Statistical approximation by q-integrated Meyer-König-Zeller-Kantorovich operators

Vijay Gupta and Honey Sharma

Abstract

. In the present paper we introduce a q-analogue of the integrated Meyer-König-Zeller-Kantorovich type operators and investigate their statistical approximation properties.

1. Introduction

In the last decade some new generalizations of well known positive linear operators, based on the q-integers were introduced and studied by several authors. For instance q-Meyer-König and Zeller operators were studied by Trif [11], Doğru and Gupta [6], Dogru et al. [4] and Dogru and Duman [5] etc. In 2008 M. Ali Özarslan and Oktay Duman [2] proposed an approximation theorem by Meyer-König and Zeller type operators. C. Radu [10] in 2008 proposed statistical approximation by some linear operators of discrete type. In what follows we mention some basic definitions and notations used in q-calculus, details can be found in [9] and [7].

For any fixed real number $q>0$, we denote q-integers by $[k], k \in \mathbb{N}$

$$
[k]= \begin{cases}1+q+q^{2}+\ldots+q^{k-1} & \text { if } \quad q \neq 1 \\ k & \text { if } q=1\end{cases}
$$

We set $[0]_{q}=0$. In general, for a real number $k \in \mathbb{R}$, we denote the q-number k by

$$
[k]=\left\{\begin{array}{lll}
\frac{1-q^{k}}{1-q} & \text { if } & q \neq 1 \\
k & \text { if } & q=1
\end{array}\right.
$$

The q-factorial is defined as follows

$$
[k]!= \begin{cases}{[1] \cdot[2] \cdot \ldots \cdot[k]} & \text { if } \quad k=1,2, \ldots \\ 1 & \text { if } \quad k=0\end{cases}
$$

and the q-binomial coefficients are given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}, \quad 0 \leq k \leq n
$$

Also

$$
\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \tag{1.1}\\
k
\end{array}\right] x^{k}=\frac{1}{\prod_{j=0}^{n-1}\left(1-q^{j} x\right)}
$$

and

$$
\begin{equation*}
\frac{[k+1]}{[n+k+1]}-\frac{[k]}{[n+k]}=\frac{q^{k}[n]}{[n+k][n+k+1]} . \tag{1.2}
\end{equation*}
$$

The q-analogue of integration (see [3]) is defined as

$$
\begin{equation*}
\int_{0}^{a} f(t) d_{q} t=(1-q) a \sum_{j=0}^{\infty} f\left(q^{j} a\right) q^{j} \tag{1.3}
\end{equation*}
$$

For $q \in(0,1), x \in[0,1]$ and $n \in \mathbb{N}$, we propose the q-Meyer-König-Zeller-Kantorovich operators as

$$
M_{n, q}(f ; x)=[n+1] \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k+1 \tag{1.4}\\
k
\end{array}\right] x^{k} q^{-k} P_{n-1}(x) \int_{[k] /[n+k]}^{[k+1] /[n+k+1]} f(t) d_{q} t,
$$

where $P_{n-1}(x)=\prod_{j=0}^{n-1}\left(1-q^{j} x\right)$.
Remark 1.1. It can be seen that for $q \rightarrow 1^{-}$the q-Meyer-König-Zeller and Kantorovich operator becomes the operator studied in [1].

[^0]Lemma 2.1. For $r=0,1,2 \ldots$ and $n>r$, we have

$$
P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \tag{2.5}\\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]^{\underline{r}}}=\frac{\prod_{j=1}^{r}\left(1-q^{n-j} x\right)}{[n-1]^{\underline{r}}}
$$

where $[n-1]^{r}=[n-1][n-2] \ldots[n-r]$.
Proof. Clearly for $r=0$, relation holds.
For $r=1$, using identity (1.1), we get

$$
\begin{aligned}
P_{n-1}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]} & =\frac{\left(1-q^{n-1} x\right)}{[n-1]} P_{n-2}(x) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right] x^{k} \\
& =\frac{\left(1-q^{n-1} x\right)}{[n-1]} .
\end{aligned}
$$

