CREATIVE MATH. & INF. Online version 17 (2008), No. 3, 544 - 547 Print Edition:

Online version at http://creative-mathematics.ubm.ro/ Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Dedicated to Professor Iulian Coroian on the occasion of his 70th anniversary

Behavior of symmetric reaction-diffusion problems near their critical values

PANAYIOTIS M. VLAMOS

ABSTRACT. We study the behavior of the Gelfand problem in its symmetric form and in the case where the critical value of the positive parameter δ does not belong in the spectrum of solutions of the corresponding steady-state problem. Using comparison techniques we obtain suitable upper and lower time-dependent solutions, which lead us to estimations of the time-dependent solution and of the blow-up time.

1. INTRODUCTION

We shall consider the symmetric case of the classical reaction-diffusion problem (Gelfand, 1963), where the critical value δ^* of the parameter does not belong in the spectrum of solutions of the problem.

We define u^* to be the solution of the problem :

$$\frac{\partial u^*}{\partial t} = \frac{\partial^2 u^*}{\partial r^2} + \frac{(N-1)}{r} \frac{\partial u^*}{\partial r} + 2(N-2) \exp u^*, \ 0 < r < 1, \ t > 0$$

$$\frac{\partial u^*}{\partial r}(0,t) = u^*(1,t) = 0, t > 0$$

$$u^*(r,0) = u_0(r), 0 < r < 1$$
(1.1)

In the case of $N \ge 10$ the critical value $\delta^* = 2(N-2)$ does not belong in the spectrum of solutions of the steady-state problem.

It is known that $w^* = -2 \ln r$ is the singular steady-state solution corresponding to $\delta^* = 2(N-2)$ in the symmetric case.

We shall obtain estimations both of the time-dependent solution and the blowup time.

2. UPPER AND LOWER SOLUTIONS

In order to obtain estimations of the time-dependent solution of the problem we are seeking for appropriate upper and lower solutions of the problem.

Theorem 2.1. There exists an upper solution of the problem (1.1), under well-defined restrictions.

Received: 12.09.2008. In revised form: 13.03.2009. Accepted: 22.05.2009.

²⁰⁰⁰ Mathematics Subject Classification. 35K57, 35K20.

Key words and phrases. Reaction-diffusion, upper and lower solution, stationary solution, blow-up time, spectrum.

545

Proof. Defining $U = -ln(c + r^2)$, for $0 \le r \le r_2$ and for some c > 0 we have: $\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial r^2} - \frac{(N-1)}{r} \frac{\partial U}{\partial r} - 2(N-2)expU = \frac{4c}{(c+r^2)^2} > 0, \text{ for } t > 0, 0 < r < r_2$ $\begin{array}{l} \frac{\partial U}{\partial r}(0,t) = 0 \ \text{and} \ U(r_2,t) \geq u^*(r_2,t), t > 0 \\ U(r,0) \geq u_0(r), 0 \leq r \leq r_2 \\ \text{So U is an upper solution of the problem for } 0 < r < r_2, t > 0, \text{ on the assumption} \end{array}$

 $|u_0| < K, u_0(r) \le w^*(r)$ in 0 < r < 1, t > 0

with:
$$\frac{\partial u_0}{\partial r} > \frac{\partial w^*}{\partial r}$$
 or $\mathbf{u}_0 < \mathbf{w}^*$ for r=1, t>0.

Then we know (Lacey & Tzanetis, 1986) that:

$$u^* \leq U < w^*$$
 for $0 < t < T_1, 0 \leq r \leq r_2$.

We can find a bound on the rate of approach of u^* by putting $u^* = U - \hat{u}$ as follows:

$$\frac{\partial \hat{u}}{\partial t} \ge \frac{\partial^2 \hat{u}}{\partial r^2} + \frac{(N-1)}{r} \frac{\partial \hat{u}}{\partial r} + 2(N-2)expU[1-exp(-\hat{u})]$$
$$\ge -K_1\hat{u}^2 + 2(N-2)expU\hat{u} + \frac{\partial^2 \hat{u}}{\partial r^2} + \frac{(N-1)}{r} \frac{\partial \hat{u}}{\partial t}$$

where

$$K_1 = \frac{1}{2}2(N-2)sup(expU) \le \frac{N-2}{c}.$$

We define ψ as $\psi = \frac{K_2 r^a}{t + t_0}$, with a > 0 and K_2 , t_0 positive constants to be chosen so that ψ is a lower solution for \hat{u} . Indeed:

$$-K_1\psi^2 + 2(N-2)expU \cdot \psi + \frac{\partial^2\psi}{\partial r} + \frac{(N-1)}{r}\frac{\partial\psi}{\partial r} \ge \frac{\partial\psi}{\partial t} \Leftrightarrow$$
$$\Leftrightarrow r^2[\frac{2(N-2)}{r^2+c} - \frac{K_1K_2r^a - 1}{t+t_0}] \ge -a(a+N-2)$$

By choosing $K_2 = \frac{1}{K_1}$ the above relation holds as:

$$2(N-2)(t+t_0) \ge 0 \ge (r^2+c)(r^a-1).$$

If we choose t_0 such that $\frac{K_2 r^a}{t_0} \leq \hat{u}(x,0) (= U(x) - u_0(x))$, then ψ becomes a lower solution for \hat{u} .

Thus, we obtain the following theorem.

Theorem 2.2. There exists a lower solution of the problem (1,1) of the form $\psi = \frac{K_2 r^a}{t + t_0}$ for specific values of the positive constants a, K_2, t_0 .

