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Statistical approximation by q-integrated Meyer-König-Zeller-Kantorovich
operators

VIJAY GUPTA and HONEY SHARMA

ABSTRACT.
In the present paper we introduce a q-analogue of the integrated Meyer-König-Zeller-Kantorovich type operators and investigate their statistical
approximation properties.

1. INTRODUCTION

In the last decade some new generalizations of well known positive linear operators, based on the q-integers
were introduced and studied by several authors. For instance q-Meyer-König and Zeller operators were studied by
Trif [11], Doğru and Gupta [6], Dogru et al. [4] and Dogru and Duman [5] etc. In 2008 M. Ali Özarslan and Oktay
Duman [2] proposed an approximation theorem by Meyer-König and Zeller type operators. C. Radu [10] in 2008
proposed statistical approximation by some linear operators of discrete type. In what follows we mention some basic
definitions and notations used in q-calculus, details can be found in [9] and [7].

For any fixed real number q > 0, we denote q-integers by [k], k ∈ N

[k] =

{
1 + q + q2 + . . .+ qk−1 if q 6= 1,
k if q = 1.

We set [0]q = 0. In general, for a real number k ∈ R, we denote the q-number k by

[k] =


1− qk

1− q
if q 6= 1,

k if q = 1.

The q-factorial is defined as follows

[k]! =

{
[1] · [2] · . . . · [k] if k = 1, 2, . . .
1 if k = 0,

and the q-binomial coefficients are given by[
n
k

]
=

[n]!

[k]! [n− k]!
, 0 ≤ k ≤ n.

Also
∞∑
k=0

[
n+ k − 1

k

]
xk =

1
n−1∏
j=0

(1− qjx)
(1.1)

and
[k + 1]

[n+ k + 1]
− [k]

[n+ k]
=

qk[n]

[n+ k][n+ k + 1]
. (1.2)

The q-analogue of integration (see [3]) is defined as∫ a

0

f(t)dqt = (1− q)a
∞∑
j=0

f(qja)qj . (1.3)

For q ∈ (0, 1), x ∈ [0, 1] and n ∈ N, we propose the q-Meyer-König-Zeller-Kantorovich operators as

Mn,q(f ;x) = [n+1]

∞∑
k=0

[
n+ k + 1

k

]
xkq−kPn−1(x)

∫ [k+1]/[n+k+1]

[k]/[n+k]

f(t)dqt, (1.4)

where Pn−1(x) =
n−1∏
j=0

(1− qjx).

Remark 1.1. It can be seen that for q → 1− the q-Meyer-König-Zeller and Kantorovich operator becomes the operator
studied in [1].
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2. MOMENTS

Lemma 2.1. For r = 0, 1, 2 . . . and n > r, we have

Pn−1(x)

∞∑
k=0

[
n+ k − 1

k

]
xk

[n+ k − 1]r
=

r∏
j=1

(1− qn−jx)

[n− 1]r
(2.5)

where [n− 1]r = [n− 1][n− 2] . . . [n− r].

Proof. Clearly for r = 0, relation holds.
For r = 1, using identity (1.1), we get

Pn−1(x)

∞∑
k=0

[
n+k−1

k

]
xk

[n+k−1]
=

(1−qn−1x)
[n− 1]

Pn−2(x)

∞∑
k=0

[
n+k−2

k

]
xk

=
(1− qn−1x)

[n− 1]
.

By method of induction the above lemma can be proved easily. �

Lemma 2.2. The following inequality holds true
1

[n+ k + r]
≤ 1

qr+1[n+ k − 1]
, r ≥ 0. (2.6)

Proof of lemma is very technical and omitted here.

