
CREATIVE MATH. & INF.
19 (2010), No. 1, 65 - 75

Online version available at http://creative-mathematics.ubm.ro/
Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

On g̃-compact spaces and g̃-closed spaces

N. RAJESH

ABSTRACT.
In this paper, we have introduced and studied the concepts of g̃-compact space and g̃-closed space by means of nets and filterbases.

1. INTRODUCTION

Generalized open sets play a very important role in General Topology and they are now the research topics of
many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the various
modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Compactness and properties
closely related to compactness play an important role in the applications of General Topology to Real Analysis and
Functional Analysis. In this paper, we have introduced and studied the concepts of g̃-compact space and g̃-closed
space by means of nets and filterbases.

2. PRELIMINARIES

Throughout this paper, spaces always means topological spaces on which no separation axioms are assumed
unless otherwise mentioned. For a subset A of a space (X, τ), Cl(A) and Int(A) denote the closure of A and the
interior of A in X , respectively. A subset A of X is said to be semiopen [4] if A ⊂ Cl(Int(A)). The complement
semiopen is called semiclosed [2]. The intersection of all semiclosed sets containing A is called the semiclosure [2])
of A and is denoted by sCl(A).

Definition 2.1. A subset A of a space (X, τ) is called:
(i) a ĝ-closed set [7] if Cl(A) ⊆ U whenever A ⊆ U and U is semi-open in (X, τ).

(ii) a ∗g-closed set [8] if Cl(A) ⊆ U whenever A ⊆ U and U is ĝ-open in (X, τ).
(iii) a #g-semiclosed (briefly #gs-closed) set [9] if sCl(A) ⊆ U whenever A ⊆ U and U is ∗g-open in (X, τ).
(iv) g̃-closed set [3] if Cl(A) ⊆ U whenever A ⊆ U and U is #gs-open in (X, τ).

Where ĝ-open (∗g-open, #g-semi-open, g̃-open) are defined as the complement of ĝ-closed (∗g-closed, #g-semi-closed,
g̃-closed).

Definition 2.2. Let (X, τ) be a topological space and E ⊆ X . We define the g̃-closure [6] of E (briefly g̃Cl(E)) to be
the intersection of all g̃-closed sets containing E. In symbols, g̃Cl(E)=

⋂
{A : E ⊂ A and A ∈ G̃C(X, τ)}.

Proposition 2.1. [6] Let (X, τ) be a topological space and E ⊆ X . The following properties are hold:
(i) g̃Cl(E) is the smallest g̃-closed set containing E;

(ii) E is g̃-closed if and only if g̃Cl(E) = E.

Definition 2.3. [6] Let (X, τ) be a topological space and E ⊂ X . We define the g̃-interior of E (briefly g̃ Int(E)) to be
the union of all g̃-open sets contained in E.

Definition 2.4. The g̃-θ-closure [1] of A, denoted by g̃Clθ(A), is defined to be the set of all x ∈ X such that A ∩
g̃Cl(U) 6= ∅ for every g̃-open set U containing x. A subset A is called g̃-θ-closed [1] if and only if A = g̃Clθ(A). The
complement of g̃-θ-closed set is called g̃-θ-open. A subset S of a topological space (X, τ) is said to be g̃-regular [1] if
it is g̃-open and g̃-closed.

The family of all g̃-regular (resp. g̃-open, g̃-closed) sets of (X, τ) is denoted by G̃R(X) (resp. G̃O(X), G̃C(X)). The
family of all g̃-regular (resp. g̃-open, g̃-closed) sets of (X, τ) containing a point x ∈ X is denoted by G̃R(X,x) (resp.
G̃O(X,x), G̃C(X,x)).

3. g̃-COMPACT SPACES

Definition 3.5. Let (X, τ) be a topological space. A class {Gi} of g̃-open subsets of X is said to be g̃-open cover of X
if each point in X belongs to at least one Gi that is

⋃
i

Gi = X .
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Definition 3.6. A subset K of a nonempty set X is said to be g̃-compact relative to (X, τ) if every cover of K by sets
of G̃O(X) has a finite subcover. We say that (X, τ) is g̃-compact if X is g̃-compact.
It is clear that every g̃-compact space is compact. But the converse is not always true as it can be seen from the
following example.

Example 3.1. LetX be the set of real numbers endowed with the cofinite topology. The topological spaceX is clearly
compact. The collection of all g̃-open sets in X is precisely the power set of X . Hence the topological space X is not
g̃-compact.

We will give several characterizations of the g̃-compact spaces. The first characterization makes use of the finite
intersection condition.

