CREATIVE MAT	H. & INF.	Online version at http://creative-mathematics.ubm.ro/
17 (2008), No. 3,	499 - 504	Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

n-Groups derivable from groups

VASILE POP

ABSTRACT. The trivial extentions of binary operation * to the *n*-ary operation φ has the form $\varphi(x_1, x_2, \ldots, x_n) = x_1 * x_2 * \cdots * x_n * a$. If (G, *) is a group and $a \in Z(G, *)$ the center of (G, *) then (G, φ) is an *n*-group so called *n*-group derived from (G, *). It is known that there exist *n*-groups (G, φ) which cannot be obtained as a derived group. The goal of the paper is to characterize all the *n*-groups operations which are derivable from group operations.

1. INTRODUCTION

In [3] M. Hosszú shows that every *n*-group (G, φ) can be obtained as an extention of a group (G, *) using an automorphism α and an element $a \in G$. The *n*-ary operation corresponding is:

 $\varphi(x_1, x_2, \dots, x_n) = x_1 * \alpha(x_2) * \dots * \alpha^{n-1}(x_n) * a, \quad x_1, x_2, \dots, x_n \in G$ where $\alpha^n(x) = a * x * a^{-1}$, $x \in G$, $\alpha(a) = a$ and is denoted:

$$(G,\varphi) = Ext_{\alpha,a}(G,*).$$

The trivial extentions of groups where the *n*-ary operation has the form:

$$\varphi(x_1, x_2, \dots, x_n) = x_1 * x_2 * \dots * x_n * a, \quad x_1, x_2, \dots, x_n \in G$$

where $a \in Z(G, *)$ the center of the group, are called *n*-groups derived from groups. This extentions are denoted

$$(G,\varphi) = Der_a(G,*).$$

In [2] W. A. Dudek and I. Michalski give an example of (n + 1)-group (G, φ) which cannot be obtained as a derived group (there exists no group (G, *) such that $(G, \varphi) = Der_a(G, *)$. The example is the following:

1.0.
$$G = \mathbb{Z}_{3^n-1}, \alpha : G \to G, \alpha(x) = 3x, x \in G, a = \frac{1}{2}(3^n - 1)$$
 and $(G, \varphi) = Ext_{\alpha,a}(G, +)$, that is:

$$\varphi(x_1, x_2, \dots, x_n, x_{n+1}) = x_1 + 3x_2 + \dots + 3^n x_{n+1} + \frac{1}{2}(3^n - 1),$$

 $x_1, x_2, \ldots, x_n, x_{n+1} \in G.$

The goal of the paper is to characterize all the (n + 1)-groups operations which are derivable from group operations.

We recall some notations and results which are used in the paper.

Received: 28.09.2008. In revised form: 20.02.2009. Accepted: 22.05.2009.

²⁰⁰⁰ Mathematics Subject Classification. 20N15.

Key words and phrases. n-Groups, extentions of groups, reduced Hosszú group.

Vasile Pop

1.1. If (G, φ) is a (n + 1)-group and $u \in G$ an arbitrary element, then there exists an element $\overline{u} \in G$ with the property:

$$\varphi(x, \underbrace{u}_{k}, \overline{u}, \underbrace{u}_{n-1-k}) = \varphi(\underbrace{u}_{k}, \overline{u}, \underbrace{u}_{n-1-k}, x) = x \text{ for all } x \in G.$$

The element \overline{u} is called the skew element of u.

1.2. If (G, φ) is a (n + 1)-group then for all $u \in G$ the binary operation $\circ : G \times G \to G$, defined by:

$$x\circ y=\varphi(x,\underset{n-2}{u},\overline{u},y),\quad x,y\in G$$

determined on G a group structure $(G,\circ)=Red_u(G,\varphi),$ called reduced group in Hosszú sense. If we define

$$\alpha_u: G \to G \text{ by } \alpha_u(x) = \varphi(u, x, \underset{n-2}{u}, \overline{u}), \ x \in G \text{ and } a = \varphi(\underset{n+1}{u})$$

then $\alpha_u \in AutG$ (is an automorphism), $\alpha_u(a) = a$ and

$$(G,\varphi) = Ext_{\alpha_u,a}(G,*).$$

1.3. If $u, v \in G$ then between the reduced Hosszú groups $(G, \circ) = Red_u(G, \varphi)$ and $(G, *) = Red_v(G, \varphi)$ the following relations hold:

- $x * y = x \circ v' \circ y, \ x, y \in G$
- $\alpha_v(x) = v \circ \alpha_u(x) \circ \alpha_u(v'), \ x \in G$
- v' = u * u, is the inverse of v in the group (G, \circ) .