Lemma 2.3. For all x ∈ [0, 1], n ∈ N and q ∈ (0, 1), we have

Mn,q (e0;x) = 1, (2.7)

Mn,q (e1;x) ≤
1

([3]− 1)

(
2x+

(1− qn−1x)
q[n− 1]

)
, (2.8)

Mn,q (e2;x) ≤
1

[3]

(
3x2

q2
+

3x

q3

(
1 +

1

q

)
(1− qn−1x)
[n− 1]1

(2.9)

+
1

q5
(1− qn−1x)(1− qn−2x)

[n− 1]2

)
.

Proof. In (1.4), by using (1.1), (1.2) and (1.3), we have

Mn,q(e0;x) = [n+ 1]

∞∑
k=0

[
n+ k + 1

k

]
xkq−kPn−1(x)

∫ [k+1]/[n+k+1]

[k]/[n+k]

dqt

= [n+ 1]

∞∑
k=0

[
n+ k + 1

k

]
xkq−kPn−1(x)

(
[k + 1]

[n+ k + 1]
− [k]

[n+ k]

)

= [n+ 1]

∞∑
k=0

[
n+ k + 1

k

]
xkq−kPn−1(x)

(
qk[n]

[n+ k][n+ k + 1]

)

=

∞∑
k=0

[
n+ k − 1

k

]
xkPn−1(x)

= 1.

Using Lemma 2.1, Lemma 2.2 and the identities (1.1) and (1.2), we obtain the relation (2.8) as follows∫ [k+1]/[n+k+1]

[k]/[n+k]

tdqt = (1− q)

(
[k + 1]2

[n+ k + 1]2

∞∑
k=0

q2j − [k]2

[n+ k]2

∞∑
k=0

q2j

)

=
1

(1 + q)

(
[k + 1]2

[n+ k + 1]2
− [k]2

[n+ k]2

)
=

1

(1 + q)

qk[n]

[n+ k][n+ k + 1]

(
q[k] + 1

[n+ k + 1]
+

[k]

[n+ k]

)
=

1

(1 + q)

qk[n]

[n+ k][n+ k + 1]

(
[k]

(
q

[n+ k + 1]
+

1

[n+ k]

)
+

1

[n+ k + 1]

)
≤ 1

(1 + q)

qk[n]

[n+ k][n+ k + 1]

(
[k]

q

2

[n+ k − 1]
+

1

q2[n+ k − 1]

)
.
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Mn,q(e1, x) ≤
[n+ 1]

(1 + q)

∞∑
k=0

[
n+ k + 1

k

]
xkq−k(

qk[n]

[n+ k][n+ k + 1]

(
[k]

q

2

[n+ k − 1]
+

1

q2[n+ k − 1]

))
=

1

([3]− 1)(
2

∞∑
k=0

[
n+k−1

k

]
[k]

[n+ k − 1]
xkPn−1(x)+

1

q

∞∑
k=0

[
n+k−1

k

]
xk

[n+k−1]
Pn−1(x)

)

=
1

([3]−1)

(
2

∞∑
k=1

[
n+k−2
k − 1

]
xkPn−1(x)+

1

q

∞∑
k=0

[
n+k−1

k

]
xk

[n+k−1]
Pn−1(x)

)

=
1

([3]−1)

(
2x

∞∑
k=0

[
n+k−1

k

]
xkPn−1(x)+

1

q

∞∑
k=0

[
n+k−1

k

]
xk

[n+k−1]
Pn−1(x)

)

=
1

([3]− 1)

(
2x+

(1− qn−1x)
q[n− 1]

)
.

A similar calculation reveals relation (2.9) as follows:∫ [k+1]/[n+k+1]

[k]/[n+k]

t2dqt =
(1− q)
(1− q3)

(
[k + 1]3

[n+ k + 1]3
− [k]3

[n+ k]3

)
=

1

[3]

qk[n]

[n+k][n+k+1]

(
[k]2b2(n, k)+[k]b1(n, k)+b0(n, k)

)

where

b2(n, k) =
q2

[n+ k + 1]2
+

1

[n+ k]2
+

q

[n+ k + 1][n+ k]

b1(n, k) =
2q

[n+ k + 1]2
+

1

[n+ k + 1][n+ k]

b0(n, k) =
1

[n+ k + 1]2
,

Mn,q(e2, x) =
1

[3]

∞∑
k=0

[
n+ k − 1

k

]
xk
(
[k]2b2(n, k) + [k]b1(n, k) + b0(n, k)

)
.