By method of induction the above lemma can be proved easily.
Lemma 2.2. The following inequality holds true

$$
\begin{equation*}
\frac{1}{[n+k+r]} \leq \frac{1}{q^{r+1}[n+k-1]}, r \geq 0 \tag{2.6}
\end{equation*}
$$

Proof of lemma is very technical and omitted here.
Lemma 2.3. For all $x \in[0,1], n \in \mathbb{N}$ and $q \in(0,1)$, we have

$$
\begin{align*}
M_{n, q}\left(e_{0} ; x\right) & =1, \tag{2.7}\\
M_{n, q}\left(e_{1} ; x\right) & \leq \frac{1}{([3]-1)}\left(2 x+\frac{\left(1-q^{n-1} x\right)}{q[n-1]}\right), \tag{2.8}\\
M_{n, q}\left(e_{2} ; x\right) & \leq \frac{1}{[3]}\left(\frac{3 x^{2}}{q^{2}}+\frac{3 x}{q^{3}}\left(1+\frac{1}{q}\right) \frac{\left(1-q^{n-1} x\right)}{[n-1] \underline{1}}\right. \tag{2.9}\\
& \left.+\frac{1}{q^{5}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1]^{2}}\right) .
\end{align*}
$$

Proof. In (1.4), by using (1.1), 1.2 and (1.3), we have

$$
\begin{aligned}
M_{n, q}\left(e_{0} ; x\right) & =[n+1] \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k+1 \\
k
\end{array}\right] x^{k} q^{-k} P_{n-1}(x) \int_{[k] /[n+k]}^{[k+1] /[n+k+1]} d_{q} t \\
& =[n+1] \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k+1 \\
k
\end{array}\right] x^{k} q^{-k} P_{n-1}(x)\left(\frac{[k+1]}{[n+k+1]}-\frac{[k]}{[n+k]}\right) \\
& =[n+1] \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k+1 \\
k
\end{array}\right] x^{k} q^{-k} P_{n-1}(x)\left(\frac{q^{k}[n]}{[n+k][n+k+1]}\right) \\
& =\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} P_{n-1}(x) \\
& =1 .
\end{aligned}
$$

Using Lemma 2.1, Lemma 2.2 and the identities (1.1) and (1.2), we obtain the relation (2.8) as follows

$$
\begin{gathered}
\int_{[k] /[n+k]}^{[k+1] /[n+k+1]} t d_{q} t=(1-q)\left(\frac{[k+1]^{2}}{[n+k+1]^{2}} \sum_{k=0}^{\infty} q^{2 j}-\frac{[k]^{2}}{[n+k]^{2}} \sum_{k=0}^{\infty} q^{2 j}\right) \\
=\frac{1}{(1+q)}\left(\frac{[k+1]^{2}}{[n+k+1]^{2}}-\frac{[k]^{2}}{[n+k]^{2}}\right) \\
=\frac{1}{(1+q)} \frac{q^{k}[n]}{[n+k][n+k+1]}\left(\frac{q[k]+1}{[n+k+1]}+\frac{[k]}{[n+k]}\right) \\
=\frac{1}{(1+q)} \frac{q^{k}[n]}{[n+k][n+k+1]}\left([k]\left(\frac{q}{[n+k+1]}+\frac{1}{[n+k]}\right)+\frac{1}{[n+k+1]}\right) \\
\leq \frac{1}{(1+q)} \frac{q^{k}[n]}{[n+k][n+k+1]}\left(\frac{[k]}{q} \frac{2}{[n+k-1]}+\frac{1}{q^{2}[n+k-1]}\right) .
\end{gathered}
$$

