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n-Groups derivable from groups

VASILE POP

ABSTRACT. The trivial extentions of binary operation ∗ to the n-ary operation ϕ has the form
ϕ(x1, x2, . . . , xn) = x1 ∗ x2 ∗ · · · ∗ xn ∗ a. If (G, ∗) is a group and a ∈ Z(G, ∗) the center of (G, ∗)
then (G,ϕ) is an n-group so called n-group derived from (G, ∗). It is known that there exist n-groups
(G,ϕ) which cannot be obtained as a derived group. The goal of the paper is to characterize all the
n-groups operations which are derivable from group operations.

1. INTRODUCTION

In [3] M. Hosszú shows that every n-group (G,ϕ) can be obtained as an exten-
tion of a group (G, ∗) using an automorphism α and an element a ∈ G. The n-ary
operation corresponding is:

ϕ(x1, x2, . . . , xn) = x1 ∗ α(x2) ∗ · · · ∗ αn−1(xn) ∗ a, x1, x2, . . . , xn ∈ G

where αn(x) = a ∗ x ∗ a−1, x ∈ G, α(a) = a and is denoted:

(G,ϕ) = Extα,a(G, ∗).
The trivial extentions of groups where the n-ary operation has the form:

ϕ(x1, x2, . . . , xn) = x1 ∗ x2 ∗ · · · ∗ xn ∗ a, x1, x2, . . . , xn ∈ G

where a ∈ Z(G, ∗) the center of the group, are called n-groups derived from
groups. This extentions are denoted

(G,ϕ) = Dera(G, ∗).
In [2] W. A. Dudek and I. Michalski give an example of (n + 1)-group (G,ϕ)

which cannot be obtained as a derived group (there exists no group (G, ∗) such
that (G,ϕ) = Dera(G, ∗). The example is the following:

1.0. G = Z3n−1, α : G → G, α(x) = 3x, x ∈ G, a =
1

2
(3n − 1) and (G,ϕ) =

Extα,a(G,+), that is:

ϕ(x1, x2, . . . , xn, xn+1) = x1 + 3x2 + · · ·+ 3nxn+1 +
1

2
(3n − 1),

x1, x2, . . . , xn, xn+1 ∈ G.
The goal of the paper is to characterize all the (n+1)-groups operations which

are derivable from group operations.
We recall some notations and results which are used in the paper.
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1.1. If (G,ϕ) is a (n + 1)-group and u ∈ G an arbitrary element, then there
exists an element u ∈ G with the property:

ϕ(x, u
k
, u, u

n−1−k
) = ϕ(u

k
, u, u

n−1−k
, x) = x for all x ∈ G.

The element u is called the skew element of u.
1.2. If (G,ϕ) is a (n + 1)-group then for all u ∈ G the binary operation ◦ :

G×G→ G, defined by:

x ◦ y = ϕ(x, u
n−2

, u, y), x, y ∈ G

determined on G a group structure (G, ◦) = Redu(G,ϕ), called reduced group in
Hosszú sense. If we define

αu : G→ G by αu(x) = ϕ(u, x, u
n−2

, u), x ∈ G and a = ϕ( u
n+1

)

then αu ∈ AutG (is an automorphism), αu(a) = a and

(G,ϕ) = Extαu,a(G, ∗).
1.3. If u, v ∈ G then between the reduced Hosszú groups (G, ◦) = Redu(G,ϕ)

and (G, ∗) = Redv(G,ϕ) the following relations hold:
• x ∗ y = x ◦ v′ ◦ y, x, y ∈ G
• αv(x) = v ◦ αu(x) ◦ αu(v

′), x ∈ G
• v′ = u ∗ u, is the inverse of v in the group (G, ◦).

1.4. If (G,ϕ) is a (n + 1)-group and H ⊂ G is a nonempty subset, then (H,ϕ)
is a sub-(n+ 1)-group in (G,ϕ) iff

a) ϕ(u1, u2, . . . , un, un+1) ∈ H , for all u1, u2, . . . , un, un+1 ∈ H
b) u ∈ H for all u ∈ H .