Using Lemma 2.2, we get

b2(n, k) ≤ 3

q3[n+ k − 1]2

b1(n, k) ≤ 3

q4[n+ k − 1]2

b0(n, k) ≤ 1

q5[n+ k − 1]2

∞∑
k=0

[
n+k−1

k

]
xk[k]2b2(n, k)Pn−1(x)≤

3

q3

∞∑
k=1

[
n+k−1

k

]
xk

[k]2

[n+k−1]2
Pn−1(x)

=
3

q3

∞∑
k=1

[
n+ k − 2
k − 1

]
xk

[k]

[n+ k − 2]
Pn−1(x)

=
3

q3

∞∑
k=0

[
n+ k − 1

k

]
xk+1 [k + 1]

[n+ k − 1]
Pn−1(x)

=
3

q3

∞∑
k=0

[
n+ k − 1

k

]
xk+1 1

[n+ k − 1]
Pn−1(x)

+
3

q2

∞∑
k=0

[
n+ k − 1

k

]
xk+2Pn−1(x)

=
3x2

q2
+

3x

q3
(1− qn−1x)

[n− 1]
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and
∞∑
k=0

[
n+ k − 1

k

]
xk[k]b1(n, k)Pn−1(x) ≤

3

q4

∞∑
k=0

[
n+ k − 1

k

]
xk

[k]

[n+ k − 1][n+ k − 2]
Pn−1(x)

≤ 3

q4

∞∑
k=1

[
n+ k − 2
k − 1

]
xk

1

[n+ k − 2]
Pn−1(x) =

3x

q4
(1− qn−1x)

[n− 1]
.

Also
∞∑
k=0

[
n+ k − 1

k

]
xkb0(n, k)Pn−1(x) ≤

1

q5
(1− qn−1x)(1− qn−2x)

[n− 1]2
,

therefore

Mn,q(e2, x) ≤
1

[3]

(
3x2

q2
+

3x

q3
(1− qn−1x)

[n− 1]
+

3x

q4
(1− qn−1x)

[n− 1]
+

1

q5
(1− qn−1x)(1− qn−2x)

[n− 1]2

)
.

�

3. STATISTICAL APPROXIMATION PROPERTIES

In this section, by using a Bohman-Korovkin type theorem proved in [8], we present the statistical approximation
properties of the operator Mn,q given by (1.4).

At this moment, we recall the concept of statistical convergence.
A sequence (xn)n is said to be statistically convergent to a number L, denoted by st− lim

n
xn = L if, for every ε > 0,

δ{n ∈ N : |xn − L| ≥ ε} = 0, (3.10)

where

δ(S) :=
1

N

N∑
k=1

χS(j)

is the natural density of set S ⊆ N and χS is the characteristic function of S.
Let CB(D) represent the space of all continuous functions on D and bounded on entire real line, where D is any

interval on real line. It can be easily shown that CB(D) is a Banach space with supreme norm. Also Mn.q(f, x), n ∈ N
are well defined for any f ∈ CB([0, 1]).

Theorem A. [5]. Let (Ln)n be a sequence of positive linear operators from CB([a, b]) into B([a, b]) and satisfies the condition
that

st− lim
n
‖Lnei − ei‖ = 0 for all i = 0, 1, 2.

Then
st− lim

n
‖Lnf − f‖ = 0 for all f ∈ CB([a, b]).

We consider a sequence (qn)n, qn ∈ (0, 1), such that

st− lim
n
qn = 1. (3.11)

As an application of Theorem A, we have the following result for our operators.

