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Semifixed sets for multivalued p-contractions

IoOANA CAMELIA TISE

ABSTRACT. The purpose of this paper is to present some semifixed set theorems for multivalued
p-contractions. Our results generalize some recent theorems by F. S. De Blasi. As an application,
existence and uniqueness for the solution of a set integral equation is obtained.

1. INTRODUCTION

Let (X, d) be a metric space. Throughout this paper we will use the following
notations and concepts:
P(X):={Y CX|Y £0};
P.,(X) ={Y € P(X)|Y is nonempty compact};
P.,(X) ={Y € P(X)]Y is nonempty convex};
Py (X)) ={Y € P(X)|Y =Y,diam(Y) < oo};
Pep,eo(X) = Pep(X) N Pey (X).
(1) D: P(X) x P(X) = Ry, D(A,B) = inf{d(a,b) | a € A, b e B}.
D is called the gap functional between A and B.
In particular, if o € X then D(x¢, B) := D({xo}, B).
(2) diam : P(X) = Ry U{+o0}, diamA := sup{d(a,b)|a,b € A}.
(3) p: P(X) x P(X) = Ry U{+00}, p(A,B) =sup{D(a,B) |a <€ A}.
p is called the (generalized) excess functional.
(4) h: P(X)x P(X) = Ry U{+oo}, h(A, B) = max{p(A4, B), p(B, A)}.
h is the (generalized) Pompeiu-Hausdorff functional on P(X) ([3]).
Let A, B be two families of nonempty subsets of X’ and let P(B) be the family
of all nonempty subsets of 5.

Definition 1.1. Let ¢ : A — P(B) such that there exists on F' € ¢(A) satisfying
a relation of the type A ¢ ;A D FFANFE # 0, forany set A € A is called
a semifixed set of multivalued ¢. Moreover, a fixed set for ¢ isany set A € A
satisfying A € ¢(A).

Let X be a Banach space and denote K := P,,(P.,(X)).
The space K is endowed with the Pompeiu-Hausdorff distance H induced by
the metric h of P.,(X), i.e H(A,B) := maz{e(A,B),e(B,A)}, where e(A,B) =

inf h(A, B).
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For A,A’, B, B’ € P.,(X)and X € R, the set:
D(A, B) =inf{||la —b|| |a € A,b € B}, we have:
i) D(A,B) = D(B, A),
ii) D(A,B) =0ifonlyif An B # 0,
iii) D(A\A,\B) = |)\|D(A B),
iv) D(A, B) < DA, B') + h(A, A') + h(B, B"),
V) h(A, B) < dzam( ) + diam(B) + D(A, B).
The function D is continuous on P, (X) x P, (X),
|supD(A B) — supD(A’ B)| < h(A,A").

Deflne set A(A, B) mam{f(B,A), f(A,B)}, for A, B € K, where
f(A,B) = inf supD(A4, B) and f(B,A) = inf sup D(B, A).
A€ABeB BeBAc A

Definition 1.2. ([5]) A function ¢ : R, — R, is a comparison function if it satis-
fies:

i) ¢ IS monotone increasing,

i) (¢™(t))nen converges to O, for all ¢ > 0.

Remark 1.1. If ¢ : R4 — Ry isacomparison function then ¢(0) = 0 and ¢(t) < ¢,
for every t > 0.

Example 1.1. The functions o1 : Ry — Ry, 1 = at (where a €]0, 1) and
w2 : Ry = Ry, @a(t) = 1+t are comparison functions.

Definition 1.3. Amap ¢ : A — K is said compact if its range
d(A) ={Y € P, (X)|Y € ¢(X) for some X € A} is precompact in P, (X).

As P, (X) is complete, ¢ is compact if and only if ¢(.A) has compact closure in
P, (X).
Definition 1.4. Let A be a closed subset of . Then ¢ : A — K is said to be a set
p-contraction if ¢ : Ry — R, is a comparison function and

A($(X),6(Y)) < p(D(X,Y)), X,Y € A.

