
CREATIVE MATH. & INF.
17 (2008), No. 3, 532 - 537

Online version at http://creative-mathematics.ubm.ro/

Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

Dependencies in the component selection problem

ANDREEA VESCAN

ABSTRACT. Component Selection is a crucial problem in Component–Based Software Engineer-
ing. We adapt a Greedy approach to construct a component-based system by introducing a new
selection function. The new selection decision takes into account not only the cost of the compo-
nents but also their interplay. The case study shows that considering the dependencies between the
components the cost of the obtained solution may be higher due to the new selection improvement
condition, but no dependencies between the selected components exist.

1. INTRODUCTION

Component–Based Software Engineering (CBSE) is concerned with designing,
selecting and composing components [1]. As the popularity of this approach and
hence number of commercially available software components grows, selecting
a set of components to satisfy a set of requirements while minimizing cost is be-
coming more difficult.

A set of candidate components is considered. The available data about the
components includes cost of acquisition and set of provided functionalities. We
may have information about the dependencies between components.

In this paper, we address the problem of automatic component selection. In
general, there may be different alternative components that can be selected, each
coming at their own cost. We aim at a selection approach that guarantees the
optimality of the generated component system, an approach that takes into con-
sideration also the dependencies between components (view as restrictions on
how the components interact).

We discuss the proposed approach as follows. Related work on the Compo-
nent Selection Problem is discussed in Section 2. Section 3 introduces our ap-
proach for Component Selection Problem: Subsection 3.1 presents a formal state-
ment of the Component Selection Problem, a Greedy approach follows in Sub-
section 3.2 and a new improved selection decision in Subsection 3.4. Using the
example in Subsection 3.5 we discuss the new selection decision. We conclude
our paper and discuss future work in Section 4.

2. RELATED WORK

Component selection methods are traditionally done in an architecture-centric
manner, meaning they aim to answer the question: “Given a description of a

Received: 17.09.2008. In revised form: 27.02.2009. Accepted: 17.05.2009.
2000 Mathematics Subject Classification. 68N19, 68Q01.
Key words and phrases. Component-based systems, component selection, dependencies.

532



Dependencies in the component selection problem 533

component needed in a system, what is the best existing alternative available in
the market?”. Existing methods include OTSO [6] and BAREMO [7].

Another type of component selection approaches is built around the relation-
ship between requirements and components available for use. In [5] the authors
have presented a framework for the construction of optimal component systems
based on term rewriting strategies. Paper [2] proposes a comparison between a
Greedy algorithm and a Genetic Algorithm. The discussed problem considers a
realistic case in which cost of components may be different.

Another type of component selection approaches is built around the relation-
ship between requirements and components available for use PORE [9] and CRE
[8]. The goal here is to recognize the mutual influence between requirements and
components in order to obtain a set of requirements that is consistent with what
the market has to offer.

In relation to existing component selection methods, our approach aims to
achieve goals similar to [3], [4], except we are also interested in the relationship
between components, their dependencies. The [3] approach considers selecting
the component with the maximal number of provided operations. The algorithm
in [4] consider all the components previously sorted according to their weight
value. Then all components with the highest weight are included in the solution
until the budget bound has been reached. For the case where the inclusion of the
next highest scoring feature exceeds the budget, the approach checks whether
one of the following components can still be fit into the budget. A similar ap-
proach was proposed in [10]. The authors present a method for simultaneously
defining software architecture and selecting off-the-shelf components. They have
identified three architectural decisions: object abstraction, object communication
and presentation format. Three type of matrix are used when computing feasible
implementation approaches.

3. APPROACH PROPOSAL

In CBSE the construction of cost-optimal component systems is a nontrivial
task. It requires not only to optimally select components but also to take their
interplay into account.

We assume the following situation: Given a repository of components and
a specification of the component system that we want to construct (set of final
requirements), we need to choose components and to connect them such that the
target component system fulfills the specification.

Informally, our problem is to select a set of components from available com-
ponent set which can satisfy a given set of requirements while minimizing sum
of the costs of selected components. The dependencies between the components
must be taken into account. To achieve this goal, we should assign to each com-
ponent a set of requirements it satisfies. Each component is assigned a cost which
is the overall cost of acquisition and adaptation of that component.

3.1. Formal Statement of the Component Selection Problem. A formal defini-
tion of the problem is as follows. Consider SR the set of final system requirements
(target requirements) as SR = {r1, r2, ..., rn}, and SC the set of components
available for selection as SC = {c1, c2, ..., cm}. Each component ci may satisfy a



534 Andreea Vescan

subset of the requirements from SR, SRci = {ri1 , ri2 , ..., rik}. In addition cost(ci)
is the cost of component ci.

The goal is to find a set of components Sol in such a way that every require-
ment rj from the set SR can be assigned a component ci from Sol where rj is in
SRci , while minimizing

∑
ci∈Sol cost(ci).