1.4. If (G, φ) is a (n + 1)-group and $H \subset G$ is a nonempty subset, then (H, φ) is a sub-(n + 1)-group in (G, φ) iff

a) $\varphi(u_1, u_2, \dots, u_n, u_{n+1}) \in H$, for all $u_1, u_2, \dots, u_n, u_{n+1} \in H$ b) $\overline{u} \in H$ for all $u \in H$.

2. MAIN RESULTS

Let (G, φ) be a (n + 1)-group. We define the set $H = \{u \in G | \alpha_u = 1_G\}$, where $1_G : G \to G$ is the identity map of G.

We will show that if the set *H* is nonempty, then (H, φ) is a sub-(n + 1)-group in (G, φ) .

Lemma 2.1. If $u \in H$ and \overline{u} is the skew element of u, then $\overline{u} \in H$.

Proof. We have

$$\alpha_u(x)=\varphi(u,x,\underset{n-2}{u},\overline{u})=x,\quad x\in G$$

and for $v = \overline{u}$

$$\alpha_{\overline{u}}(x) = \overline{u} \circ \alpha_u(x) \circ \alpha_u((\overline{u})') = \overline{u} \circ x \circ \alpha_u((\overline{u})') = \overline{u} \circ x \circ (\overline{u})'$$

It is enough to prove that $\overline{u} \circ x = x \circ \overline{u}$, $x \in G$ or $\varphi(\overline{u}, \underset{n-2}{u}, \overline{u}, x) = \varphi(x, \underset{n-2}{u}, \overline{u}, \overline{u})$. But

$$\begin{split} \varphi(\overline{u}, \underbrace{u}_{n-2}, \overline{u}, x) &= \varphi(\overline{u}, \underbrace{u}_{n-2}, \varphi(\overline{u}, \underbrace{u}_{n-1}, x), \overline{u}) = \\ &= \varphi(\overline{u}, \varphi(\underbrace{u}_{n-2}, \overline{u}, \underbrace{u}_{2}), \underbrace{u}_{n-3}, x, \overline{u}) = \varphi(\overline{u}, u, \underbrace{u}_{n-3}, x, \overline{u}) = \\ &= \varphi(\overline{u}, \underbrace{u}_{n-2}, x, \overline{u}) = \varphi(\overline{u}, \underbrace{u}_{n-2}, \alpha_u(x), \overline{u}) = \varphi(\overline{u}, \underbrace{u}_{n-2}, \varphi(u, x, \underbrace{u}_{n-2}, \overline{u}), \overline{u}) = \\ &= \varphi(\varphi(\overline{u}, \underbrace{u}_{n-2}, u, x), \underbrace{u}_{n-2}, \overline{u}, \overline{u}) = \varphi(x, \underbrace{u}_{n-2}, \overline{u}, \overline{u}). \end{split}$$

Lemma 2.2. If $u \in H$ and $x_1, x_2, \ldots, x_n \in G$ then:

$$\begin{aligned} \varphi(u, x_1, x_2, \dots, x_n) &= \varphi(x_1, u, x_2, \dots, x_n) = \dots = \varphi(x_1, x_2, \dots, x_n, u). \end{aligned}$$
Proof. $\varphi(u, x_1, x_2, \dots, x_n) = \varphi(u, \varphi(x_1, \underbrace{u}_{n-2}, \overline{u}, u), x_2, \dots, x_n) = \\ &= \varphi(\varphi(u, x_1, \underbrace{u}_{n-2}, \overline{u}), u, x_2, \dots, x_n) = \varphi(\alpha_u(x_1), u, x_2, \dots, x_n) = \\ &= \varphi(x_1, u, x_2, \dots, x_n) = \varphi(x_1, u, \varphi(x_2, \underbrace{u}_{n-2}, \overline{u}, u), \dots, x_n) = \\ &= \varphi(x_1, \varphi(u, x_2, \underbrace{u}_{n-2}, \overline{u}), u, \dots, x_n) = \varphi(x_1, \alpha_u(x_2), u, \dots, x_n) = \\ &= \varphi(x_1, x_2, u, \dots, x_n) = \dots = \varphi(x_1, x_2, \dots, x_n, u). \end{aligned}$