$$
\begin{gathered}
M_{n, q}\left(e_{1}, x\right) \leq \frac{[n+1]}{(1+q)} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k+1 \\
k
\end{array}\right] x^{k} q^{-k} \\
\left(\frac{q^{k}[n]}{[n+k][n+k+1]}\left(\frac{[k]}{q} \frac{2}{[n+k-1]}+\frac{1}{q^{2}[n+k-1]}\right)\right)=\frac{1}{([3]-1)} \\
\left(2 \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{[k]}{[n+k-1]} x^{k} P_{n-1}(x)+\frac{1}{q} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]} P_{n-1}(x)\right) \\
=\frac{1}{([3]-1)}\left(2 \sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right] x^{k} P_{n-1}(x)+\frac{1}{q} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]} P_{n-1}(x)\right) \\
=\frac{1}{([3]-1)}\left(2 x \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} P_{n-1}(x)+\frac{1}{q} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] \frac{x^{k}}{[n+k-1]} P_{n-1}(x)\right) \\
=\frac{1}{([3]-1)}\left(2 x+\frac{\left(1-q^{n-1} x\right)}{q[n-1]}\right) .
\end{gathered}
$$

A similar calculation reveals relation $\sqrt{2.9}$ as follows:

$$
\begin{aligned}
\int_{[k] /[n+k]}^{[k+1] /[n+k+1]} t^{2} d_{q} t & =\frac{(1-q)}{\left(1-q^{3}\right)}\left(\frac{[k+1]^{3}}{[n+k+1]^{3}}-\frac{[k]^{3}}{[n+k]^{3}}\right) \\
& =\frac{1}{[3]} \frac{q^{k}[n]}{[n+k][n+k+1]}\left([k]^{2} b_{2}(n, k)+[k] b_{1}(n, k)+b_{0}(n, k)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& b_{2}(n, k)=\frac{q^{2}}{[n+k+1]^{2}}+\frac{1}{[n+k]^{2}}+\frac{q}{[n+k+1][n+k]} \\
& b_{1}(n, k)=\frac{2 q}{[n+k+1]^{2}}+\frac{1}{[n+k+1][n+k]} \\
& b_{0}(n, k)=\frac{1}{[n+k+1]^{2}}, \\
& M_{n, q}\left(e_{2}, x\right)=\frac{1}{[3]} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k}\left([k]^{2} b_{2}(n, k)+[k] b_{1}(n, k)+b_{0}(n, k)\right) .
\end{aligned}
$$

Using Lemma 2.2, we get

$$
\begin{gathered}
b_{2}(n, k) \leq \frac{3}{q^{3}[n+k-1]^{2}} \\
b_{1}(n, k) \leq \frac{3}{q^{4}[n+k-1]^{2}} \\
b_{0}(n, k) \leq \frac{1}{q^{5}[n+k-1]^{2}} \\
\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k}[k]^{2} b_{2}(n, k) P_{n-1}(x) \leq \frac{3}{q^{3}} \sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} \frac{[k]^{2}}{[n+k-1]^{2}} P_{n-1}(x) \\
=\frac{3}{q^{3}} \sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right] x^{k} \frac{[k]}{[n+k-2]} P_{n-1}(x) \\
=\frac{3}{q^{3}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k+1} \frac{[k+1]}{[n+k-1]} P_{n-1}(x) \\
=\frac{3}{q^{3}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k+1} \frac{1}{[n+k-1]} P_{n-1}(x) \\
+\frac{3}{q^{2}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k+2} P_{n-1}(x) \\
=\frac{3 x^{2}}{q^{2}}+\frac{3 x}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]}
\end{gathered}
$$

and

$$
\begin{gathered}
\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k}[k] b_{1}(n, k) P_{n-1}(x) \leq \\
\frac{3}{q^{4}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} \frac{[k]}{[n+k-1][n+k-2]} P_{n-1}(x) \\
\leq \frac{3}{q^{4}} \sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right] x^{k} \frac{1}{[n+k-2]} P_{n-1}(x)=\frac{3 x}{q^{4}} \frac{\left(1-q^{n-1} x\right)}{[n-1]} .
\end{gathered}
$$

