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Influence of deterministic trend on the estimated
parameters of GARCH(1,1) model
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ABSTRACT. The log returns of financial time series are usually modeled by means of the stationary
GARCH(1,1) stochastic process or its generalizations which can not properly describe the nonstation-
ary deterministic components of the original series. We analyze the influence of deterministic trends
on the GARCH(1,1) parameters using Monte Carlo simulations. The statistical ensembles contain nu-
merically generated time series composed by GARCH(1,1) noise superposed on deterministic trends.
The GARCH(1,1) parameters characteristic for financial time series longer than one year are not af-
fected by the detrending errors. We also show that if the ARCH coefficient is greater than the GARCH
coefficient, then the estimated GARCH(1,1) parameters depend on the number of monotonic parts of
the trend and on the ratio between the trend and the noise amplitudes.

1. INTRODUCTION

The log returns of financial time series {Pt} (share prices, stock indices, foreign
exchange rates, etc.)

Xt = log(Pt/Pt−1) = log (Pt)− log (Pt−1) , (1.1)

usually presents the following features: they are uncorrelated, their volatility
clusters, they have fat-tailed distributions (leptokurtosis), a leverage effect is pre-
sent (changes in stock prices tend to be negatively correlated with changes in
volatility), their autocorrelation function decays exponentially, their absolute val-
ues present a long range dependence [2]. One of the most used stochastic models
that reproduces some of these features is the Generalized Auto Regressive Con-
ditional Heteroskedasticity (GARCH) model having the variance expressed as
a linear function of past squared innovations and earlier calculated conditional
variances [1]. There are various generalizations of the GARCH model, however
the most used in practical applications is its simplest form, GARCH(1,1).

According to relation (1.1) the stationary GARCH(1,1) process is suitable for
modeling time series for which {logPt} has a linear trend, i.e. the original time
series {Pt} contains an exponential trend. But the nonlinear trends in {logPt} are
not eliminated by the differentiation (1.1). This problem is amplified in the case
of a nonmonotonic trend. An alternative to the stationary modeling of financial
series is the hypothesis of a nonstationary evolution. For example Stărică and
Granger [5] propose a nonstationary model locally approximated by a stationary
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one
Xt = μ (t) + σ (t) εt , (1.2)

where εt are i.i.d with E(εt) = 0 and E(ε2t ) = 1 and the unconditional mean μ (t)
and the unconditional variance σ (t) are functions of t. If a nonstationary series
(1.2) is modeled with a stationary process, then the deterministic trend μ(t) is
confounded with a stochastic trend and the model tends to approach its nonsta-
tionarity limit. In the case of GARCH model this is the so called IGARCH effect.

In this paper we study the influence of a deterministic trend on the parameters
of GARCH(1,1) model. We use a Monte Carlo method in order to evaluate the in-
fluence of the detrending errors on the variability of the estimated GARCH(1,1)
parameters. The paper is organized as follows. In the following section we
shortly present the GARCH(1,1) model and we study the intrinsic variability of
its parameters. In the third section an automatic method to generate artificially
trends is described. Then we present the variability of the GARCH(1,1) parame-
ters due to the detrending of an artificially added deterministic component and
the last section is dedicated to conclusions.

2. GARCH(1,1) MODEL

The GARCH(1,1) process is a real-valued discrete time stochastic process {xt}
xt| {xt−1, σt−1} ∼ N

(
0, σ2

t

)
,

σ2
t = K + αx2

t−1 + βσ2
t−1,

where K>0, α≥0, β≥0 [1]. If α+ β <1, then GARCH(1,1) process is wide sense
stationary with E (xt)= 0, var(xt) = K/ (1− α− β) and cov(xt, xs) =var(xt) δts.

We analyze the daily Dow Jones Composite (DJC) series containing N = 5089
values between 01 February 1980 and 31 December 1999 when a deterministic
trend is likely to exist. The parameters of the GARCH(1,1) model obtained using
the maximum likelihood method for the log returns of this series are: αDJ =
0.0837, βDJ = 0.8898, KDJ = 2.5 · 10−6. With these values we have generated
three index series with the same initial value on the same time interval. In Fig. 1
one observes large differences between the generated series and the initial one,
especially for large t. This behavior is in accordance with the fact that GARCH
model is suitable only for relatively short periods of time [3]. When the series
length is large, then the GARCH parameters are close to the nonstationarity limit
(α+ β = 1) and the deterministic trend (if it exists) is lost or is strongly distorted
because it is replaced with a stochastic one. In the case of the analyzed DJC index
αDJ + βDJ = 0.9735. Therefore, the variability of the realizations of a GARCH
process with given parameters is very large, especially when the series length is
large.

