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Noncommutative differential direct Lie derivative
and the algebra of special Euclidean group SE(2)

LAURIAN IOAN PIŞCORAN

ABSTRACT. A Lie algebra is an algebraic structure whose main use is in studying geometric objects
such as Lie groups and differentiable manifolds. The term ”Lie algebra”(after Sophus Lie) was intro-
duced by Hermann Weyl in the 1930s. Using the Lie algebra of the special euclidean group SE(2)
and using notions of noncommutative geometry, we can construct a new derivative which I call it
direct Lie derivative. Also in this paper we define an real inner product for A,B? se(2) two elements
of the Lie algebra se(2). The main result of this paper consist in the proof that we can generate other
Lie algebras using the direct Lie derivative elements.

1. INTRODUCTION

Let
SO(2) =

{
A ∈ M2,2(R) | ATA = I2, det(A) = 1

}
Using the definition of Euclidean groups, one obtains

SE(2) = SO(2)× R
2

Let us remind some basic properties of SE(2).

Proposition 1.1. SE(2) can be canonically identified with a SL(2, R) subgroup

SE(2) =

{(
A a
0 1

)
| A ∈ SO(2), a ∈ R

2

}
Proposition 1.2. SE(2) can be canonically identified with{(

cos θ − sin θ
sin θ cos θ

)
| θ ∈ [0, 2π]

}
Proposition 1.3. SE(2) has a Lie group structure and as a Lie algebra has the following
form

se(2) =

⎧⎨
⎩
⎛
⎝ 0 −a v1

a 0 v2
0 0 0

⎞
⎠ | a, v1, v2 ∈ R

⎫⎬
⎭

For the algebra of SE(3), given by

se(3) =

{(
ŵ u
0 0

)
∈ GL(4) | ŵ ∈ so(3), u ∈ R

3

}
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we know the ”Rodrigues” formula

eŵθ = I3 + ŵ sin θ + ŵ2(1− cos θ)

where

ŵ =

⎛
⎝ 0 −wz wy

wz 0 −wx

−wy wx 0

⎞
⎠

Here ŵ represents the skew symmetric matrix form of the rotation vector w =

(wx, wy , wz)
T and it is an element from the Lie algebra of SO(3).

The exponential map
exp : se(3) → SE(3)

is well defined and surjective and is given by

exp

(
ŵ u
0 0

)
=

(
exp(ŵ) Au

0 0

)
where

A = I3 +
1− cos(‖ w ‖)

‖ w ‖2 ŵ +
‖ w ‖ − sin(‖ w ‖)

‖ w ‖3 ŵ2

or the algebra se(2), we know (see [1])

expA =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I3 +
sin a
a A+ 1−cosa

a2 A2, a �= 0⎛
⎝ 1 0 v1

0 1 v2
0 0 1

⎞
⎠ , a = 0

with A =

⎛
⎝ 0 −a v1

a 0 v2
0 0 0

⎞
⎠ .

We can define a real inner product (· | ·) on se(2), by

(A | B) = −Tr(A · B)

where A,B ∈ se(2).

Also, if we take A =

⎛
⎝ 0 −a v1

a 0 v2
0 0 0

⎞
⎠ and B =

⎛
⎝ 0 −b u1

b 0 u2

0 0 0

⎞
⎠, one obtains

(A | B) = −Tr(A · B) = 2ab.
For the Lie group SO(3) and SU(2) we will present some general properties.

The Lie algebra associated for this two Lie groups are so(3), su(2) and having the
following bases

so(3) : P =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ , Q =

⎛
⎝ 0 0 −1

0 0 0
1 0 0

⎞
⎠ , R =

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠

su(2) : H =
1

2

(
i 0
0 −i

)
, E =

1

2

(
0 1
−1 0

)
, F =

1

2

(
0 i
i 0

)
The non trivial Lie brackets in this case, are

[P,Q] = R, [Q,R] = P, [R,P ] = Q
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[H,E] = F, [E,F ] = H, [F,H ] = E

This implies the isomorphism

ϕ : su(2) → so(3)

ϕ(xH + yE + zF ) = xP + yQ+ zR

where x, y, z ∈ R.
This isomorphism satisfies

ϕ ([U, V ]) = ([ϕ(U), ϕ(V )])

and so is an Lie algebra isomorphism.

2. MAIN RESULTS

In noncommutative geometry for an R-algebra A, exists one derivation

d : A → Ωna(A)

(here the symbol na means non-abelian and Ωna(A) is an bi-module I).
Here, I represents the ker of the application

μ : A⊗R A → A

and A is an R-algebra.
If we identified the algebra A with the Lie algebra se(2), one obtains

d : se(2) → Ωna(se(2))

f → 1⊗ f − f ⊗ 1

After simple computations, one obtains

df = 1⊗ f − f ⊗ 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −a v1 a 0 0 −v1 0 0
a 0 v2 0 a 0 0 −v1 0
0 0 0 0 0 a 0 0 −v1
−a 0 0 0 −a v1 −v2 0 0
0 −a 0 a 0 v2 0 −v2 0
0 0 −a 0 0 0 0 0 −v2
0 0 0 0 0 0 0 −a v1
0 0 0 0 0 0 a 0 v2
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In this way we can define a derivative which we will call it ”the direct Lie
derivative”.