Also

$$
\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} b_{0}(n, k) P_{n-1}(x) \leq \frac{1}{q^{5}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1]^{2}}
$$

therefore

$$
\begin{gathered}
M_{n, q}\left(e_{2}, x\right) \leq \\
\frac{1}{[3]}\left(\frac{3 x^{2}}{q^{2}}+\frac{3 x}{q^{3}} \frac{\left(1-q^{n-1} x\right)}{[n-1]}+\frac{3 x}{q^{4}} \frac{\left(1-q^{n-1} x\right)}{[n-1]}+\frac{1}{q^{5}} \frac{\left(1-q^{n-1} x\right)\left(1-q^{n-2} x\right)}{[n-1]^{2}}\right) .
\end{gathered}
$$

3. STATISTICAL APPROXIMATION PROPERTIES

In this section, by using a Bohman-Korovkin type theorem proved in [8], we present the statistical approximation properties of the operator $M_{n, q}$ given by (1.4).

At this moment, we recall the concept of statistical convergence.
A sequence $\left(x_{n}\right)_{n}$ is said to be statistically convergent to a number L, denoted by $s t-\lim _{n} x_{n}=L$ if, for every $\varepsilon>0$,

$$
\begin{equation*}
\delta\left\{n \in \mathbb{N}:\left|x_{n}-L\right| \geq \varepsilon\right\}=0 \tag{3.10}
\end{equation*}
$$

where

$$
\delta(S):=\frac{1}{N} \sum_{k=1}^{N} \chi S(j)
$$

is the natural density of set $S \subseteq \mathbb{N}$ and χS is the characteristic function of S .
Let $C_{B}(D)$ represent the space of all continuous functions on D and bounded on entire real line, where D is any interval on real line. It can be easily shown that $C_{B}(D)$ is a Banach space with supreme norm. Also $M_{n . q}(f, x), n \in \mathbb{N}$ are well defined for any $f \in C_{B}([0,1])$.

Theorem A. [5]. Let $\left(L_{n}\right)_{n}$ be a sequence of positive linear operators from $C_{B}([a, b])$ into $B([a, b])$ and satisfies the condition that

$$
\text { st }-\lim _{n}\left\|L_{n} e_{i}-e_{i}\right\|=0 \text { for all } i=0,1,2 .
$$

Then

$$
s t-\lim _{n}\left\|L_{n} f-f\right\|=0 \text { for all } f \in C_{B}([a, b])
$$

We consider a sequence $\left(q_{n}\right)_{n}, q_{n} \in(0,1)$, such that

$$
\begin{equation*}
s t-\lim _{n} q_{n}=1 \text {. } \tag{3.11}
\end{equation*}
$$

As an application of Theorem A, we have the following result for our operators.
Theorem 3.1. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying (3.11). Then for the operators $M_{n, q} f$ satisfying the condition

$$
s t-\lim _{n}\left\|M_{n, q} e_{i}-e_{i}\right\|=0 \text { for all } i=0,1,2
$$

we have

$$
\text { st }-\lim _{n}\left\|M_{n, q} f-f\right\|=0 \text { for all } f \in C_{B}([a, b]) .
$$

Proof. It is clear that

$$
\begin{equation*}
s t-\lim _{n}\left\|M_{n, q_{n}}\left(e_{0} ; \cdot\right)-e_{0}\right\|=0 . \tag{3.12}
\end{equation*}
$$

