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ABSTRACT. In this paper we extend the decidability result concerning the finiteness of the reach-
ability set of a net from classical Petri nets to jumping Petri nets.

1. INTRODUCTION

A Petri net ([5, 1]) is a mathematical model used for the specification and the
analysis of parallel and distributed systems.

Petri nets proved to be a powerful language for system modelling and valida-
tion and they are now in widespread use for many different practical and theo-
retical purposes in various fields of software and hardware development.

One type of problems related to Petri nets is that of finding algorithms which
take a Petri net Σ and a property π as input and answer, after a finite number of
steps, whether or not Σ satisfies π. For instance, the Karp-Miller graph for Petri
nets allows us to decide the boundedness problem (BP), the finiteness reacha-
bility set/tree problem (FRSP/FRTP), the quasi-liveness problem (QLP), and the
coverability problem (CP) (see [4, 6, 1] for more details).

It is well-known that the behaviour of some distributed systems cannot be
adequately modelled by classical Petri nets. Many extensions which increase the
computational and expressive power of Petri nets have been thus introduced.
One direction has led to various modifications of the firing rule of nets. One of
these extension is that of jumping Petri net, introduced in [7]. A jumping Petri net
is a classical net Σ equipped with a (recursive) binary relation R on the markings
of Σ. The meaning of a pair (m,m′) ∈ R is that the net Σ may “spontaneously
jump” from m to m′ (this is similar to λ-moves in automata theory).

Previous results (see [7]) showed that the decision problems related to reach-
ability, coverability and quasi-liveness are undecidable for general jumping nets
and are decidable only for finite jumping nets, by using the techniques of Karp-
Miller coverability graphs in a similar manner as for classical P/T nets ([4]).

In [9] we introduced a larger class of jumping nets than the finite jumping
nets, called reduced-computable jumping nets, for which we could define finite
Karp-Miller coverability graphs. Based on them, in this paper we will extend a
decidability result concerning the finiteness of the reachability set of a net from
classical Petri nets to jumping Petri nets.
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The paper is organized as follows. Section 2 presents the basic terminology and
notation, and also previous results concerning Petri nets and jumping Petri nets.
In Section 3, we use the Karp-Miller coverability structures to establish the decid-
ability of the finiteness of the reachability set problem for reduced-computable
jumping Petri nets. Finally, in Section 4 we conclude this paper and formulate
some open problems.

2. PRELIMINARIES

In this section we will establish the basic terminology, notation, and results
concerning Petri nets in order to give the reader the necessary prerequisites for
the understanding of this paper (for details the reader is referred to ([5, 3, 1]).
Mainly, we will follow [3, 7].

2.1. Petri nets. A Place/Transition net, shortly P/T-net or net, (finite, with infinite
capacities), abbreviated PTN, is a 4-tuple Σ = (S, T ;F,W ), where S and T are
two finite non-empty sets (of places and transitions, resp.), S ∩ T = ∅, F ⊆ (S ×
T )∪(T ×S) is the flow relation and W : (S×T )∪(T×S) → N is the weight function
of Σ satisfying W (x, y) = 0 iff (x, y) /∈ F .

A marking of a PTN Σ is a function m : S → N; it will be sometimes identi-
fied with a |S|-dimensional vector. The operations and relations on vectors are
defined component-wise. NS denotes the set of all markings of Σ. A marked PTN,
abbreviated mPTN, is a pair γ = (Σ,m0), where Σ is a PTN and m0, called the
initial marking of γ, is a marking of Σ.

In the sequel we often use the term “Petri net”(PN) or “net” whenever we refer
to a PTN (mPTN) and it is not necessary to specify its type.

Let Σ be a net, t ∈ T and w ∈ T ∗. The functions t−, t+ : S → N and Δt,Δw :
S → Z are defined by t−(s) = W (s, t) , t+(s) = W (t, s), Δt(s) = t+(s)− t−(s) and

Δw(s) =

{
0, if w = λ,∑n

i=1 Δti(s), if w = t1t2 . . . tn (n ≥ 1),
for all s ∈ S.

