple solution for publishing and retrieving in-
formation is the ebXML Registry Information Model [5], [1]. This information
system securely manages any content type and the standardized metadata that
describes it. The ebXML Registry provides a set of services that enable sharing
of content and metadata between organizational entities in a federated environ-
ment. The registry can be customized and used for specific domains and appli-
cations, by mapping a domain specific information model to the ebXML Registry
Information Model.

These are basically the most two used approaches when designing a reposi-
tory. The two infrastructures have a lot of similarities, and the differences are
not very significant: usually they differ in the way the information regarding the
repository objects is represented.



Component classification criteria for a platform-independent component repository 483

There are several tools that use one of these models for the infrastructure of a
problem-specific repository.

Figure 1. i COMPONENT metamodel

3. SPECIFICATION BASED CLASSIFICATION OF COMPONENTS

3.1. iCOMPONENT description and specification. The platform independent
component model for dynamic execution environments, called iCOMPONENT
[3] aims to simplify the component development by allowing developers to con-
centrate only on implementing the business logic of the component and then to
configure declaratively the component deployment. It is intended to be a frame-
work which supports dynamic availability, and reconfiguration of components,
in the style of OSGi [6] and iPOJO [2] principles.

The UML metamodel of iCOMPONENT, as depicted in Figure ??, highlights
its constituents:
• Dynamic Execution Environment - represents an execution environment that pro-
vides capabilities for dynamic availability, reconfiguration, and composition of
components;
• Module - which extends the UML Artifact metaclass and represents the unit
of deployment. The set of model elements that are manifested in the artifact is
indicated by the manifestation property of the Artifact;
• Component - extends the UML metaclass Class (from StructuredClasses) and
represents a component type. By extending the metaclass Class, Component may
have methods and attributes, and also may participate in associations and gener-
alizations.
• ProvidedInterface - associated with each Component may have an associated set
of properties, each property having a name, a type (optional), and a value. The
set of properties can be used in the process of binding components;
• RequiredInterface - may indicate a filter property which specifies a query and will
be used to query for services that satisfy the required properties.



484 Simona Motogna, Ioan Lazăr, Bazil Pârv, Istvan Czibula and L. Lazăr

3.2. Repository metamodel. Several repositories function in such a way that
they return the list of all objects from the repository, and it is the user task to
determine which he/she needs or, in other words, no searching is implemented
in the repository structure. The searching operation would be more efficient if
it will take into account a classification, such that when looking for a particular
component only a part of the repository will be searched.

In conclusion, when designing the repository architecture, we consider that at
the moment a component is stored, we will associate a classification scheme to
it, and correspondingly a classification hierarchy can be built. The classification
method is directly related to the search and retrieve mechanism that the reposi-
tory will follow.

The repository will store iCOMPONENTs, represented as DComponents. The
repository infrastructure for platform-independent executable components fol-
lows the ebXML Registry Information Model [5] and is adapted to ComDeValCo
structure. Figure 2 gives a simple description of classes and their relationships.

Figure 2. Repositoty infrastructure

According to OASIS/ebXML RIM Specification [5], ExtrinsicObjects provide
metadata that describes submitted content whose type is not intrinsically known
to the Registry and therefore MUST be described by means of additional at-
tributes. Since the registry can contain arbitrary content without intrinsic knowl-
edge about that content, ExtrinsicObjects require special metadata attributes to
provide some knowledge about the object (e.g., mime type).

DModule is the unit of the repository structure and will be uniquely identified.
Any DModule is classified according to any number of Classification instances. A
Classification instance references a ClassificationNode instance, which represents
a value within the ClassificationScheme. Consequently, the ClassificationNode in-
stances may create a classification hierarchy in the following way: a node may
have zero or at most one parent, and may have zero or more descendants.

Based on the iCOMPONENT metamodel for each DComponents stored in the
repository, its Capability can provide information about the domain in which the
component may be used, and consequently help the classification process. Any
DComponent, such as classes, components or interfaces will be enhanced with
classifiers when stored into repository. We may associate several classification
criteria to a DComponent, depending on its functionality. Thus, when searching



Component classification criteria for a platform-independent component repository 485

into the repository such a component may be returned in two different results,
based on different searching criteria.