The purpose of this paper is to give some semifixed set theorems for set ¢-

contraction. Our results extend some previous theorems given by F. S. De Blasi in

[1]. As an application, existence and uniqueness for the solution of a set integral
equation is obtained.

2. MAIN RESULTS
Our first main result is:

Theorem 2.1. Let A be a closed subset of K and let ¢ : A — K be a compact and upper
semicontinuous multivalued, with values ¢(X) C A for every X € A, satisfying the
following condition:

there exists a comparison function ¢ : R, — R such that:

A(H(X),9(YV)) < p(D(X,Y)) forevery X, Y € A. (2.1)
Then there exists A € A such that:
ANF () forsome F € ¢(A). (2.2)
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Proof. Fix X, € A, and take X; € ¢(Xp) such that:

D(X;1,X0) = inf D(Y, Xo).
Y €¢p(Xo)
Since the function X — sup D(X,Y) is continuous on ¢(X;), a compact set,
Yegp(Xo)

there exists X5 € ¢(X7) such that:

YES;&U)D(XQ, Y) = xé&i}l)y;ﬂl&o)D(X’ Y) = f(#(X1),#(Xo)), and by (2.1),
D(X2,X1) < sup D(X2,Y) < A(P(X1),0(Xo)) < p(D(X1, Xo)).
Similarly, as )?e—(i(XO)sup D(X,Y) is continuous on ¢(X>), for some X5 € ¢(X2)
one has ey

sup D(X3,Y) = _inf  sup D(X,Y) = f(¢(X2), ¢(X1)), and thus
Yep(X1) Xed(X2)vep(x:)
D(X3,Xs) < SU(P )D(X&Y) < A(p(Xo), #(X1)) < p(D(X2, X1)).
Yep(Xq
By induction, one can construct a sequence (X,,)nen C A, with X,,11 € ¢(X,,),
satisfying the following relation:
sup D(Xn-i-la Y) = inf sup D(X7 Y) = f((b(Xn)v (b(Xn—l))

Yep(Xn_1) Xe)(Xn)yep(Xn_1)
and D(Xn+17Xn) < sup D(Xn+1a Y) < A(¢(Xn)a ¢(Xn—1)) <
Yep(Xn—1)

< o(D(Xns Xn—1)).
Then we have
D(Xnq1, X5) < 0"(D(X1, Xo)),n € N. (2.3)

By the comparison function definition, we get that ¢ (D(X1, X)) converges to
0,a — oo.
Since (X,)nen C ¢(A) and ¢ is compact, there exists the subsequences (X, ) and
(Xn,+1) and the set A, F' € A such that:
lim h(X,,,A) =0= lim h(X, 1,F).
k——+o0

k—+o00

Since X, +1 € ¢(X,,, ), for k € N, and by the upper semicontinuity of ¢, it follows
that F' € ¢(A).

Since D(A,F) < D(X,,, Xn,+1) + h(Xn,, A) + h( Xy, +1, F), we have

D(A, F) = 0 and the proof is complete. O

Another main result is:

Theorem 2.2. Let A € P,,(X) and ¢ : A — A be a continuous map satisfying the

following conditions:

(@) ¢(B) is precompact in A for every bounded set B C A;

(b) there exists M > 0 such that diam(¢(X)) < M, for every X € A.

(c) there exists a comparison function ¢ : Ry — R, such that the function ¢ : R, —
Ry, ¥(t) =t — (1) is strictly increasing, onto and for which the following assertion
is satisfied:

D(6(X),d(Y)) < o(D(X,Y)) forall X,Y € A. (2.4)
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Then there exists A € A such that A N p(A) # 0.

Proof. Let X, € A, and let the sequence (X,,)nen given by X,, = ¢(X,,—1),n € N*.
We will prove first that the sequence (X,,)nen is bounded.