Let

df, dg ∈ Ωna(se(2))
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with the following form

df =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −a v1 a 0 0 −v1 0 0
a 0 v2 0 a 0 0 −v1 0
0 0 0 0 0 a 0 0 −v1
−a 0 0 0 −a v1 −v2 0 0
0 −a 0 a 0 v2 0 −v2 0
0 0 −a 0 0 0 0 0 −v2
0 0 0 0 0 0 0 −a v1
0 0 0 0 0 0 a 0 v2
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

dg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −b u1 b 0 0 −u1 0 0
b 0 u2 0 b 0 0 −u1 0
0 0 0 0 0 b 0 0 −u1

−b 0 0 0 −b u1 −u2 0 0
0 −b 0 b 0 u2 0 −u2 0
0 0 −b 0 0 0 0 0 −u2

0 0 0 0 0 0 0 −b u1

0 0 0 0 0 0 b 0 u2

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

Using this two elements df, dg we can proof the following lemma:

Lemma 2.1. If df, dg ∈ Ωna(se(2)), for the Lie bracket we have

[df, dg] �= 0

Proof.

[df, dg] = df · dg − dg · df
=⇒ [df, dg] �= 0.

�

Proposition 2.4. If df, dg ∈ Ωna(se(2)) we have

1) (df | df) = 0;
2) (df | dg) = 0.

Proof. After easy computation, using the definition of the real inner product we
can prove relation 1) and 2). �

Proposition 2.5. If df, dg, dh ∈ Ωna(se(2))then

([df, dg] | dh) + (df | [dg, dh]) = 0

Proof. The above relation can be verified immediately using the Proposition 2.4
and Lemma 2.1. �
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Now we can define the direct Lie derivative for the Lie algebra so(3)

d : so(3) → Ωna(so(3))

f → 1⊗ f − f ⊗ 1

Here, f represent the matrix f =

⎛
⎝ 0 −a u

a 0 −v
u v 0

⎞
⎠ . One obtains the derivative

of the element f

df = 1⊗ f − f ⊗ 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −a u a 0 0 −u 0 0
a 0 −v 0 a 0 0 −u 0
u v 0 0 0 a 0 0 −u
−a 0 0 0 −a u v 0 0
0 −a 0 a 0 −v 0 v 0
0 0 −a u v 0 0 0 v
−u 0 0 −v 0 0 0 −a u
0 −u 0 0 −v 0 a 0 v
0 0 −u 0 0 −v u v 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Lemma 2.2. If df, dg, dh ∈ Ωna(so(3)) we get for the Lie bracket

[df, dg] �= 0.

Proof.
[df, dg] = df · dg − dg · df =⇒ [df, dg] �= 0

and in this way the Lemma 2.2 is proved. �

Proposition 2.6. If df, dg, dh ∈ Ωna(se(2)) and α, β ∈ R we have

[αdf + βdg, dh] = α [df, dh] + β [dg, dh]

and
[dh, αdf + βdg] = α [dh, df ] + β [dh, dg]

Proof. Using the relations (2.1) and (2.2) one obtains [αdf + βdg, dh] where

dh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −c w1 c 0 0 −w1 0 0
c 0 w2 0 a 0 0 −w1 0
0 0 0 0 0 a 0 0 −w1

−c 0 0 0 −c w1 −w2 0 0
0 −c 0 c 0 w2 0 −w2 0
0 0 −c 0 0 0 0 0 −w2

0 0 0 0 0 0 0 −c w1

0 0 0 0 0 0 c 0 w2

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Also, if we compute the expression α [df, dh] + β [dg, dh] we have

[αdf + βdg, dh] = α [df, dh] + β [dg, dh]
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�
Proposition 2.7. If df, dg ∈ Ωna(se(2)) one obtains [df, dg] = − [dg, df ]

Proof.
[df, dg] = df · dg − dg · df = −(dg · df − df · dg) = − [dg, df ]

�
Proposition 2.8. If df, dg, dh ∈ Ωna(se(2)) we have

[df, [dg, dh]] + [dg, [dh, df ]] + [dh, [df, dg]] = 0

Proof.
[df, [dg, dh]] + [dg, [dh, df ]] + [dh, [df, dg]] =

df · dg · dh− df · dh · dg − dg · dh · df + dh · dg · df + dg · dh · df − dg · df · dh
−dh · df · dg + df · dh · dg + dh · df · dg − dh · dg · df − df · dg · dh+ df · dg · dh = 0

And so, the Proposition 2.8 is proved. �
In conclusion, we can generate other Lie algebras using the noncommutative

direct Lie derivatives.
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