Lemma 2.3. If $u_1, u_2, ..., u_n, u_{n+1} \in H$ then

$$\varphi(u_1, u_2, \dots, u_n, u_{n+1}) \in H.$$

Proof. From Lemma 2.2 follows that

$$\varphi(u_1, u_2, \dots, u_n, u_{n+1}) = \varphi(u_{\sigma(1)}, u_{\sigma(2)}, \dots, u_{\sigma(n)}, u_{\sigma(n+1)})$$

for every $\sigma \in S_{n+1}$ (symmetric group).

If we denote $z = \varphi(u_1, u_2, \ldots, u_n, u_{n+1})$, we have

$$\alpha_z(x) = \varphi(z, x, \frac{z}{n-2}, \overline{z})$$

and from [4]

$$\overline{z} = \varphi^{n^2 - n - 1}(u_{n+1}, \overline{u}_{n+1}, u_n, \overline{u}_n, \dots, u_1, \overline{u}_1)$$

and consequently

$$\alpha_z(x) = \varphi^{n^2}(x, \underbrace{u_1, \overline{u}_1, \dots, u_{n+1}, \overline{u}_{n+1}}_{n-1}) = x, \quad x \in G.$$

From Lemma 2.1 and Lemma 2.3 we conclude the following theorem:

Theorem 2.1. If (G, φ) is a (n + 1)-group and the set

$$H = \{ u \in G | \alpha_u = 1_G \}$$

is nonempty, then (H, φ) is a sub-(n + 1)-group in (G, φ) .

Definition 2.1. If (G, φ) is a (n + 1)-group, then the set

$$H = \{ u \in G | \varphi(u, x, \underbrace{u}_{n-2}, \overline{u}) = x, x \in G \}$$

is called the (n + 1)-center of (G, φ) and it is denoted by $H = Z_{n+1}(G, \varphi)$.

Remark 2.1. From Theorem 2.1 it follows that if $H \neq \emptyset$ then $(Z_{n+1}(G, \varphi), \varphi)$ is a sub-(n + 1)-group in (G, φ) .

We will establish a relation between the (n + 1)-center of a (n + 1)-group and the centers of the reduced Hosszú groups.

Let $u \in H$ and $(G, \circ) = Red_u(G, \varphi)$ the reduced Hosszú group through u.

Vasile Pop

Theorem 2.2. If $Z_u = Z(G, \circ)$ is the center of the group $(G, \circ) = Red_u(G, \varphi)$, then $Z_u = H$, for every $u \in H$.

Proof. If $v \in H$, then

$$\alpha_v(x) = v \circ \alpha_u(x) \circ (\alpha_u(v))' = v \circ x \circ v'$$

So the equality $\alpha_v(x) = x$, $x \in G$ is equivalent with

$$v \circ x = x \circ v, \quad x \in G,$$

thus $v \in Z_u$.

Remark 2.2. • If $H \neq \emptyset$ (there exists $u \in G$ such that $\varphi(u, x, \underbrace{u}_{n-2}, \overline{u}) = x, x \in G$

G), then all the centers of the reduced Hosszú groups through elements of *H* coincide (are equal to *H*).

• Let us denote $(G, *) = Red_g(G, \varphi)$. If $g \in G \setminus H$ then $Z_g = Z(G, *) \neq H$ $(g \in Z(G, *)$ but $g \notin H$).

Next we give a theorem of characterization of (n + 1)-groups derivable from groups.

Let (G, \cdot) be group and denote by $Int(G, \cdot)$ the set of inner automorphisms

$$Int(G, \cdot) = \{ i_g : G \to G | i_g(x) = g \cdot x \cdot g^{-1}, \ x \in G \}.$$

Theorem 2.3. If $(G, \varphi) = Ext_{\alpha,a}(G, \cdot)$ is an (n + 1)-group, then the following statements are equivalent:

a) α is an inner automorphism of (G, \cdot) .

b) The (n + 1)-group (G, φ) is a derived group.

c) For all $u \in G$, the reduced automorphism α_u is a inner automorphism.