In order to correctly evaluate the variability of the parameters due to detrend-
ing, it must be compared with the intrinsic variability of the GARCH(1,1) param-
eters for time series without trends. The intrinsic variability is determined using
a Monte Carlo simulation. For a given length N we generate 500 realizations of
a GARCH(1,1) process with the parameters (αDJ , βDJ , KDJ ). For each realiza-
tion the GARCH(1,1) parameters are estimated by applying the maximum like-
lihood method. The relative standard deviation of the GARCH(1,1) parameters
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FIGURE 1. Dow Jones Composite index series over the period 01.02.1980-
31.12.1999 and three index series simulated with GARCH(1,1) model

decreases to an almost stationary value for large values of N (Fig. 2a). Generally,
the mean of the estimated parameters almost coincides with the values used for
generating the series with the exception of β (Fig. 2b). In the following we con-
sider series with length N = 6000 which have a variability near the stationary
value.
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FIGURE 2. The relative standard deviation of the GARCH(1,1) parameters (a)
and the mean of β (b) for statistical ensembles with 500 numerically generated
series with DJ parameters for each length N .

3. AUTOMATICALLY GENERATED TRENDS

In order to be representative, the Monte Carlo statistics must contain a large
number of numerical simulations with variability comparable with those appear-
ing in practical applications. We describe an automatic method for generating
time series containing a deterministic trend which satisfies these conditions. The
generation of a large number of trends with a significant variability using a fixed
functional form requires a large number of parameters. For example, a polyno-
mial trend must have a large enough degree, hence the number of its coefficients
is also large. If we choose the coefficients by means of a random algorithm, then
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the form of the generated trend is difficult to be controlled. Usually the resulting
trend has only a few parts with significant monotonic variation.

We generate a trend {fn}, n = 1, 2, ..., N by joining together s monotonic
semiperiods of sinus with random amplitudes and lengths. In this way we obtain
a large enough variability for the generated trends and we can control the num-
ber and the amplitude of its monotonic parts. We need only three parameters:
the length of the series N (in the following N = 6000), the number of monotonic
parts s (in our tests s = 1, 2, 3, 4) and the minimum number of points in a part
equal with 50. The amplitudes of the sinusoidal parts will be random numbers
with uniform distribution ap ∈ (0, 1). The value of the trend at the point n of the
part p, Np < n � Np+1, is given by the recurrence relation

fn = fNp + (−1)pap

[
1− sin π

2

(
1 + 2

n−Np

Np+1−Np

)]
, (3.3)

where f1 = 0. Some trends with different values for s are represented in Fig. 3.
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FIGURE 3. Artificially generated trends with 2, 3, and 4 monotonic parts

We want to evaluate the error of the estimated GARCH(1,1) parameters due
to the difference between the estimated trend and the real one. The statistical en-
sembles for the Monte Carlo simulations are composed by numerically generated
series composed by a random component and the trend (3.3). First we generate
a GARCH(1,1) time series {xi} with given parameters (α0, β0,K0). Then we cal-
culate the series yn =

∑n
i=1 xi, (corresponding to the logarithm of a price series)

and we add an automatically generated trend, ξn = fn+yn. The relation between
these two components in the resulting series is characterized by the ratio r of the
amplitude of the trend and of the noise

r = max(fn)−min(fn)
max(yn)−min(yn)

.

If we randomly choose the number s of trend parts between two given values
smin = 1 and smax = 4 and the ratio r between rmin = 0.25 and rmax = 4 we
obtain a significant statistics.

