CREATIVEMATH. & INF.Online version at http://creative-mathematics.ubm.ro/17 (2008), No. 3, 516 - 520Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

Semifixed sets for multivalued φ -contractions

IOANA CAMELIA TIŞE

ABSTRACT. The purpose of this paper is to present some semifixed set theorems for multivalued φ -contractions. Our results generalize some recent theorems by F. S. De Blasi. As an application, existence and uniqueness for the solution of a set integral equation is obtained.

1. INTRODUCTION

Let (\mathcal{X}, d) be a metric space. Throughout this paper we will use the following notations and concepts:

$$\begin{split} P(\mathcal{X}) &:= \{ Y \subseteq \mathcal{X} | Y \neq \emptyset \};\\ P_{cp}(\mathcal{X}) &= \{ Y \in P(\mathcal{X}) | Y \text{ is nonempty compact} \}; \end{split}$$

 $P_{cv}(\mathcal{X}) = \{Y \in P(\mathcal{X}) | Y \text{ is nonempty convex} \};$

 $P_{b,cl}(\mathcal{X}) = \{ Y \in P(\mathcal{X}) | \overline{Y} = Y, diam(Y) < \infty \};$ $P_{cp,cv}(\mathcal{X}) = P_{cp}(\mathcal{X}) \cap P_{cv}(\mathcal{X}).$

(1) $D: P(\mathcal{X}) \times P(\mathcal{X}) \to \mathbb{R}_+, D(A, B) = \inf\{d(a, b) \mid a \in A, b \in B\}.$ D is called the gap functional between A and B.

In particular, if $x_0 \in \mathcal{X}$ then $D(x_0, B) := D(\{x_0\}, B)$.

- (2) $diam: P(\mathcal{X}) \to \mathbb{R}_+ \cup \{+\infty\}, diamA := sup\{d(a,b)|a, b \in A\}.$
- (3) $\rho: P(\mathcal{X}) \times P(\mathcal{X}) \to \mathbb{R}_+ \cup \{+\infty\}, \rho(A, B) = \sup\{D(a, B) \mid a \in A\}.$ ρ is called the (generalized) excess functional.
- (4) $h: P(\mathcal{X}) \times P(\mathcal{X}) \to \mathbb{R}_+ \cup \{+\infty\}, h(A, B) = \max\{\rho(A, B), \rho(B, A)\}.$ *h* is the (generalized) Pompeiu-Hausdorff functional on $P(\mathcal{X})$ ([3]).

Let \mathcal{A}, \mathcal{B} be two families of nonempty subsets of \mathcal{X} and let $P(\mathcal{B})$ be the family of all nonempty subsets of \mathcal{B} .

Definition 1.1. Let $\phi : \mathcal{A} \to P(\mathcal{B})$ such that there exists on $F \in \phi(A)$ satisfying a relation of the type $A \subset F, A \supset F, A \cap F \neq \emptyset$, for any set $A \in \mathcal{A}$ is called a semifixed set of multivalued ϕ . Moreover, a fixed set for ϕ is any set $A \in \mathcal{A}$ satisfying $A \in \phi(A)$.

Let \mathcal{X} be a Banach space and denote $\mathcal{K} := P_{cp}(P_{cp}(\mathcal{X}))$.

The space \mathcal{K} is endowed with the Pompeiu-Hausdorff distance H induced by the metric h of $P_{cp}(\mathcal{X})$, i.e $H(\mathcal{A}, \mathcal{B}) := max\{e(\mathcal{A}, \mathcal{B}), e(\mathcal{B}, \mathcal{A})\}$, where $e(\mathcal{A}, \mathcal{B}) = \sup_{A \in \mathcal{A}^{B \in \mathcal{B}}} \inf h(A, B)$.

Received: 12.10.2008. In revised form: 27.02.2009. Accepted: 21.05.2009.

²⁰⁰⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. Compact convex set, multivalued operator, semifixed set, Hukuhara's derivative, set integral equation.

For $A, A', B, B' \in P_{cp}(\mathcal{X})$ and $\lambda \in \mathbb{R}$, the set: $D(A, B) = inf\{||a - b|| |a \in A, b \in B\}$, we have: i) D(A, B) = D(B, A), ii) D(A, B) = 0 if only if $A \cap B \neq \emptyset$, iii) $D(\lambda A, \lambda B) = |\lambda|D(A, B)$, iv) $D(A, B) \leq D(A', B') + h(A, A') + h(B, B')$, v) $h(A, B) \leq diam(A) + diam(B) + D(A, B)$.