The sequential behaviour of a net Σ is given by the so-called firing rule:

(ER) the enabling rule: a transition t is enabled at a marking m in Σ (or t is fireable
from m), abbreviated m[t〉Σ , iff t− ≤ m ;

(CR) the computing rule: if m[t〉Σ, then t may occur yielding a new marking m′,
abbreviated m[t〉Σm′, defined by m′ = m+Δt.

In fact, for any transition t of Σ we have a binary relation on N
S , denoted by

[t〉Σ and given by: m[t〉Σm′ iff t− ≤ m and m′ = m + Δt. If t1, t2, . . . , tn, n ≥ 1,
are transitions of Σ, the classical product of the relations [t1〉Σ, . . . , [tn〉Σ will be
denoted by [t1t2 . . . tn〉Σ; i.e. [t1t2 . . . tn〉Σ = [t1〉Σ ◦ . . . ◦ [tn〉Σ. Moreover, we also
consider the relation [λ〉Σ given by [λ〉Σ = {(m,m)|m ∈ N

S}.
Let γ = (Σ,m0) be a marked Petri net, and m ∈ N

S . The word w ∈ T ∗ is
called a transition sequence from m in Σ if there exists a marking m′ such that
m[w〉Σm′. Moreover, the marking m′ is called reachable from m in Σ. We denote
by RS(Σ,m) = [m〉Σ = {m′ ∈ N

S |∃w ∈ T ∗ : m[w〉Σm′} the set of all reachable
markings from m in Σ. In the case m = m0, the set RS(Σ,m0) is abbreviated by
RS(γ) (or [m0〉γ) and it is called the set of all reachable markings of γ.
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We will assume to be known other notions from P/T-nets, like coverable mark-
ing, bounded place, (quasi-) live transition, pseudo-markings, etc. For more de-
tails about these notions, and about the basic decision problems for P/T-nets, the
reachability structures and the Karp-Miller coverability structures for them, and
also about the case of P/T-nets with infinite initial markings, the reader is referred
to ([10, 3, 1]).

2.2. Jumping Petri nets. Jumping Petri nets ([7, 8]) are an extension of classical
P/T-nets, which allows them to perform “spontaneous jumps” from one marking
to another (this is similar to λ-moves in automata theory).

A jumping P/T-net, abbreviated JPTN, is a pair γ = (Σ, R), where Σ is a PTN
and R, called the set of (spontaneous) jumps of γ, is a binary relation on the set of
markings of Σ (i.e. R ⊆ N

S ×N
S). In what follows the set R of jumps of any JPTN

will be assumed to be recursive. A marked jumping P/T-net, abbreviated mJPTN, is
defined similarly as a mPTN, by changing “Σ” into “Σ, R”.

Let γ = (Σ, R) be a JPTN. The pairs (m,m′) ∈ R are referred to as jumps of γ.
If γ has finitely many jumps (i.e. R is finite) then we say that γ is a finite jumping
net, abbreviated FJPTN.

We shall use the term “jumping net” (JN) (“finite jumping net” (FJN), resp.) to
denote a JPTN or a mJPTN (a FJPTN or a mFJPTN, resp.) whenever it is not nec-
essary to specify its type. Pictorially, a jumping Petri net will be represented as a
classical net and, moreover, the relation R will be separately listed.

The behaviour of a jumping net γ is given by the j-firing rule, which consists of

(jER) the j-enabling rule: a transition t is j-enabled at a marking m (in γ), abbrevi-
ated m[t〉γ,j , iff there exists a marking m1 such that mR∗m1[t〉Σ (Σ being
the underlying net of γ and R∗ the reflexive and transitive closure of R);

(jCR) the j-computing rule: if m[t〉γ,j , then the marking m′ is j-produced by occur-
ring t at the marking m, abbreviated m[t〉γ,jm′, iff there exists markings
m1,m2 such that mR∗m1[t〉Σm2R

∗m′.