Based on Lemma [2.3, we have

$$
\begin{aligned}
\left|M_{n, q_{n}}\left(e_{1} ; \cdot\right)-e_{1}\right| & \leq\left|\left(\frac{2}{[3]_{q_{n}}-1}-1\right) x+\frac{\left(1-q_{n}^{n-1} x\right)}{\left([3]_{q_{n}}-1\right) q_{n}[n-1]_{q_{n}}}\right| \\
& \leq\left|\frac{3-[3]_{q_{n}}}{\left[33{q_{n}}_{n}-1\right.}\right|+\frac{q_{n}^{n-2}}{\left|\left([3]_{q_{n}}-1\right) q_{n}[n-1]_{q_{n}}\right|}+\left\lvert\, \frac{1}{\left([3]_{q_{n}}-1\right)[n-1]_{q_{n}} \mid}\right. \\
& \leq\left|3-[3]_{q_{n}}\right|+\frac{1}{\left|q_{n}[n-1]_{q_{n}}\right|}+\frac{q_{n}^{n-2}}{\left|[n-1]_{q_{n}}\right|} .
\end{aligned}
$$

Since $s t-\lim _{n} q_{n}=1$, we get

$$
\begin{equation*}
s t-\lim _{n} \frac{1}{[n-1]_{q_{n}}}=0 \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { st }-\lim _{n}\left(\left|3-[3]_{q_{n}}\right|\right)=0 . \tag{3.14}
\end{equation*}
$$

Hence, we get

$$
\begin{equation*}
\left\|M_{n, q_{n}}\left(e_{1} ; \cdot\right)-e_{1}\right\|<\epsilon \tag{3.15}
\end{equation*}
$$

Define the following sets

$$
\begin{aligned}
A & :=\left\{n \in \mathbb{N}:\left\|M_{n, q_{n}}\left(e_{1} ; \cdot\right)-e_{1}\right\| \geq \epsilon\right\}, \\
A_{1} & :=\left\{n \in \mathbb{N}:\left(3-[3]_{q_{n}}\right) \geq \epsilon / 3\right\}, \\
A_{2} & :=\left\{n \in \mathbb{N}: \frac{1}{[n-1]]_{q_{n}}} \geq \epsilon / 3\right\} .
\end{aligned}
$$

Thus we obtain $A \subseteq A_{1} \bigcup A_{2}$ i.e. $\delta(A) \leq \delta\left(A_{1}\right)+\delta\left(A_{2}\right)=0$.
Hence

$$
\begin{equation*}
s t-\lim _{n}\left\|M_{n, q_{n}}\left(e_{1} ; \cdot\right)-e_{1}\right\|=0 . \tag{3.16}
\end{equation*}
$$

A similar calculation reveals

$$
\begin{aligned}
& \left|M_{n, q_{n}}\left(e_{2}, \cdot\right)-e_{2}\right| \leq \frac{1}{q^{5}}\left(\frac{\left|3-[3]_{q_{n}}\right|}{[3]_{q_{n}}}+\frac{6}{[n-1]_{q_{n}}}+\frac{q_{n}^{n-1}}{[n-1]_{q_{n}}}+\frac{\left(1-q_{n}^{n-1}\right)^{2}}{[n-2]_{q_{n}}^{2}}\right) \\
& \leq \frac{1}{q^{5}}\left|3-[3]_{q_{n}}\right|+\frac{1}{q^{5}} \frac{6}{[n-1]_{q_{n}}}+\frac{1}{q^{5}} \frac{q_{n}^{n-1}}{[n-1]_{q_{n}}}+\frac{1}{q^{5}} \frac{1}{[n-2]_{q_{n}}^{2}}+\frac{q_{n}^{2 n-7}+2 q_{n}^{n-6}}{[n-2]_{q_{n}}^{2}} .
\end{aligned}
$$