 $\begin{array}{l} \text{The function D is continuous on $P_{cp}(\mathcal{X}) \times P_{cp}(\mathcal{X})$,} \\ |\sup_{B \in \mathcal{B}} D(A, B) - \sup_{B \in \mathcal{B}} D(A', B)| \leq h(A, A')$.} \\ \text{Define set $\Delta(\mathcal{A}, \mathcal{B}) = max\{f(\mathcal{B}, \mathcal{A}), f(\mathcal{A}, \mathcal{B})\}$, for $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, where $f(\mathcal{A}, \mathcal{B}) = \inf_{A \in \mathcal{A}_{B} \in \mathcal{B}} D(A, B)$ and $f(\mathcal{B}, \mathcal{A}) = \inf_{B \in \mathcal{B}_{A} \in \mathcal{A}} D(B, A)$.} \end{array}$

Definition 1.2. ([5]) A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function if it satisfies:

- i) φ is monotone increasing,
- ii) $(\varphi^n(t))_{n \in \mathbb{N}}$ converges to 0, for all t > 0.

Remark 1.1. If $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function then $\varphi(0) = 0$ and $\varphi(t) < t$, for every t > 0.

Example 1.1. The functions $\varphi_1 : \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi_1 = at$ (where $a \in]0, 1[$) and $\varphi_2 : \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi_2(t) = \frac{t}{1+t}$ are comparison functions.

Definition 1.3. A map $\phi : \mathcal{A} \to \mathcal{K}$ is said compact if its range $\phi(\mathcal{A}) = \{Y \in P_{cp}(\mathcal{X}) | Y \in \phi(X) \text{ for some } X \in \mathcal{A}\}$ is precompact in $P_{cp}(\mathcal{X})$.

As $P_{cp}(\mathcal{X})$ is complete, ϕ is compact if and only if $\phi(\mathcal{A})$ has compact closure in $P_{cp}(\mathcal{X})$.

Definition 1.4. Let \mathcal{A} be a closed subset of \mathcal{K} . Then $\phi : \mathcal{A} \to \mathcal{K}$ is said to be a set φ -contraction if $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function and

$$\Delta(\phi(X), \phi(Y)) \le \varphi(D(X, Y)), X, Y \in \mathcal{A}.$$

The purpose of this paper is to give some semifixed set theorems for set φ contraction. Our results extend some previous theorems given by F. S. De Blasi in
[1]. As an application, existence and uniqueness for the solution of a set integral
equation is obtained.

2. MAIN RESULTS

Our first main result is:

Theorem 2.1. Let \mathcal{A} be a closed subset of \mathcal{K} and let $\phi : \mathcal{A} \to \mathcal{K}$ be a compact and upper semicontinuous multivalued, with values $\phi(X) \subset \mathcal{A}$ for every $X \in \mathcal{A}$, satisfying the following condition:

there exists a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that:

$$\Delta(\phi(X), \phi(Y)) \le \varphi(D(X, Y)) \text{ for every } X, Y \in \mathcal{A}.$$
(2.1)

Then there exists $A \in \mathcal{A}$ such that:

$$A \cap F \neq \emptyset \text{ for some } F \in \phi(A).$$
(2.2)

Ioana Camelia Tişe

Proof. Fix $X_0 \in A$, and take $X_1 \in \phi(X_0)$ such that: $D(X_1, X_0) = \inf_{Y \in \phi(X_0)} D(Y, X_0).$ Since the function $X \to \sup D(X, Y)$ is continuous on $\phi(X_1)$, a compact set, $Y \in \phi(X_0)$ there exists $X_2 \in \phi(X_1)$ such that: $\sup_{e \neq (X_0)} D(X_2, Y) = \inf_{X \in \phi(X_1)} \sup_{Y \in \phi(X_0)} D(X, Y) = f(\phi(X_1), \phi(X_0)), \text{ and by (2.1)},$ $Y \in \dot{\phi(X_0)}$ $D(X_2, X_1) \le \sup D(X_2, Y) \le \Delta(\phi(X_1), \phi(X_0)) \le \varphi(D(X_1, X_0)).$ $Y \in \phi(X_0)$ Similarly, as $X \to \sup D(X, Y)$ is continuous on $\phi(X_2)$, for some $X_3 \in \phi(X_2)$ $Y \in \phi(X_1)$ one has $\sup_{\substack{\in \phi(X_1)}} D(X_3, Y) = \inf_{\substack{X \in \phi(X_2)}} \sup_{\substack{Y \in \phi(X_1)}} D(X, Y) = f(\phi(X_2), \phi(X_1)), \text{ and thus}$ $Y \in \phi(X_1)$ $D(X_3, X_2) \le \sup D(X_3, Y) \le \Delta(\phi(X_0), \phi(X_1)) \le \varphi(D(X_2, X_1)).$ $Y \in \phi(X_1)$ By induction, one can construct a sequence $(X_n)_{n \in \mathbb{N}} \subset \mathcal{A}$, with $X_{n+1} \in \phi(X_n)$, satisfying the following relation: $\sup_{\phi(X_{n-1})} D(X_{n+1}, Y) = \inf_{X \in \phi(X_n)} \sup_{Y \in \phi(X_{n-1})} D(X, Y) = f(\phi(X_n), \phi(X_{n-1}))$ $Y \in \phi(X_{n-1})$ and $D(X_{n+1}, X_n) \le \sup_{Y \in \phi(X_n-1)} D(X_{n+1}, Y) \le \Delta(\phi(X_n), \phi(X_{n-1})) \le$

