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Empirical study of the rate of convergence of some
Newton type methods

CRISTINA ŢICALĂ AND LASZLO BALOG

ABSTRACT. In this paper an empirical study of the rate of convergence of some Newton type
methods is made. It is originating in the formula

xn+1 = xn +
2f(xn)

f ′(xn) +Mn
, x0 ∈ [a, b]prechosen,n = 0, 1, 2, ...,

where
M = sup

x∈[a,b]
|f ′(x)|, Mn = Msignf ′(xn)

Some numerical examples to illustrate the study are also given.

1. INTRODUCTION

In the paper [2] the authors study the convergence of some Newton type meth-
ods, originating from the well-known Newton’s method

xn+1 = xn − f(xn)

f ′(xn)
, n = 0, 1, 2, ... . (1.1)

On the other hand, in the paper [3], the authors proved a convergence theorem
for a Newton type method of the form

xn+1 = xn +
2f(xn)

f ′(xn) +Mn
, x0 ∈ [a, b]prechosen,n = 0, 1, 2, ..., (1.2)

where

M = sup
x∈[a,b]

|f ′(x)|, Mn = Msignf ′(xn) (1.3)

which has been obtained by the so called extended Newton method in [1]. In the
present paper, following the lines in [2] for the Newton method, we perform an
empirical study of the methods obtained from (1.2), (1.3), similarly to the case of
(1.1).
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2. NEWTON TYPE METHODS

In [2] the authors considered iterative methods of the form

zn = φp(xn) (2.4)

xn+1 = zn −H(xn, yn)
f(zn)

f ′(xn)
(2.5)

where H(x, y) represents a given two-variable function and

yn = xn − f(xn)

f ′(xn)
. (2.6)

Method 1 (M1)

zn = φ3(xn), φ3(x) = x− 2f(x)

f ′(x) + f ′(y(x))
, (2.7)

H(x, y) =
f ′(x)

f ′(y(x))
. (2.8)

Method 2 (M2)

zn = φ3(xn), φ3(x) = x− f(x)

2

(
1

f ′(x)
+

1

f ′(y(x))

)
, (2.9)

H(x, y) =
f ′(x) + f ′(y)
3f ′(y)− f ′(x)

. (2.10)

Method 3 (M3)

zn = φ3(xn), φ3(x) = x− 2f(x)

f ′(x) + f ′(y(x))
, (2.11)

H(x, y) =
f ′(y)

2f ′(y)− f ′(x)
. (2.12)

Method 4 (M4)

zn = φ3(xn), φ3(x) = x− f(x)

2

(
1

f ′(x)
+

1

f ′(y(x))

)
, (2.13)

H(x, y) =
3f ′(x) − f ′(y)
f ′(x) + f ′(y) . (2.14)

Method 5 (M5)

zn = φ3(xn), φ3(x) = x− 2f(x)

f ′(x) + f ′(y(x))
, (2.15)

H(x, y) =
2f ′2(y)

f ′2(x) − 4f ′(x)f ′(y) + 5f ′2(y)
. (2.16)

Method 6 (M6)

zn = φ3(xn), φ3(x) = x− f(x)

2

(
1

f ′(x)
+

1

f ′(y(x))

)
, (2.17)
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H(x, y) = − 2f ′2(y)
f ′2(x) − 4f ′(x)f ′(y) + f ′2(y)

. (2.18)

By considering (1.2) and (1.3) instead of (1.1) in the constructions of the meth-
ods M1 - M3 we obtain the following six new methods
NM1: For function H (2.8) and φ3 defined in (2.7) we obtain

xn+1 = zn − f ′(xn)

f ′(yn)
· 2f(zn)

f ′(xn) +Mn
. (2.19)

NM2: For function H from (2.10) and φ3 given in (2.9) the obtained method is

xn+1 = zn − f ′(yn) + f ′(xn)

3f ′(yn)− f ′(xn)
· 2f(zn)

f ′(xn) +Mn
. (2.20)

NM3: For function H from (2.12) and φ3 defined in (2.11) the method looks like
below

xn+1 = zn − f ′(yn)
2f ′(yn)− f ′(xn)

· 2f(zn)

f ′(xn) +Mn
. (2.21)