Indeed, for every n € N we have:

D(XTM XO) < D((b(Xn)a ¢(X0)) + h(D((b(Xn)a Xn)) + h(¢(XO)7 XO)

< @(D(Xp, Xo)) + M(D(Xp 11, X)) + h(X1, Xo)

< o(D(Xp, Xo)) + [diam(d( X)) + D(Xnt1, Xn) + diam(X,)] + [diam($(Xo)) +
D()(l7 Xo) + dzam(Xo)]

< @(D(Xnm XO)) +4M + D(Xn—i-l; Xn) + D(Xh XO)

< (D (X, Xo)) + 4M + ¢"(D(X1, Xp)) + D(X1, Xo)

D(X,, Xo) < p(D(X,, Xo)) +4M + D(X1, Xo) + D(X1, Xo)

D(X,,, Xo) — o(D(X,, X0)) <4M + 2D(X1, Xo)

then ¢¥(D(X,,, Xo)) < 4M + 2D (X4, Xo),

D(X,,X,) <91 (4M 4+ 2D(X1, Xo)) < 0.

By (a), there exists a subsequence (X, ) converging to some set A € A.

Then (¢(X,,, )) converges to ¢(A) and thus, by (2.3) we have AN ¢(A) # 0.

The proof is complete. O

We will use the following result (see J. Matkowski and I.A.Rus [5]):

Theorem 2.3. Let (X, d) be a complete metric space and g : X — X be a p-contraction
(i.e ¢ : Ry — Ry isacomparison function) and

d(f(x). 9(y)) < p(d(x,y)) for each 2,y € X.

Then g has a unique fixed point.

We will present now an application of the previous results.
Let B, := {X € Pep,co(R")|diam(X) < r}, where r > 0. The space B, endowed
with the Pompeiu-Hausdorff metric is convex and complete.
Let F: I x I x B, = B, /2, I = [a,b], aset A € B, /, and we consider the integral
set equation

X(it)y=A+ /b F(t,s,X(s))ds. (2.5)

By a solution of (2.5) we understand a continuous function X : I — B,., which
satisfies (2.5) forevery t € I.

Theorem 2.4. Let F : I x I x B, — B, be continuous and suppose there exist a
comparison function ¢ : R; — R, and a function p : I x I — R such that:
h(F(t,s,X),F(t,s,Y)) < p(t,s)e(h(X,Y)) forevery t,s € I, X, Y € B,, where

b
sup [, p(t,s) < 1.
tel

Then, for each A € B, , the integral equation (2.5) has a unique solution X (-, A) : I —
B.. which depends continuously on A.

Proof. Let C(I,B,.) be the complete space of all continuous maps X : I — B,
endowed with the uniform convergence metric.
Define an operator U by the relation:

b
UX)t)=A +/ F(t,s,X(s))ds, where X € C(I,B,)andt € I. (2.6)
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Since diam(U(X)(t)) < zam(A)—{—diam(f(f F(t,s,X(s))ds) <

<L +fbdzam (F(t,s, X (s )))ds <r.

Hence U:C(I,B,) — C(I,B,). We will show now that U is a x-contraction.
Indeed 1 (U (X)(t),U(Y)(t)) < h( [, F(t,s,X(s))ds, [ F(t,s,Y(s))ds) <

< f, h(P(t,5,X(s)), F(t,5,Y (s)) d8<f p(t, s @(h(X(SL (s)))ds <

< Ju p(t s)p(maz h(X (5),Y (s))ds = [, p(t )e(I1X =Y lleqr.p,))ds =

= [V p(t, s)dso(|X = Yller.s,)) < @(I1X = Ylle(r,p,)), foreach t € 1.
Hence

U(X) =UX)lea,s,) < e(IX =Yllew,B,))-

Then the conclusion, follows by Theorem 2.3 i.e, for each A € B,./, the integral
equation (2.5) has a solution X (-, A) : I — B, which is unique and depends

continuously on A.
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