 $\leq \varphi(D(X_n, X_{n-1})).$

Then we have

$$D(X_{n+1}, X_n) \le \varphi^n (D(X_1, X_0)), n \in \mathbb{N}.$$
(2.3)

By the comparison function definition, we get that $\varphi^n(D(X_1, X_0))$ converges to 0, $a \to \infty$.

Since $(X_n)_{n \in \mathbb{N}} \subset \phi(\mathcal{A})$ and ϕ is compact, there exists the subsequences (X_{n_k}) and (X_{n_k+1}) and the set $A, F \in \mathcal{A}$ such that:

 $\lim_{k \to +\infty} h(X_{n_k}, A) = 0 = \lim_{k \to +\infty} h(X_{n_k+1}, F).$

Since $X_{n_k+1} \in \phi(X_{n_k})$, for $k \in \mathbb{N}$, and by the upper semicontinuity of ϕ , it follows that $F \in \phi(A)$.

Since $D(A, F) \leq D(X_{n_k}, X_{n_k+1}) + h(X_{n_k}, A) + h(X_{n_k+1}, F)$, we have D(A, F) = 0 and the proof is complete.

Another main result is:

Theorem 2.2. Let $\mathcal{A} \in P_{cp}(\mathcal{X})$ and $\phi : \mathcal{A} \to \mathcal{A}$ be a continuous map satisfying the following conditions:

- (a) $\phi(\mathcal{B})$ is precompact in \mathcal{A} for every bounded set $\mathcal{B} \subset \mathcal{A}$;
- (b) there exists M > 0 such that $diam(\phi(X)) \leq M$, for every $X \in A$.
- (c) there exists a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that the function $\psi : \mathbb{R}_+ \to \mathbb{R}_+$, $\psi(t) = t \varphi(t)$ is strictly increasing, onto and for which the following assertion is satisfied:

$$D(\phi(X), \phi(Y)) \le \varphi(D(X, Y))$$
 for all $X, Y \in \mathcal{A}$. (2.4)

518

Then there exists $A \in \mathcal{A}$ such that $A \cap \varphi(A) \neq \emptyset$.

Proof. Let $X_0 \in A$, and let the sequence $(X_n)_{n \in \mathbb{N}}$ given by $X_n = \phi(X_{n-1}), n \in \mathbb{N}^*$. We will prove first that the sequence $(X_n)_{n \in \mathbb{N}}$ is bounded. Indeed, for every $n \in \mathbb{N}$ we have: $D(X_n, X_0) \le D(\phi(X_n), \phi(X_0)) + h(D(\phi(X_n), X_n)) + h(\phi(X_0), X_0)$ $\leq \varphi(D(X_n, X_0)) + h(D(X_{n+1}, X_n)) + h(X_1, X_0)$ $\leq \varphi(D(X_n, X_0)) + [diam(\phi(X_n)) + D(X_{n+1}, X_n) + diam(X_n)] + [diam(\phi(X_0)) + diam(X_n)] + [diam(\phi(X_0)) + diam(X_n)] + [diam(\phi(X_n)) + diam(X_n)] + diam(X_n)] + diam(X_n) + diam(X_n)] + diam(X_n) + diam(X_n) + diam(X_n)] + diam(X_n) + diam(X_n) + diam(X_n) + diam(X_n) + diam(X_n)] + diam(X_n) + diam(X_n) + diam(X_n) + diam(X_n) + diam(X_n) + diam(X_n)) + diam(X_n) + dia$ $D(X_1, X_0) + diam(X_0)$ $\leq \varphi(D(X_n, X_0)) + 4M + D(X_{n+1}, X_n) + D(X_1, X_0)$ $\leq \varphi(D(X_n, X_0)) + 4M + \varphi^n(D(X_1, X_0)) + D(X_1, X_0)$ $D(X_n, X_0) \le \varphi(D(X_n, X_0)) + 4M + D(X_1, X_0) + D(X_1, X_0)$ $D(X_n, X_0) - \varphi(D(X_n, X_0)) \le 4M + 2D(X_1, X_0)$ then $\psi(D(X_n, X_0)) \le 4M + 2D(X_1, X_0)$, $D(X_n, X_0) \le \psi^{-1}(4M + 2D(X_1, X_0)) < \infty.$ By (a), there exists a subsequence (X_{n_k}) converging to some set $A \in \mathcal{A}$. Then $(\phi(X_{n_k}))$ converges to $\phi(A)$ and thus, by (2.3) we have $A \cap \phi(A) \neq \emptyset$. The proof is complete.