Panayiotis M. Vlamos

3. ESTIMATIONS OF BLOW-UP TIME

After considering the rate of approach of the time-dependent solution near the critical value of the parameter, we can now estimate a lower bound of the blowup time of the problem.

Theorem 3.3. The rate of the blow-up time t_b in the symmetric Gelfand problem (1.1) is of the form: $t_{\ell}(\delta - \delta^*)^{-1/2}$, where t_{ℓ} is a positive constant.

Proof. Let $u = u^* + u_1$, with $u \le U$. Then: $\frac{\partial u_1}{\partial t} = \frac{\partial^2 u_1}{\partial r^2} + \frac{(N-1)}{r} \frac{\partial u_1}{\partial r} + (\delta - \delta^*) expu^* + \delta(expu - expu^*)$ $\leq (\delta - \delta^*) expu + \delta^* u_1 expU + \frac{\partial^2 u_1}{\partial r^2} + \frac{(N-1)}{r} \frac{\partial u_1}{\partial u}$ Note that zero is a lower solution for u_1 , i.e. $u_1 \ge 0$.

Let

$$\psi_1 = (\delta - \delta^*) r^{2a+1} (\frac{t}{(1+c)(1+a)} + 1)$$

then:

$$\begin{aligned} \frac{\partial \psi_1}{\partial t} &\leq (\delta - \delta^*) expU + \delta \psi_1 expU + \frac{\partial^2 \psi_1}{\partial r_2} + \frac{(N-1)}{r} \frac{\partial \psi_1}{\partial r} \\ &\Leftrightarrow \frac{r^{2a+1}}{a+1} \leq 1 + r^{2a-1} (\frac{t}{(1+c)(1+a)} + 1) [\delta r^2 + (2a+1)(2a+2ac+N-1)] \\ &\Leftrightarrow r^2 \leq (a+1) (\frac{t}{(1+c)(a+1)} + 1) [(2a+1)(2a+2ac+N-1)] \end{aligned}$$

Thus, we have proved that ψ_1 is an upper solution for u_1 . For $\psi - \psi_1$ no less than zero we have:

$$u \le U - \psi + \psi_1 = U - \frac{K_2 r^a}{t + t_0} + (\delta - \delta^*) r^{2a+1} \left(\frac{t}{(1+c)(1+a)} + 1\right)$$

 $\text{If:} \frac{K_2 r^a}{t+t_0} \geq (\delta-\delta^*)(\frac{t}{(1+c)(1+a)}+1)r^{2a+1} \text{ then u is no greater than } U < w^*.$ This follows if

$$K_2 \ge (\delta - \delta^*)(\frac{t_0}{(1+c)(1+a)} + 1)$$

since:

$$\frac{(\delta - \delta^*)}{(1+c)(1+a)}t^2 + [(\delta - \delta^*)(1 + \frac{t_0}{(1+c)(1+a)})]t + (\delta - \delta^*)t_0 - K_2 \le 0$$

Thus we conclude that

$$0 < t \le (\delta - \delta^*)^{-1/2} \{ \frac{(\delta - \delta^*)[(1 + \frac{t_0}{(1 + c)(1 + a)})^2(\delta - \delta^*) + \frac{4(K_2 - (\delta - \delta^*)t_0)}{(1 + c)(1 + a)}]^{1/2}}{\frac{2(\delta - \delta^*)}{(1 + c)(1 + a)}} - (\delta - \delta^*)^{1/2}[(1 + c)(1 + a) + t_0] \}$$

 $-(\delta - \delta^*)^{1/2}[(1 + c)(1 + a) + t_0]$ For $\delta \to \delta^*$ the above inequality is satisfied if $t \le t_\ell (\delta - \delta^*)^{-1/2}$ with

$$t_{\ell} = \{K_2(1+c)(1+a)\}^{1/2}$$

As

$$u \le U < w^*$$
 at $t = t_{\ell} (\delta - \delta^*)^{-1/2}$

we deduce that:

$$t_b > t_\ell (\delta - \delta^*)^{-1/2}.$$

Hence, we have obtained a lower bound for the blow-up time in the symmetric Gelfand problem.

4. DISCUSSION

The behavior of the Gelfand problem in the case where the critical value of the positive parameter δ does not belong in the spectrum of solutions of the corresponding steady-state problem, still remains open in the general case.

In this paper we have used the advantages of the symmetric problem in order to estimate the time-dependent solution with lower and upper solutions and to obtain a lower bound for the blow-up time.

As an open question still remains to determine an upper bound of the blow-up time.

References

- Amann, H., On the existence of positive solutions of nonlinear elliptic boundary value, Indiana Univ. Math. J. 21, 1971, 125-146
- [2] Bebernes, J. and Eberly, D., Mathematical problems from Combustion Theory, Springer-Verlag, 1989
- [3] Crandall, M. and Rabinowitz, P., Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218
- [4] Gelfand, I., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl., 29, 1963, 295-381
- [5] Keller, H. and Cohen, D., Some positone problems suggested by nonlinear heat generation, Jl Math. Mech. 16, (1967), 1361-1367
- [6] Lacey, A., Mathematical analysis and thermal runaway for spatially inhomogeneous reactions, SIAM Jl. Appl. Maths, 43, 1983, 1350-1366
- [7] Lacey, A. and Tzanetis, D., Global existence and convergence to a singular steady state for a semilinear heat equation, Proc. Roy. Soc. Ed, 105A, (1986), 289-305
- [8] Sattinger, D., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. Jl., 21 (1972), 979-1000

IONIAN UNIVERSITY DEPARTMENT OF INFORMATICS 49100 CORFU, HELLAS E-mail address: vlamos@ionio.gr