The notions of transition j-sequence and j-reachable marking are defined simi-
larly as for Petri nets (the relation [λ〉γ,j is defined by [λ〉γ,j = {(m,m′)|m,m′ ∈
N

S ,mR∗m′} ). The set of all j-reachable markings of a marked jumping net γ is
denoted by RS(γ) (or by [m0〉γ,j ).

All other notions from P/T-nets (i.e. coverable marking, bounded place,
pseudo-markings, etc.) are defined for jumping Petri nets similarly as for Petri
nets, by considering the notion of j-reachability instead of reachability from P/T-
nets. Also, all the decision problems from P/T-nets, like (RP), (CP), (BP) and
(FRSP), are defined for jumping Petri nets similarly as for P/T-nets.

Some jumps of a marked jumping net may be never used. Thus we say that a
marked jumping net γ = (Σ, R,m0) is R-reduced ([7]) if for any jump (m,m′) ∈ R
of γ we have m 
= m′ and m ∈ [m0〉γ,j . The reduction problem (RedP) is: Given γ a
JPTN, is γ R-reduced?

Remark 2.1. The following decidability results were proved in [7, 3]: i) the prob-
lems (RP), (CP), (BP) are undecidable for mJPTN ; ii) the problems (RP), (RedP),
(CP), (BP) are decidable for mFJPTN.
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Coverability structures for jumping Petri nets. The previous positive decidability re-
sults from [7] were based on defining Karp-Miller coverability trees only for the
subclass of finite jumping Petri nets. Therefore, we were interested in extending
the class of jumping Petri nets for which we can define finite Karp-Miller cover-
ability structures. Having such a larger class of nets, afterwards we can solve the
above decidability problems for it based on these finite coverability structures.

In [9] we succeeded to introduce a larger class of jumping nets than the finite
jumping nets, called reduced-computable jumping nets, for which we could define
finite Karp-Miller coverability structures (trees and graphs), and also minimal
coverability structures; moreover, we extended the results about the minimal cov-
erability structures for P/T-nets from [2] to this class of jumping nets.

Let us recall from [9] the definition of reduced-computable jumping nets.
Let γ = (Σ, R) be an arbitrary jumping net. We associated to γ a finite subset

of jumps Rω−max (which is maximal in a sense specified below, and which can be
used instead of the whole set of jumps R to construct the coverability graphs) as
follows. We denoted by “ω-jumps” the set

Rω =
{
r ∈ Nω

2|S|−N
2|S| ; ∃{rn}n≥0 ⊆ R strictly increasing with limn→∞ rn = r

}
.

Let R = R ∪Rω. We defined the set of ω-maximal jumps of γ as
Rω−max = maximal(R) = {r′ ∈ R | ∀r ∈ R − {r′} : r′ 
≤ r}.

The following are obvious properties of the set of ω-maximal jumps of a jump-
ing net (the proofs are easy and can be found in [9]):

Proposition 2.1. (1) Rω−max is finite ; (2) ∀ r ∈ R , ∃ r′ ∈ Rω−max such that r ≤ r′;
(3) ∀ r ∈ Rω−max, ∃ {rn}n≥0 ⊆ R such that limn→∞ rn = r.

A marked jumping net is called reduced-computable jumping net ([9]), abbrevi-
ated mRCJPTN, if it is R-reduced and the set Rω−max is computable.

In [9] we also introduced reachability trees and graphs for jumping nets, by
a straightforward extension of these structures from classical P/T-nets (i.e. by
adding arcs, labelled by “j”, for all the jumps of the net).

Now let us recall from [9] the definition of coverability trees and graphs gen-
eralized for reduced-computable jumping Petri nets.

Let γ = (Σ, R,m0) be a mRCJPTN with R 
= ∅. Then the set of ω-maximal
jumps is non-empty and finite, i.e.

Rω−max = { (m′
i,m

′′
i ) |1≤ i≤n}, with n ≥ 1.