In order to illustrate how such a classification works, we consider a simple
case study, of a system that stores information about different products (code
and description) and there exists a pricing strategy interface, that will be used
for implementing discount computations, as shown in Figure 3.

Figure 3. Components storing information

As a proof of concepts, we adapt
and extend the classification scheme
from ebRIM, including some new
categories, based on the application
domain from our example, as shown
in Figure 4. Any new category that is
added into the classification hierar-
chy must be a descendant of the Ex-
trinsicObject.
The classification scheme and the
considered example highlight the
fact that more than one classifier
may be associated to a component
from the repository.

Figure 4. An example of extending
ebRIM classification scheme

When storing the components from Figure 3 into the repository, we will ex-
tend the description with Classifier, instances of ClassificationNode, in the follow-
ing way:

• in class Product - Classifier:ClassificationNode[0..*] = ”Catalog Entry”,
”Business Entity”

• in interface PricingStrategy and in the component ProductDiscountCalcula-
tor implementing the interface - Classifier:ClassificationNode[0..*] = ”Dis-
count Calculator”, ”Service”



486 Simona Motogna, Ioan Lazăr, Bazil Pârv, Istvan Czibula and L. Lazăr

Thus, searching into the repository can be specified in terms of the classifica-
tion scheme (see Figure 4), and, for example, the class Product will be return as
the result of the search when the search keyword is ”Catalog Entry” or ”Business
Entity”. 4. CONCLUSIONS AND FUTURE WORK

The paper is focusing on repository architecture and on the argument that a
classification scheme provides an efficient way of organizing the information in-
side the repository. Consequently the search and retrieve operations will be more
efficient.

Analyzing the existing frameworks which supports dynamic availability, and
reconfiguration of components, we have proposed a way to adapt and extend
such a framework to our purpose: a repository of executable models, with an
attached classification scheme.

Further work will concentrate in the near future on two important directions:
• Since the classification scheme that we proposed had only an experimen-

tal goal, we intend to align classification criteria with business classifica-
tion schemes;

• to describe and implement the search and retrieve strategies in the repos-
itory.

5. ACKNOWLEDGEMENTS

This work was supported by the grant ID 546, sponsored by NURC - Romanian
National University Research Council (CNCSIS).

REFERENCES

[1] ebXML Collaboration-Protocol Profile and Agreement Specification,
http://www.ebxml.org/specfrafts/

[2] Escoffier, C. and Hall R. S., Dynamically Adaptable Applications with iPOJO Service Components, In
6th Conference on Software Composition (SC07), pp. 113-128, 2007

[3] Lazăr, I., Pârv, B., Motogna, S., Czibula, I., Czibula G. and Lazăr, L., iCOMPONENT: A Platform-
Independent Component Model for Dynamic Execution Environments, 10th Internat. Symp. SYNASC,
Timisoara, Romania, September, 2008

[4] Mocko, G., Malak, R., Paredis, C. and Peak, R., A knowledge repository for behavioral models in
engineering design, Proceedings of DETC 2004: 24th Computers and Information Science in Engi-
neering Conference, 2004, 1-10

[5] OASIS, SCA Service Component Architecture. Assembly Model Specification, Version 1.1. 2007
[6] OSGi Alliance, OSGi Service Platform Core Specification, Release 4, Version 4.1.

http://www.osgi.org/, 2007
[7] Pârv, B., Lazăr, I. and Motogna, S., ComDeValCo framework - the modeling language for procedural

paradigm. International Journal of Computers, Communications & Control (IJCCC), Vol. 3, No. 2,
2008, pp. 183-195

[8] Zaremski, A.M. and Wing, J.M., Specification matching of software components, ACM Trans. on Soft-
ware Engineering and Methodology, 6 (4):333, 1997, 333-369

BABES-BOLYAI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

STR KOGALNICEANU NO 1
400084 CLUJ-NAPOCA, ROMANIA

E-mail address: motogna@cs.ubbcluj.ro
E-mail address: ilazar@cs.ubbcluj.ro
E-mail address: bparv@cs.ubbcluj.ro