By using (3.13) and (3.14) we obtain $\left\|M_{n, q_{n}}\left(e_{2}, \cdot\right)-e_{2}\right\|<\epsilon$.
Define the following sets

$$
\begin{aligned}
B & =\left\{n \in \mathbb{N}:\left\|M_{n, q_{n}}\left(e_{2} ; \cdot\right)-e_{2}\right\| \geq \epsilon\right\}, \\
B_{1} & :=\left\{n \in \mathbb{N}:\left(3-[3]_{q_{n}}\right) \geq \epsilon / 3\right\}, \\
B_{2} & :=\left\{n \in \mathbb{N}: \frac{1}{[n-1]_{q_{n}}} \geq \epsilon / 36\right\}, \\
B_{3} & :=\left\{n \in \mathbb{N}: \frac{1}{[n-2]]_{q_{n}}} \geq \epsilon / 18\right\} .
\end{aligned}
$$

Thus we obtain $B \subseteq B_{1} \bigcup B_{2} \bigcup B_{3}$ i.e. $\delta(B) \leq \delta\left(B_{1}\right)+\delta\left(B_{2}\right)+\delta\left(B_{3}\right)=0$.
Hence

$$
\begin{equation*}
s t-\lim _{n}\left\|M_{n, q_{n}}\left(e_{2} ; \cdot\right)-e_{2}\right\|=0 . \tag{3.17}
\end{equation*}
$$

Thus by using (3.11), (3.16), 3.17) and Theorem A, result holds. This completes the proof of Theorem 3.1
Corollary 3.1. Let $\left(q_{n}\right)_{n}$ be a sequence satisfying $\lim _{n} q_{n}=1$, then for all $f \in C_{B}([0,1])$ we have

$$
\lim _{n}\left\|M_{n, q}(f ; \cdot)-f\right\|=0 .
$$

Follows by just replacing statistical convergence with uniform convergence.
[1] Abel, U., Gupta, V. and Ivan, M., Rate of convergence of Kantorovitch variant of Meyer-König Zeller operators, Mathematical Inequality and Applications 8 (2005), No. 1, 135-146
[2] Özarslan, M. A. and Duman, O., Approximation theorems by Meyer-König and Zeller type operators, Chaos Solitons and Fractals (in press)
[3] Andrews, G. E., Askey, R. and Roy, R., Special Functions, Cambridge University Press, 1999
[4] Doğru, O., Duman, O. and Orhan, C., Statistical approximation by generalized Meyer-König and Zeller type operators, Studia Sci. Math. Hungar. 40 (2003), No. 3, 359-371
[5] Doğru, O. and Duman, O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen 68 (2006) No. 1-2, 199-214
[6] Doğru, O. and Gupta, V., Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators, Calcolo 43 (2006), No. 1, 51-63
[7] Ernst, T., The history of q-calculus and a new method, U.U.D.M. Report 16, Uppsala, Departament of Mathematics, Uppsala University, 2000
[8] Gadjiev, A. D. and Orhan, C., Some approximation theorems via statistical convergence approximation, Rocky Mountain J. Math. 32 (2002), 129-138
[9] Kac, V. and Cheung, P., Quantum calculus, Universitext, Springer-Verlag, New York, 2002
[10] Radu, C.,Statistical approximation by some linear operators of discrete type, Miskolc Math. Notes 9 (2008), No. 1, 61 -68
[11] Trif, T., Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théor. Approx. 29 (2000), No. 2, 221-229
School of Applied Sciences
Netail Subhas Institute of Technology
Sector 3 Dwarka
110078 NeW DELHI, INDIA
E-mail address: vijaygupta2001@hotmail.com
Rayat and Bahra Institute of Pharmacy
Village Sahauran Kharar Distt.
Mohali Punjab, India
Department of Mathematics
Dr. B.R. Ambedkar National Institute of Technology
Jalandhar Punjab, India
E-mail address: honeycool_83@yahoo.co.in
E-mail address: pro.sharma.h@gmail.com

[^0]: Received: 19.03.2009; In revised form: 27.01.2010; Accepted: 08.02.2010.
 2000 Mathematics Subject Classification. 41A25, 41A35.
 Key words and phrases. q-integers, q-integrated Meyer-König-Zeller-Kantorovich operators, statistical approximation.