Following the same line as in [7], we associated to γ the following P/T-nets:
γ0 = (Σ,m0) and γi = (Σ,m′′

i ) , for each 1 ≤ i ≤ n, and we defined the notions
of Karp-Miller coverability trees / graphs of the jumping net γ as being the tuples of
the coverability trees / graphs of the P/T-nets γ0,γ1,. . . , γn:

KMT (γ) = < KMT (γ0),KMT (γ1), . . . ,KMT (γn) > ,
and respectively

KMG(γ) = < KMG(γ0), KMG(γ1), . . . , KMG(γn) > .
Notice that it is possible that some of the P/T-nets γ0,γ1, . . . ,γn to have initial

markings with ω-components.
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3. THE FINITENESS OF THE REACHABILITY SET

In this section we will show how we can use the Karp-Miller coverability
graph KMG(γ) to solve the finiteness of the reachability set problem for reduced-
computable jumping Petri nets.

We have the following result:

Proposition 3.2. Let γ be a mRCJPTN. Then RS(γ) is infinite iff ∃ 0≤ i≤n such that
RS(γi) is infinite or Ω(m′′

i ) 
= ∅ (i.e. the initial marking of γi has ω-components), where
γ0, γ1, . . . , γn are the P/T-nets associated to the net γ.

Proof. The proof follows easily proceeding from the two following remarks:

(*) RS(γ′) is infinite iff γ′ is unbounded, which holds for P/T-nets (only P/T-
nets with finite initial markings) as well as for jumping Petri nets;

(**) If γ′ = (Σ′,m′
0) is a P/T-net with an infinite initial marking, (i.e. Ω(m′

0) 
=
∅), then all places from the set Ω(m′

0) are unbounded, so the net γ′ is
unbounded. Still, the set RS(γ′) can be finite.

Indeed, by using (*), we have that:
RS(γ) is infinite ⇔ γ is unbounded ⇔ ∃s ∈ S such that s is unbounded in γ.

And by using (*) and (**), we have that:
∃0 ≤ i ≤ n such that RS(γi) is infinite or Ω(m′′

i ) 
= ∅ ⇔ ∃0 ≤ i ≤ n such that
γi is unbounded ⇔ ∃0 ≤ i ≤ n, ∃s ∈ S such that s is unbounded in γi ⇔
∃s ∈ S, ∃0≤ i≤n such that s is unbounded in γi.

Thus, to finish the proof, it is sufficient to show that s is unbounded in γ ⇔
∃0≤ i≤n such that s is unbounded in γi. But this statement is true (we proved it
in [11]). �

Theorem 3.1. Let γ be a mRCJPTN. The reachability set of γ, RS(γ), is infinite iff there
is at least one infinite node (i.e. a pseudo-marking which contains at least one symbol ω)
in at least one graph from the Karp-Miller coverability graph KMG(γ).

Proof. This statement follows easily from the definition of the Karp-Miller cov-
erability graph KMG(γ), from the previous proposition, and from the similar
results for P/T-nets (with finite or infinite initial markings). �

Theorem 3.1 holds for every finite coverability graph of γ, not only for the
Karp-Miller graph, and so to decide the properties listed in the theorem it is suf-
ficient to compute any finite coverability graph, particularly the minimal one.

From Theorem 3.1 and the similar one from P/T-nets ([4]) we conclude that
the following decision problem is solvable by using the Karp-Miller coverability
graph for marked reduced-computable jumping Petri nets (or any other finite
coverability graph):

Corollary 3.1. The finiteness of the reachability set problem is decidable for mRCJPTN.

The use of the minimal coverability graph for solving these decision problems
is important from the computational point of view because it is, generally speak-
ing, smaller than the Karp-Miller graph.
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4. CONCLUSIONS AND FUTURE WORK

In this paper we have extended the decidability result concerning the finiteness
of the reachability set of a net from classical Petri nets to jumping Petri nets.

An open problem which remains, is to study if there are more efficient algo-
rithms for this decision problem.
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[10] Vidraşcu, C., Structural properties of Petri nets. PhD thesis (in romanian), Technical report of the
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