Proof. a) \Rightarrow b) If 1 is the unit element of (G, \cdot) then the reduced automorphism α_1 is $\alpha_1 = \alpha$, which is an inner automorphism, so

$$\alpha_1(x) = b \cdot x \cdot b^{-1}, \quad x \in G.$$

We have:

$$\varphi(x_1, x_2, \dots, x_n, x_{n+1}) = x_1 \cdot \alpha(x_2) \cdot \alpha^2(x_3) \cdot \dots \cdot \alpha^{n-1}(x_n) \cdot \alpha^n(x_{n+1}) \cdot \alpha^n(x_n) \cdot \alpha^n(x_$$

and

$$\alpha^n(x) = a \cdot x \cdot a^{-1}.$$

It follows

$$\varphi(x_1, x_2, \dots, x_n, x_{n+1}) = x_1 \cdot b \cdot x_2 \cdot b \cdot x_3 \cdot \dots \cdot x_n \cdot b \cdot x_{n+1}$$
 and $a = b^n$.

For $v = b^{-1}$, the reduced automorphism is

$$\alpha_{b^{-1}}(x) = b^{-1} \cdot \alpha_1(x) \cdot \alpha_1(b) = b^{-1} \cdot b \cdot x \cdot b^{-1} \cdot b = x, \quad x \in G,$$

thus $\alpha_{b^{-1}} = 1_G$, then $(G, \varphi) = Der_1(G, *)$, where $x * y = x \cdot b \cdot y, x, y \in G$.

b) \Rightarrow **c**) If $(G, \varphi) = Der_a(G, \cdot)$ then $(G, \varphi) = Ext_{1_G, a}(G, \cdot)$, $Red_1(G, \varphi) = (G, \cdot)$, $\alpha_1 = 1_G$ and let $(G, \circ) = Red_u(G, \varphi)$ with $u \in G$.

According to the formula 1.3 we have

$$\alpha_u(x) = u \cdot \alpha_1(x) \cdot \alpha_1(u^{-1}) = u \cdot x \cdot u^{-1}, \quad x \in G$$

and therefore $\alpha_u \in Int(G, \varphi)$.

c) \Rightarrow a) In particular for u = 1 we have $\alpha_1 = \alpha$ and therefore $\alpha \in Int(G, \cdot)$. \Box

Remark 2.3. • The only (n + 1)-ary operations of (n + 1)-group which are derivable from a group (G, \cdot) have the form:

 $\varphi(x_1, x_2, \dots, x_n, x_{n+1}) = x_1 \cdot b \cdot x_2 \cdot \dots \cdot b \cdot x_n \cdot b \cdot x_{n+1},$

 $x_1, x_2, \ldots, x_n, x_{n+1} \in G$, where $b \in G$ such that $b^n = a \in Z(G, \cdot)$.

• For the example 1.0 given by Dudek and Michalski in [2] we obtain that the only (n + 1)-groups derivable from the group $(\mathbb{Z}_k, +)$, $k \in \mathbb{N}$, $k \ge 2$ have the (n + 1)-ary operation of the form:

 $\varphi(x_1, x_2, \dots, x_n, x_{n+1}) = x_1 + x_2 + \dots + x_n + x_{n+1} + a,$

 $x_1, x_2, \ldots, x_n, x_{n+1} \in \mathbb{Z}_k$, with arbitrary $a \in \mathbb{Z}_k$. The operation of example 1.0 has not this form, thus this (n+1)-group is not a derived (n+1)-group.

Supposing that the groups (G, \cdot) and (G, *) are fixed and we consider the (n + 1)-group $(G, \varphi) = Ext_{\alpha,a}(G, \cdot)$ we will determine the conditions under which (G, φ) is derived from (G, *), that is

$$(G,\varphi) = Der_c(G,*), \quad c \in Z(G,*).$$

For this we recall a result of [5].