We will use the following result (see J. Matkowski and I.A.Rus [5]):

Theorem 2.3. Let (X, d) be a complete metric space and $g : X \to X$ be a φ -contraction (i.e $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function) and $d(f(x), g(y)) \leq \varphi(d(x, y))$ for each $x, y \in X$. Then g has a unique fixed point.

We will present now an application of the previous results. Let $\mathbf{B}_r := \{X \in P_{cp,cv}(\mathbb{R}^n) | diam(X) \leq r\}$, where r > 0. The space \mathbf{B}_r endowed with the Pompeiu-Hausdorff metric is convex and complete.

Let $F : I \times I \times \mathbf{B}_r \to \mathbf{B}_{r/2}$, I = [a, b], a set $A \in \mathbf{B}_{r/2}$ and we consider the integral set equation

$$X(t) = A + \int_{a}^{b} F(t, s, X(s)) ds.$$
 (2.5)

By a solution of (2.5) we understand a continuous function $X : I \to \mathbf{B}_r$, which satisfies (2.5) for every $t \in I$.

Theorem 2.4. Let $F : I \times I \times \mathbf{B}_r \to \mathbf{B}_{r/2}$ be continuous and suppose there exist a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ and a function $p : I \times I \to \mathbb{R}_+$ such that:

 $h(F(t, s, X), F(t, s, Y)) \leq p(t, s)\varphi(h(X, Y))$ for every $t, s \in I, X, Y \in \mathbf{B}_r$, where $\sup_{t \in I} \int_a^b p(t, s) \leq 1$.

Then, for each $A \in \mathbf{B}_{r/2}$ the integral equation (2.5) has a unique solution $X(\cdot, A) : I \to \mathbf{B}_r$ which depends continuously on A.

Proof. Let $C(I, \mathbf{B}_r)$ be the complete space of all continuous maps $X : I \to \mathbf{B}_r$ endowed with the uniform convergence metric. Define an operator U by the relation:

$$U(X)(t) = A + \int_{a}^{b} F(t, s, X(s)) ds, \text{ where } X \in \mathcal{C}(I, \mathbf{B}_{r}) \text{ and } t \in I.$$
 (2.6)

Ioana Camelia Tişe

Then the conclusion, follows by Theorem 2.3 i.e, for each $A \in \mathbf{B}_{r/2}$ the integral equation (2.5) has a solution $X(\cdot, A) : I \to \mathbf{B}_r$ which is unique and depends continuously on A.

REFERENCES

- De Blasi, F. S., Semifixed sets of maps in hyperspaces with application to set differential equations, Set-Valued Analysis, 14 (2006), 263-272
- [2] V. Lakshmikantham, T. Gnana Bhaskar, and Devi J. Vasundhara, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, 2006
- [3] Petruşel, A., Petruşel, G. and Moţ, G., Topics in nonlinear analysis and applications to mathematical economics, House of the Book Science, Cluj-Napoca, 2007
- [4] Petruşel, A., (ε, φ) locally contractive multivalued mappings and applications, Studia Univ. Babeş-Bolyai, 36 (1991), 101-110
- [5] Rus, I. A., Generalized contractions and applications, Cluj Univ. Press, Cluj-Napoca, 2001

BABEŞ-BOLYAI UNIVERSITY DEPARTMENT OF APPLIED MATHEMATICS KOGĂLNICEANU 1 400084 CLUJ-NAPOCA, ROMANIA *E-mail address:* ti_camelia@yahoo.com