2. MAIN RESULTS

Let (G,ϕ) be a (n+ 1)-group. We define the set H = {u ∈ G| αu = 1G}, where
1G : G→ G is the identity map of G.

We will show that if the set H is nonempty, then (H,ϕ) is a sub-(n+ 1)-group
in (G,ϕ).

Lemma 2.1. If u ∈ H and u is the skew element of u, then u ∈ H .

Proof. We have
αu(x) = ϕ(u, x, u

n−2
, u) = x, x ∈ G

and for v = u

αu(x) = u ◦ αu(x) ◦ αu((u)
′) = u ◦ x ◦ αu((u)

′) = u ◦ x ◦ (u)′
It is enough to prove that u◦x = x◦u, x ∈ G or ϕ(u, u

n−2
, u, x) = ϕ(x, u

n−2
, u, u).

But
ϕ(u, u

n−2
, u, x) = ϕ(u, u

n−2
, ϕ(u, u

n−1
, x), u) =

= ϕ(u, ϕ( u
n−2

, u, u
2
), u

n−3
, x, u) = ϕ(u, u, u

n−3
, x, u) =

= ϕ(u, u
n−2

, x, u) = ϕ(u, u
n−2

, αu(x), u) = ϕ(u, u
n−2

, ϕ(u, x, u
n−2

, u), u) =

= ϕ(ϕ(u, u
n−2

, u, x), u
n−2

, u, u) = ϕ(x, u
n−2

, u, u).
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�
Lemma 2.2. If u ∈ H and x1, x2, . . . , xn ∈ G then:

ϕ(u, x1, x2, . . . , xn) = ϕ(x1, u, x2, . . . , xn) = · · · = ϕ(x1, x2, . . . , xn, u).

Proof. ϕ(u, x1, x2, . . . , xn) = ϕ(u, ϕ(x1, u
n−2

, u, u), x2, . . . , xn) =

= ϕ(ϕ(u, x1, u
n−2

, u), u, x2, . . . , xn) = ϕ(αu(x1), u, x2, . . . , xn) =

= ϕ(x1, u, x2, . . . , xn) = ϕ(x1, u, ϕ(x2, u
n−2

, u, u), . . . , xn) =

= ϕ(x1, ϕ(u, x2, u
n−2

, u), u, . . . , xn) = ϕ(x1, αu(x2), u, . . . , xn) =

= ϕ(x1, x2, u, . . . , xn) = · · · = ϕ(x1, x2, . . . , xn, u).

�
Lemma 2.3. If u1, u2, . . . , un, un+1 ∈ H then

ϕ(u1, u2, . . . , un, un+1) ∈ H.

Proof. From Lemma 2.2 follows that

ϕ(u1, u2, . . . , un, un+1) = ϕ(uσ(1), uσ(2), . . . , uσ(n), uσ(n+1))

for every σ ∈ Sn+1 (symmetric group).
If we denote z = ϕ(u1, u2, . . . , un, un+1), we have

αz(x) = ϕ(z, x, z
n−2

, z)

and from [4]
z = ϕn2−n−1(un+1

n−2
, un+1, un

n−2
, un, . . . , u1

n−2
, u1)

and consequently

αz(x) = ϕn2

(x, u1
n−1

, u1
︸ ︷︷ ︸

n−1

, . . . , un+1
n−1

, un+1

︸ ︷︷ ︸

n−1

) = x, x ∈ G.

�
From Lemma 2.1 and Lemma 2.3 we conclude the following theorem:

Theorem 2.1. If (G,ϕ) is a (n+ 1)-group and the set

H = {u ∈ G| αu = 1G}
is nonempty, then (H,ϕ) is a sub-(n+ 1)-group in (G,ϕ).

Definition 2.1. If (G,ϕ) is a (n+ 1)-group, then the set

H = {u ∈ G| ϕ(u, x, u
n−2

, u) = x, x ∈ G}
is called the (n+ 1)-center of (G,ϕ) and it is denoted by H = Zn+1(G,ϕ).