Theorem 2.4. [5] If (G, φ) and (H, ψ) are (n + 1)-groups then the function $f : G \to H$ is a (n + 1)-group morphism if and only if for any $u \in G$ we have:

a) f is a morphism of their reduces groups

$$(G, \cdot) = Red_u(G, \varphi)$$
 and $(G, \circ) = Red_{f(u)}(H, \psi).$

b)
$$f(a_u) = b_{f(u)}$$
, where $a_u = \varphi(\underset{n+1}{u})$ and $b_{f(u)} = \psi(f(u))$.
c) $f \circ \alpha_u = \beta_{f(u)} \circ f$, where $\alpha_u(x) = \varphi(u, x, \underset{n-2}{u}, \overline{u}), x \in G$ and $\beta_{f(u)}(y) = \varphi(u, x, \underset{n-2}{u}, \overline{u})$.

 $\psi(f(u), y, f(u), \overline{f(u)}), y \in H, \overline{u}$ is the skew element of u in (G, φ) and $\overline{f(u)}$ is the skew element of f(u) in (H, ψ) .

Theorem 2.5. The (n + 1)-group $(G, \varphi) = Ext_{\alpha,a}(G, \cdot)$ is derived from the group (G, *), $(G, \varphi) = Der_c(G, *)$ if and only if:

a)
$$x \cdot y = x * 1' * y$$
, for all $x, y \in C$
b) $a = \underbrace{1 * 1 * \cdots * 1}_{n+1} * c$

c) $\alpha(x) = 1 * x * 1'$, for all $x \in G$

where 1 is the unit element of (G, \cdot) and 1' is the inverse of 1 in (G, *).

Proof. The equality $Ext_{\alpha,a}(G, \cdot) = Der_c(G, *)$ is equivalent with the condition that $f = 1_G : G \to G$ is a morphism (isomorphism) of (n + 1)-groups.

We have $(G, \cdot) = Red_1(G, \varphi)$ and $(G, *) = Red_e(G, \varphi)$, where *e* is the unit element in (G, *).

The conditions a), b), c) from Theorem 2.4 [5], for u = 1 become a) $f(x \cdot y) = f(x) \cdot f(y) = x \cdot y = x \cdot 1' \cdot y$, $x, y \in G$ (see 1.3) b) $f(1 \cdot \alpha(1) \cdots \alpha^n(1) \cdot a) = f(1) \cdot f(1) \cdot \cdots \cdot f(1) \cdot c$ or $a = 1 \cdot 1 \cdot \cdots \cdot 1 \cdot c$ c) $f \circ \alpha_1 = \beta_1 \circ f$ or $\alpha_1 = \beta_1$.

But $\alpha_1 = \alpha$ and $\beta_1(x) = 1 * x * \underbrace{1 * \cdots * 1}_{n-2} * \overline{1} * c$, and from $\varphi(\underline{1}, \overline{1}) = 1$ follows that $1 * \cdots * 1 * \overline{1} * c = 1'$, thus $\alpha(x) = 1 * x * 1'$, $x \in G$.

Vasile Pop

Corollary 2.1. If $(G, \varphi) = Der_a(G, \cdot)$ and $(G, \psi) = Der_c(G, *)$ then $\varphi = \psi$ if and only if:

a) $x \cdot y = x * 1' * y, x, y \in G$ b) $a = \underbrace{1 * \cdots * 1}_{n+1} * c$ c) $1 \in Z(G, *).$

Proof. For $\alpha = 1_G$ in the Theorem 2.5 the condition c) becomes x = 1 * x * 1' or $x * 1 = 1 * x, x \in G$, thus $1 \in Z(G, *)$.

REFERENCES

- I. Corovei, I. and Purdea, I., The reduction of an (n + 1)-group and its extentions to the same group, Sem. of Algebra, Preprint No. 5, 1988, Babeş-Bolyai University Cluj-Napoca, 63-68
- [2] Dudek, W.A. and Michalski, I., On a generalization of Hosszú Theorem, Dem. Math. 1982, 783-805
- [3] Hosszú, M., On explicit form of n-group operations, Publ. Math. Debrecen, 10, 1963, 88-92
- [4] Pop,V., Relations between the Hosszú type reduces groups of an n-group, ACAM, Vol. 10, No. 1-2/2001, 40-43
- [5] Pop, V., Representation of morphisms of n-groups by morphisms of Hosszú type reduces groups, BAM 2004-C/2002, 223-232

UNIVERSITATEA TEHNICĂ CLUJ-NAPOCA STR. C. DAICOVICIU 15 400020 CLUJ-NAPOCA, ROMANIA *E-mail address*: vasile.pop@math.utcluj.ro