3.2. Greedy approach. Greedy techniques are used to find optimum compo-
nents, either minimums or maximums in some sense. Greedy techniques typ-
ically use some heuristic or common sense knowledge to generate a sequence
of sub–optimums that hopefully converge to an optimum value. Once a sub-
optimum is picked, it is never changed nor is it re-examined.

A Greedy algorithm proceeds as follows: initially the set of chosen objects is
empty; the selection function removes an object from the set of available objects;
the new enlarged set is checked to see if the enlarged set is a solution; if the
enlarged set is no longer feasible, the object is discarded and never considered
again. The discarded object is not put back into the set of available objects. If
the enlarged set is feasible it is permanently added to the chosen set. The process
repeats itself picking a sequence of sub-optimums until either a solution is found
or it is shown that no solution is feasible.

3.3. Maximal Greedy decision selection. The selection function is usually based
on the objective function. We consider the ratio of number of requirements sat-
isfied to the cost of the component as a measure to maximize for our heuristic
decision: |SRci

⋂
RSR|/cost(ci) is maximal.

3.4. Improved Greedy decision selection. The interdependencies are an impor-
tant factor when considering selection of a component from a set of available
components. This first selection function does not consider the relations between
requirements of the selected components.

The selection function is augmented by using the dependencies between the
selected components. To specify the component dependencies we introduce a
dependency matrix. The dependencies between the requirements from SR are
stated. We are only interested in the provided functionalities of the components
that are in the set of requirements SR for the final system. We take into account
only the dependencies between these requirements.

3.4.1. Specification of the Component Requirements Dependencies. The new selection
function takes into account the dependencies and selects the components such
that |SRci

⋂
RSR|/cost(ci) is maximal and the number of dependencies of the

component ci considered is minimal.

3.4.2. Extra conditions. All the dependencies of the selected ci component must
be satisfied, i.e. the requirements that the ci component provides must have all
the dependencies already satisfied.

Another condition is verified at each step when selecting a component: the re-
quirements provided by the selected component and the requirements remained
to be satisfied.



Dependencies in the component selection problem 535

3.5. Example. A short and representative example is presented in this section.
Starting for a set of six requirements and having a set of ten available components,
the dependencies between the requirements of the components, the goal is to find
a subset of the given components such that all the requirements are satisfied.

The set of requirements SR = {r0, r1, r2, r3, r4, r5} and the set of components
SC = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9} are given. Table 1 contains for each compo-
nent the provided services (in term of requirements for the final system) and the
cost. The requirements dependencies are given in Table 2. We apply the Greedy
algorithm and try to find an optimal solution.

Comp. Comp. Req. Cost
c0 {r0, r3} 8
c1 {r2, r5} 7
c2 {r0} 6
c3 {r0} 9
c4 {r1} 6
c5 {r2, r4} 14
c6 {r3, r4, r5} 15
c7 {r4, r5} 14
c8 {r1, r2} 7
c9 {r0, r4, r5} 14

TABLE 1. Requirements

Dep. r0 r1 r2 r3 r4 r5

r0
√

r1

r2
√ √

r3
√

r4
√

r5
√

TABLE 2. Dependencies

In the following we will discuss the improved selection function for the above
example, first case for the first Greedy approach from Section 3.3 and then for the
new selection function from Section 3.4.

3.5.1. Maximal proportion selection decision function. In the current section we dis-
cuss the application of the Greedy algorithm presented in Subsection 3.2 without
taking into account the dependencies between the requirements of the compo-
nents. The criteria for selecting the next component to be included into the solu-
tion considers only the proportion |SRci

⋂
RSR|/cost(ci) to be maximal.

The first selected component is c8 with it’s requirements provided to the final
system r1 and r2. The next selected component is c0.

The remained set of requirements to be satisfied is {r4, r5}. From the set of
components only five may provide the {r4, r5} requirements and from those only
three of them have the maximum ratio value, i.e. 0.142, components c1, c7 and c9.
The first component is randomly selected. Four components may provide the last
requirement r4: {c5, c6, c7, c9}. Three components have the same ratio and one is
randomly selected, i.e. c5.

The final solution contains the components c8, c0, c1 and c5, components that
satisfied all the requirements from the set of requirements SR. The cost of the
final solution is 36, i.e. the sum of the cost of the selected components.



536 Andreea Vescan

3.5.2. Improved selection decision function. The first step of the selection function is
the computation of the proportion of number of requirements satisfied to the cost
of the component. The component with the maximum proportion is chosen to be
a part of the solution but only if it has no dependencies.

In the first iteration of the algorithm, the c4 is the only component with no
dependencies. Only one requirement is satisfied, i.e. {r1}. Next step, only four
components have the dependencies satisfied ({c0, c2, c3, c6}) and c0 is selected
because it has the maximum ratio value, i.e. 0.250.

The set of already satisfied requirements is: {r0, r1, r3}. Two components (out
of three with no dependencies) have the same maximum ratio value, i.e. 0.142.,
components c7 and c9. Component c7 is randomly chosen.