Remark 2.1. From Theorem 2.1 it follows that if H �= ∅ then (Zn+1(G,ϕ), ϕ) is a
sub-(n+ 1)-group in (G,ϕ).

We will establish a relation between the (n + 1)-center of a (n + 1)-group and
the centers of the reduced Hosszú groups.

Let u ∈ H and (G, ◦) = Redu(G,ϕ) the reduced Hosszú group through u.
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Theorem 2.2. If Zu = Z(G, ◦) is the center of the group (G, ◦) = Redu(G,ϕ), then
Zu = H , for every u ∈ H .

Proof. If v ∈ H , then

αv(x) = v ◦ αu(x) ◦ (αu(v))
′ = v ◦ x ◦ v′

So the equality αv(x) = x, x ∈ G is equivalent with

v ◦ x = x ◦ v, x ∈ G,

thus v ∈ Zu. �
Remark 2.2. • If H �= ∅ (there exists u ∈ G such that ϕ(u, x, u

n−2
, u) = x, x ∈

G), then all the centers of the reduced Hosszú groups through elements
of H coincide (are equal to H).

• Let us denote (G, ∗) = Redg(G,ϕ). If g ∈ G \H then Zg = Z(G, ∗) �= H
(g ∈ Z(G, ∗) but g �∈ H).

Next we give a theorem of characterization of (n + 1)-groups derivable from
groups.

Let (G, ·) be group and denote by Int(G, ·) the set of inner automorphisms

Int(G, ·) = {ig : G→ G| ig(x) = g · x · g−1, x ∈ G}.
Theorem 2.3. If (G,ϕ) = Extα,a(G, ·) is an (n + 1)-group, then the following state-
ments are equivalent:

a) α is an inner automorphism of (G, ·).
b) The (n+ 1)-group (G,ϕ) is a derived group.
c) For all u ∈ G, the reduced automorphism αu is a inner automorphism.

Proof. a) ⇒ b) If 1 is the unit element of (G, ·) then the reduced automorphism α1

is α1 = α, which is an inner automorphism, so

α1(x) = b · x · b−1, x ∈ G.

We have:

ϕ(x1, x2, . . . , xn, xn+1) = x1 · α(x2) · α2(x3) · · · · · αn−1(xn) · αn(xn+1) · a
and

αn(x) = a · x · a−1.

It follows

ϕ(x1, x2, . . . , xn, xn+1) = x1 · b · x2 · b · x3 · · · · · xn · b · xn+1 and a = bn.

For v = b−1, the reduced automorphism is

αb−1(x) = b−1 · α1(x) · α1(b) = b−1 · b · x · b−1 · b = x, x ∈ G,

thus αb−1 = 1G, then (G,ϕ) = Der1(G, ∗), where x ∗ y = x · b · y, x, y ∈ G.
b) ⇒ c) If (G,ϕ) = Dera(G, ·) then (G,ϕ) = Ext1G,a(G, ·), Red1(G,ϕ) = (G, ·),

α1 = 1G and let (G, ◦) = Redu(G,ϕ) with u ∈ G.
According to the formula 1.3 we have

αu(x) = u · α1(x) · α1(u
−1) = u · x · u−1, x ∈ G

and therefore αu ∈ Int(G,ϕ).
c) ⇒ a) In particular for u = 1 we have α1 = α and therefore α ∈ Int(G, ·). �
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Remark 2.3. • The only (n + 1)-ary operations of (n + 1)-group which are
derivable from a group (G, ·) have the form:

ϕ(x1, x2, . . . , xn, xn+1) = x1 · b · x2 · · · · · b · xn · b · xn+1,

x1, x2, . . . , xn, xn+1 ∈ G, where b ∈ G such that bn = a ∈ Z(G, ·).
• For the example 1.0 given by Dudek and Michalski in [2] we obtain that

the only (n + 1)-groups derivable from the group (Zk,+), k ∈ N, k ≥ 2
have the (n+ 1)-ary operation of the form:

ϕ(x1, x2, . . . , xn, xn+1) = x1 + x2 + · · ·+ xn + xn+1 + a,

x1, x2, . . . , xn, xn+1 ∈ Zk, with arbitrary a ∈ Zk. The operation of example
1.0 has not this form, thus this (n+1)-group is not a derived (n+1)-group.