Theorem 3.1. Let (qn)n be a sequence satisfying (3.11). Then for the operators Mn,qf satisfying the condition

st− lim
n
‖Mn,qei − ei‖ = 0 for all i = 0, 1, 2

we have
st− lim

n
‖Mn,qf − f‖ = 0 for all f ∈ CB([a, b]).

Proof. It is clear that
st− lim

n
‖Mn,qn(e0; ·)− e0‖ = 0. (3.12)
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Based on Lemma 2.3, we have

|Mn,qn(e1; ·)− e1| ≤
∣∣∣∣( 2

[3]qn − 1
− 1

)
x+

(1− qn−1n x)

([3]qn − 1)qn[n− 1]qn

∣∣∣∣
≤
∣∣∣∣3−[3]qn[3]qn−1

∣∣∣∣+ 1

|([3]qn−1)qn[n−1]qn |
+ | qn−2n

([3]qn−1)[n−1]qn |

≤ |3− [3]qn |+
1

|qn[n− 1]qn |
+

qn−2n

|[n− 1]qn |
.

Since st− lim
n
qn = 1, we get

st− lim
n

1

[n− 1]qn
= 0 (3.13)

and

st− lim
n
(|3− [3]qn |) = 0. (3.14)

Hence, we get

‖Mn,qn(e1; ·)− e1‖ < ε. (3.15)

Define the following sets

A := {n ∈ N : ‖Mn,qn(e1; ·)− e1‖ ≥ ε},
A1 := {n ∈ N : (3− [3]qn) ≥ ε/3},

A2 := {n ∈ N :
1

[n− 1]qn
≥ ε/3}.

Thus we obtain A ⊆ A1

⋃
A2 i.e. δ(A) ≤ δ(A1) + δ(A2) = 0.

Hence

st− lim
n
‖Mn,qn(e1; ·)− e1‖ = 0. (3.16)

A similar calculation reveals

|Mn,qn(e2, ·)− e2| ≤
1

q5

(
|3−[3]qn |
[3]qn

+
6

[n−1]qn
+

qn−1n

[n−1]qn
+

(1− qn−1n )2

[n−2]2qn

)
≤ 1

q5
|3−[3]qn |+

1

q5
6

[n−1]qn
+

1

q5
qn−1n

[n−1]qn
+

1

q5
1

[n−2]2qn
+
q2n−7n + 2qn−6n

[n−2]2qn
.

By using (3.13) and (3.14) we obtain ‖Mn,qn(e2, ·)− e2‖ < ε.
Define the following sets

B = {n ∈ N : ‖Mn,qn(e2; ·)− e2‖ ≥ ε},
B1 := {n ∈ N : (3− [3]qn) ≥ ε/3},

B2 :=

{
n ∈ N :

1

[n− 1]qn
≥ ε/36

}
,

B3 :=

{
n ∈ N :

1

[n− 2]qn
≥ ε/18

}
.

Thus we obtain B ⊆ B1

⋃
B2

⋃
B3 i.e. δ(B) ≤ δ(B1) + δ(B2) + δ(B3) = 0.

Hence

st− lim
n
‖Mn,qn(e2; ·)− e2‖ = 0. (3.17)

Thus by using (3.11), (3.16), (3.17) and Theorem A, result holds. This completes the proof of Theorem 3.1. �

Corollary 3.1. Let (qn)n be a sequence satisfying lim
n
qn = 1, then for all f ∈ CB([0, 1]) we have

lim
n
‖Mn,q (f ; ·)− f‖ = 0.

Follows by just replacing statistical convergence with uniform convergence.



50 V. Gupta and H. Sharma

REFERENCES

[1] Abel, U., Gupta, V. and Ivan, M., Rate of convergence of Kantorovitch variant of Meyer-König Zeller operators, Mathematical Inequality and
Applications 8 (2005), No. 1, 135-146
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