In the set of remained set of requirements that must be fulfilled there is only
one element, {r2}. Three components have all the dependencies satisfied and
may provide the r2 requirement, but only two of them have the same maximal
ratio value, i. e. 0.142, components c1 and c8. Randomly, c8 is chosen.

The set of the remained requirements RSR is now empty and we have reached
a solution with all the requirements satisfied by the selected components: c4, c0,
c7 and c8. The cost of the final solution is 35, i.e. the sum of the cost of the selected
components.

3.5.3. Discussion. The two approaches find different solutions with different fi-
nal cost. Although the same solution could be found (for a proper instance of the
given set of requirements, components and component costs and dependencies)
the first approach may not be the right solution do to the fact that the dependen-
cies are not considered.

Greedy Ratio Greedy Ratio and Dependencies
C1 + C0 + C4 + C5 (cost 35) C4 + C0 + C7 + C1 (cost 35)
C1 + C0 + C4 + C7 (cost 35) C4 + C0 + C7 + C8 (cost 35)
C1 + C0 + C4 + C9 (cost 35) C4 + C0 + C9 + C1 (cost 35)
C8 + C0 + C1 + C5 (cost 36) C4 + C0 + C9 + C8 (cost 35)
C8 + C0 + C1 + C7 (cost 36)
C8 + C0 + C1 + C9 (cost 36)
C8 + C0 + C7 (cost 29)
C8 + C0 + C9 (cost 29)

TABLE 3. GreedyRatio and GreedyRatioAndDependencies solutions

The improvement of the selection function by using also the dependencies be-
tween the considered components helps us to compute the correct and accurate
solution.

Only two of the found solutions using GreedyRatio are respecting the require-
ments dependencies. A solution with a minimum cost is obtained (cost 29) but is
not a correct or valid solution since does not conform to the dependencies.



Dependencies in the component selection problem 537

4. CONCLUSION AND FUTURE WORK

CBSE is the emerging discipline of the development of software components
and the development of systems incorporating such components. A challenge in
component-based software development is how to assemble components effec-
tively and efficiently.

Component Selection Problem has been investigated in this paper. Two differ-
ent selection functions has been considered for the Greedy algorithm: the propor-
tion of the number of requirements satisfied to the cost of the component, and for
the second selection function we have considered also the dependencies between
the components.

We intend to extend our approach by specifying and proving the compatibility
between two connected components. The protocol for each provided operations
of a component have to be specified and included into the composition process.

Another future extension is to use and define metrics for the computation of
the cost of a component, taking into consideration not only acquisition cost but
also quality attributes (for non-functional requirements).

REFERENCES

[1] Crnkovic, I. and Larsson, M., Building Reliable Component-Based Software Systems, Artech House
publisher, 2002

[2] Haghpanah, N., Moaven, S., Habibi, J., Kargar, M. and Yeganeh, S.H., Approximation Algorithms
for Software Component Selection Problem, in The 14th Asia-Pacific Software Engineering Confer-
ence, pp. 159-166, IEEE Press, ORASUL, 2007

[3] Fox, M.R., Brogan, D.C.G. and Reynolds, P.F., Approximating component selection, in Proc. 36th
conference on Winter simulation, pp. 429-434, Washington, 2004

[4] Baker, P., Harman, M., Steinhofel, K. and Skaliotis, A., Search Based Approaches to Component Se-
lection and Prioritization for the Next Release Problem, in The 22nd IEEE International Conference
on Software Maintenance, pp. 176-185, IEEE Press, Washington, 2006

[5] Gesellensetter, L. and Glesner, S., Only the Best Can Make It: Optimal Component Selection, Electron.
Notes Theor. Comput. Sci, 176, 105-124 (2007)

[6] Kontio, J., OTSO: A Systematic Process for Reusable Software Component Selection, Technical report,
University of Maryland, 1995

[7] Lozano-Tello, A. and Gómez-Pérez, A., BAREMO: how to choose the appropriate software component
using the analytic hierarchy process, in The 14th international conference on Software engineering
and knowledge engineering, pp. 781-788, ACM, New York, 2002

[8] Alves, C. and Castro, J., Cre: A systematic method for cots component selection, in Brazilian Sympo-
sium on Software Engineering, IEEE Press, Rio De Janeiro, 2001

[9] Alves, C. and Castro, J., Pore: Procurement-oriented requirements engineering method for the compo-
nent based systems engineering development paradigm, in Int. Conf. Software Eng. CBSE Workshop,
IEEE Press, ORASUL, 1999

[10] Mancebo, E. and A. Andrews, A., A strategy for selecting multiple components, in 2005 ACM sym-
posium on Applied computing, pp. 1505-1510, ACM, New York, 2005

BABEŞ-BOLYAI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

KOGALNICEANU 1
400084, CLUJ–NAPOCA, ROMANIA

E-mail address: avescan@cs.ubbcluj.ro