From the series {ξn} we extract a polynomial estimated trend {f̃n}, ỹn =

ξn − f̃n, and we calculate the estimated returns x̃n = ỹn+1 − ỹn. Then we evalu-
ate the GARCH(1,1) parameters (α̃, β̃, K̃) using the maximum likelihood method.
When we choose the degree of the polynomial estimated trend we must take into
account that if it is too large, then the estimated trend begins to follow the fluctu-
ations of the noise. From numerical tests it has resulted an optimal degree equal
to 2s+ 3.
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4. GARCH(1,1) PARAMETERS VARIABILITY DUE TO DETRENDING

Figure 4 shows the results obtained by applying the evaluation method of the
variability of GARCH(1,1) parameters described in the previous section for statis-
tical ensembles of 100 time series generated with the DJC parameters for different
values of r and s. From Fig. 4a it results that the averages of the estimated pa-
rameter β̃ are randomly distributed around the initial value βDJ and they are
not influenced by the number of monotonic parts of the trend s or by the ratio r.
The other GARCH(1,1) parameters have a similar behavior so we have not rep-
resented them. Figure 4b confirms this result by means of the relative standard
deviation for s = 4. Hence, the GARCH(1,1) parameters are not influenced by
detrending a nonlinear trend if the noise is generated using (αDJ , βDJ , KDJ ).
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FIGURE 4. The variability of the GARCH(1,1) parameters due to detrending
errors with respect to the ratio r between the trend and the noise amplitude. The
statistical ensembles contain 100 generated GARCH(1,1) series with the DJC pa-
rameters superposed on automatically generated trends. (a) The average value of
the estimated ˜β for different numbers of trend monotonic parts. The continuous
line corresponds to the value βDJ = 0.8898 used to generate the GARCH(1,1)
noise. (b) The relative standard deviation of the GARCH(1,1) parameters for the
generated noise xn (continuous line) and for the estimated noise x̃n (markers)
for s = 4.

In our case the coefficient βDJ = 0.8898 has a much greater value than
αDJ = 0.083. The variability of the GARCH(1,1) parameters at detrending for
greater ratios α0/β0 is presented in Fig. 5. The number of parts of the artificially
generated trend is s = 4 and the ratio between trend and noise is r = 2 and α0 and
β0 are varied such that α0 +β0 remains constant, α0 + β0 = 0.972 and K0 = KDJ .
One observes that for β0 ≥ 0.7 the mean of the estimated values

〈
β̃
〉

almost co-
incides with the initial value β0 and the relative standard deviation is less than
3%. Hence, the behavior observed for DJC index is the same for smaller values of
β0. But the error

〈
β̃
〉
− β0 and the relative standard deviation σ(β̃) significantly

increases when β decreases below 0.6, so in this cases the influence of the errors
of the estimated trend is significant. The other two GARCH(1,1) parameters have
a similar behavior.
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FIGURE 5. The variability of the parameter ˜β due to the detrending error for
statistical ensembles of 100 generated GARCH(1,1) series with the DJ parameters
superposed on automatically generated trends for s = 4, r = 2 and α0 + β0 =
0.972. (a) The dashed line corresponds to the values β0 used to generate the
GARCH(1,1) noise.
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FIGURE 6. The mean and relative standard deviation of the GARCH(1,1) pa-
rameters estimated for x̃n obtained on statistical ensembles of 100 time series for
each r and s. The continuous line in (a) represents α0, in (c) β0, in (b) represents
σ(α) and in (d) σ(β).

Hence the influence of detrending on the variability of GARCH(1,1) parame-
ters is due especially to the coefficient β that generalizes the ARCH model. Fig-
ure 6 contains the results of a detailed analysis for the minimum value β0 = 0.1
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in Fig. 5. The variability of the estimated GARCH(1,1) parameters significantly
increases when the number s of monotonic parts of the trend increases and the
ratio r between the variation amplitude of the trend and the noise is larger.

5. CONCLUSIONS

An important problem in the analysis of financial series is to separate the de-
terministic component and the stochastic one. In this paper we have analyzed the
influence of the nonstationarity due to a deterministic trend on the GARCH(1,1)
model and we have shown that for long periods of tens of years the results ob-
tained with this model are not sensitive to the existence of a nonlinear trend. This
behavior occurs for large values of the GARCH parameter β and α+ β close to 1.
But for small values of β and large values of α such that α + β � 1 the influence
of detrending on the GARCH(1,1) model becomes significant.
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