Theorem 3.1. The following statements are equivalent for any topological space (X, τ):
(i) X is g̃-compact.

(ii) Given any family F of g̃-open sets, if no finite subfamily of F covers X , then F does not cover X .
(iii) Given any family F of g̃-closed sets, if F satisfies the finite intersection condition, then

⋂
{A : A ∈ F} 6= ∅.

(iv) Given any family F of subsets of X , if F satisfies the finite intersection condition, then
⋂
{g̃Cl(A) : A ∈ F} 6= ∅.

Proof. (i)⇔ (ii) and (ii)⇔ (iii) are obvious. (iii)⇒ (iv): If F ⊂ P (X) satisfies the finite intersection condition, then
∩{g̃Cl(A) : A ∈ F} is a family of g̃-closed sets, which obviously satisfies the finite intersection condition. (iv)⇒ (iii)
Follows from the fact that A = bCl(A) for every g̃-closed set A. �

Definition 3.7. A point x ∈ X is said to be g̃-cluster point of a net {xα}α∈∆ if {xα}α∈∆ is frequently in every g̃-open
set containing x. We denote by g̃-cp{xα}α∈∆ the set of all g̃-cluster points of a net {xα}α∈∆.

Theorem 3.2. The set of all g̃-cluster points of an arbitrary net in X is g̃-closed.

Proof. Let {xα}α∈∆ be a net in X . Set A = g̃ − cp{xα}α∈∆. Let x ∈ X\A. Then there exists a g̃-open set Ux containing
x and αx ∈ ∆ such that Xβ /∈ Ux whenever β ∈ ∆, β ≥ αx. It turns out that Ux ⊂ X\A, hence x ∈ g̃ Int(X\A) =
X\g̃Cl(A). This shows that g̃Cl(A) ⊂ A; hence A is g̃-closed. �

Theorem 3.3. A topological space X is g̃-compact if and only if each net {xα}α∈∆ in X , has at least one g̃-cluster point.

Proof. Let X be a g̃-compact space. Assume that there exist some net {xα}α∈∆ in X such that g̃-cp{xα}α∈∆ is empty.
Then for every x ∈ X , there exist U(x) ∈ G̃O(X,x) and α(x) ∈ ∆, such that xβ /∈ U(x) whenever β ≥ α(x), β ∈ ∆.
Then the family {U(x) : x ∈ X} is a cover ofX by g̃-open sets and has a finite subcover, say, {Uk : k = 1, 2, ...n}where
Uk = U(xk) for k = 1,2,....n, {xk : k = 1, 2, ...n}. Let us take α ∈ ∆ such that α ≥ α(xk) for all k ∈ {1, 2, ....n}. For every
β ∈ ∆ such that β ≥ α we have, xβ /∈ Uk, k = 1, 2,....n, hence xβ /∈ X , which is a contradiction. Conversely, if X is not
g̃-compact, there exists {Ui : i ∈ I} a cover of X by g̃-open sets, which has no finite subcover. Let P (I) be the family of
all finite subsets of I . Clearly, (P (I),⊆) is a directed set. For each J ∈ I. we may choose xj ∈ X\

⋃
{Ui : i ∈ J}. Let us

consider the net {xj}j∈P (I). By hypothesis, the set g̃-cp{xj}j∈P (I) is nonempty. Let x ∈ g̃-cp{xj}j∈P (I) and let i0 ∈ I
such that x ∈ Ui0. By the definition of g̃-cluster point, for each J ∈ P (I) there exist J∗ ∈ P (I) such that J ⊂ J∗ and
x∗j ∈ Ui0. For J = {i0}, there exists J∗ ∈ P (I) such that i0 ∈ J∗ and x∗j ∈ Ui0. But x∗j ∈ X\

⋃
{Ui : i ∈ J∗} ⊂ X\Ui0 .

The contradiction we obtained shows that X is g̃-compact. �

In the following, we will give a characterization of g̃-compact spaces by means of filterbases.
Let us recall that a nonempty family F of subsets of X is said to be a filterbase on X if ∅ /∈ F and each intersection

of two members ofF contains a third member ofF . Notice that each chain in the family of all filterbase onX (ordered
by inclusion) has an upper bound, for example, the union of all members of the chain. Then, by Zorn’s Lemma, the
family of all filterbases on X has at least one maximal element. Similarly, the family of all filterbases on X containing
a given filterbase F has at least one maximal element.

Definition 3.8. A filterbase F on a topological space X is said to be:
(i) g̃-converge to a point x ∈ X if for each g̃-open set U containing x, there exists B ∈ F such that B ⊂ U .