Supposing that the groups (G, ·) and (G, ∗) are fixed and we consider the (n+
1)-group (G,ϕ) = Extα,a(G, ·) we will determine the conditions under which
(G,ϕ) is derived from (G, ∗), that is

(G,ϕ) = Derc(G, ∗), c ∈ Z(G, ∗).
For this we recall a result of [5].

Theorem 2.4. [5] If (G,ϕ) and (H,ψ) are (n+1)-groups then the function f : G→ H
is a (n+ 1)-group morphism if and only if for any u ∈ G we have:

a) f is a morphism of their reduces groups

(G, ·) = Redu(G,ϕ) and (G, ◦) = Redf(u)(H,ψ).

b) f(au) = bf(u), where au = ϕ( u
n+1

) and bf(u) = ψ(f(u)
n+1

).

c) f ◦ αu = βf(u) ◦ f , where αu(x) = ϕ(u, x, u
n−2

, u), x ∈ G and βf(u)(y) =

ψ(f(u), y, f(u)
n−2

, f(u)), y ∈ H , u is the skew element of u in (G,ϕ) and f(u) is the skew

element of f(u) in (H,ψ).

Theorem 2.5. The (n + 1)-group (G,ϕ) = Extα,a(G, ·) is derived from the group
(G, ∗), (G,ϕ) = Derc(G, ∗) if and only if:

a) x · y = x ∗ 1′ ∗ y, for all x, y ∈ G.
b) a = 1 ∗ 1 ∗ · · · ∗ 1

︸ ︷︷ ︸

n+1

∗c

c) α(x) = 1 ∗ x ∗ 1′, for all x ∈ G
where 1 is the unit element of (G, ·) and 1′ is the inverse of 1 in (G, ∗).
Proof. The equality Extα,a(G, ·) = Derc(G, ∗) is equivalent with the condition
that f = 1G : G→ G is a morphism (isomorphism) of (n+ 1)-groups.

We have (G, ·) = Red1(G,ϕ) and (G, ∗) = Rede(G,ϕ), where e is the unit
element in (G, ∗).

The conditions a), b), c) from Theorem 2.4 [5], for u = 1 become
a) f(x · y) = f(x) · f(y) = x · y = x ∗ 1′ ∗ y, x, y ∈ G (see 1.3)
b) f(1 · α(1) · · · · · αn(1) · a) = f(1) ∗ f(1) ∗ · · · ∗ f(1) ∗ c or a = 1 ∗ 1 ∗ · · · ∗ 1 ∗ c
c) f ◦ α1 = β1 ◦ f or α1 = β1.

But α1 = α and β1(x) = 1 ∗ x ∗ 1 ∗ · · · ∗ 1
︸ ︷︷ ︸

n−2

∗1 ∗ c, and from ϕ(1
n
, 1) = 1 follows that

1 ∗ · · · ∗ 1 ∗ 1 ∗ c = 1′, thus α(x) = 1 ∗ x ∗ 1′, x ∈ G. �
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Corollary 2.1. If (G,ϕ) = Dera(G, ·) and (G,ψ) = Derc(G, ∗) then ϕ = ψ if and
only if:

a) x · y = x ∗ 1′ ∗ y, x, y ∈ G
b) a = 1 ∗ · · · ∗ 1

︸ ︷︷ ︸

n+1

∗c

c) 1 ∈ Z(G, ∗).
Proof. For α = 1G in the Theorem 2.5 the condition c) becomes x = 1 ∗ x ∗ 1′ or
x ∗ 1 = 1 ∗ x, x ∈ G, thus 1 ∈ Z(G, ∗). �
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