NM4: For function H given in (2.14) and φ3 defined in (2.13) the method becomes

xn+1 = zn − 3f ′(xn)− f ′(yn)
f ′(yn) + f ′(xn)

· 2f(zn)

f ′(xn) +Mn
. (2.22)

NM5: For function H given in (2.16) and φ3 defined in (2.15) the method becomes

xn+1 = zn − 2f ′2(y)
f ′2(x) − 4f ′(x)f ′(y) + 5f ′2(y)

· 2f(zn)

f ′(xn) +Mn
. (2.23)

NM6: For function H given in (2.18) and φ3 defined in (2.17) the method becomes

xn+1 = zn +
2f ′2(y)

f ′2(x) − 4f ′(x)f ′(y) + f ′2(y)
· 2f(zn)

f ′(xn) +Mn
, (2.24)

where Mn is given in (1.3).

All computations were done in MAPLE using 256 digit floating point arith-
metics. We set ε = 2−255 as iteration tolerance number. We used the following
test functions and display the approximate zeros x∗ up to the 31st decimal place.

f1(x) = x3 + 4x2 − 10, x∗ = 1.3652300134140968457608068289817
f2(x) = sin2 x− x2 + 1, x∗ = 1.4044916482153412260350868177869
f3(x) = x2 − ex − 3x+ 2, x∗ = 0.2575302854398607604553673049371
f4(x) = cosx− x, x∗ = 0.7390851332151606416553120876739
f5(x) = x · ex − sin2 x+ 3 cosx+ 5, x∗ = −1.0942870722082091204228027872276
f6(x) = (x3 + 4x2 − 10)2, x∗ = 1.3652300134140968457608068289817
f7(x) = (x− 1)2ex, x∗ = 1
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f(x) NM1 (M1) NM2 (M2) NM3 (M3) NM4 (M4) NM5 (M5) NM6 (M6)
f1(x) x0 = 0.8 6 (5) 5 (4) 5 (5) 6( 4) 6 (5) 6 (5)
f1(x) x0 = 1 5 (4) 5 (4) 5 (4) 5 (4) 6 (5) 5 (5)
f2(x) x0 = 2.3 6 (5) 5 (4) 6 (5) 5 (4) 6 (6) 6 (5)
f2(x) x0 = 1 6 (5) 6 (4) 6 (5) 6 (5) 6 (5) 6 (5)
f3(x) x0 = 1 5 (4) 5 (4) 5 (4) 5 (4) 5 (4) 5 (5)
f3(x) x0 = 0 5 (4) 5 (4) 5 (4) 5 (4) 5 (4) 5 (4)
f4(x) x0 = 1.7 5 (4) 5 (4) 5 (4) 5 (4) 5 (5) 5 (5)
f4(x) x0 = 0 5 (4) 5 (4) 5 (4) 6 (4) 5 (5) 5 (6)
f5(x) x0 = −1 6 (4) 6 (4) 6 (4) 6 (4) 6 (5) 6 (5)
f5(x) x0 = −0.5 div (div) div (div) 7 (23) div (div) 8 (8) div (div)
f6(x) x0 = 1.4 531 (388) 421 (315) div (div) 421 (361) 532 (618) 422 (409)
f6(x) x0 = 0.8 533 (389) 422 (315) div (div) 422 (361) 533 (620) 423 (409)
f7(x) x0 = 1.1 532 (389) 422 (315) div (div) 422 (361) 533 (619) 422 (410)
f7(x) x0 = 0.9 532 (389) 422 (315) div (div) 422 (361) 533 (619) 422 (410)

3. CONCLUSIONS

Displayed in the table above are the number of iterations required such that
|f(xn)| < ε. In the table ’div’ means that the sequence of approximative zeros pro-
duced from the corresponding method does not converge within the maximum
iteration number. The numbers in parentheses represent the values obtained by
use of the methods described in [2].

During the study we also tried to replace
f(x)

f ′(x)
with

2f(x)

f(x) +Mn
in zn and xn+1.

But as the study went along we noticed that the results were better when we made
the replacements in only one place. The number of iteration decreased at least by
two.

We also noticed that the new methods we have studied empirically in the pa-
per can be considered as good as the Newton like method presented in [1].
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