(ii) g̃-accumulate at x ∈ X if U ∩B 6= ∅ for every g̃-open set U containing x and every B ∈ F .

Remark 3.1. A filterbase F g̃-accumulate at x if and only if x ∈
⋂
{g̃Cl(B) : B ∈ F}. Clearly, if a filterbase F

g̃-converges to x ∈ X , then F g̃-accumulates at x.

Lemma 3.1. If a maximal filterbase F g̃-accumulate at x ∈ X , then F g̃-converges to x.

Proof. Let F be a maximal filterbase which g̃-accumulate at x ∈ X . If F does not g̃-converges to x, then there exists a
g̃-open set U0 containing x such that U0 ∩B 6= ∅ and (X\U0) ∩B 6= ∅ for every B ∈ F . Then F

⋃
{U0 ∩B : B ∈ F} is

a filterbase which strictly contains F , which is a contradiction. �

Theorem 3.4. For a topological space X , the following statements are equivalent:
(i) X is g̃-compact;

(ii) Every maximal filterbase g̃-converges to some point of X ;
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(iii) Every filterbase g̃-accumulates at some point of X .

Proof. (i)⇒ (ii): Let F0 be a maximal filterbase on X . Suppose that F0 does not g̃-converge to any point of X . Then,
by Lemma 3.1, F0 does not g̃-accumulate at any point of X . For each x ∈ X , there exists a g̃-open set Ux containing x
and Bx ∈ F0 such that Ux∩Bx = ∅. The family {Ux : x ∈ X} is a cover of X by g̃-open sets. By (i), there exists a finite
subset {x1, x2, ....xn} of X such that X =

⋃
{Uxk

: k = 1, 2, ...n}. Since F0 is a filterbase, there exists B0 ∈ F0 such that
B0 ⊂

⋂
{Bxk

: k = 1, 2, ...n} = X\
⋃
{Uxk

: k = 1, 2, ...n}, hence B0 = ∅. This is a contradiction. (ii)⇒ (iii): Let F be a
filterbase on X . There exists a maximal filterbase F0 such that F ⊂ F0. By (ii), F0 g̃-converges to some point x0 ∈ X .
Let B ∈ F . For every U ∈ G̃O(X,x0), there exists BU ∈ F0 such that BU ⊂ U , hence U ∩ B 6= ∅, since it contains
the member BU ∩ B of F0. This shows that F g̃-accumulates at x0. (iii) ⇒ (i): Let {Vi : i ∈ I} = ∅ be any family of
g̃-closed sets such that

⋂
{Vi : i ∈ I} = ∅. We shall prove that there exists a finite subset I0 of I such that

⋂
{Vi : i ∈ I}.

By Theorem 3.1, this implies (i). Let P (I) be the family of finite subsets of I . Assume that
⋂
{Vi : i ∈ J} = ∅ for every

J ∈ P (I) —-(*). Then the family F = {
⋂
{Vi : i ∈ J} : J ∈ P (I)} is a filterbase on X . By (iii), F g̃-accumulates to

some point x0 ∈ X . Since {X\Vi : i ∈ I} is a cover of X , there exists i0 ∈ I such that x0 ∈ X\Vi0 . Then X\Vi0 is a
g̃-open set containing x0, Vi0 ∈ F and (X\Vi0) ∩ Vi0 = ∅. This is a contradiction with the fact that F g̃-accumulates at
x0 shows that (*) is false. �

Definition 3.9. A point x in a topological space X is said to be a g̃-complete accumulation point of a subset A of X if
n(S ∩A) = n(S) for each A ∈ G̃O(X,x), where n(S) denotes the cardinality of S.

Definition 3.10. In a topological space (X, τ), a point x is said to be a g̃-adherent point of a filterbase F on X if it lies
in the g̃-closure of all sets of F .

Theorem 3.5. A topological space (X, τ) is g̃-compact if and only if each infinite subset of X has a g̃-complete accumulation
point.

Proof. Let the topological space (X, τ) be g̃-compact and A an infinite subset of X . Let K be the set of all points x
in X which are not g̃-complete accumulation points of S. Now it is obvious that for each point x in K, we are able
to find U(x) ∈ G̃O(X,x) such that n(A ∩ U(x)) 6= n(S). If K is the whole space X , then F = {U(x)x ∈ X} is a
g̃-cover of X . By hypothesis, X is g̃-compact. So, there exists a finite subcover G = {U(xi) : i = 1, 2, ...n}, such that
A ⊂

⋃
{U(xi) ∩ A : i = 1, 2, ...n}. Then n(S) = max{n(U(xi) ∩ A) : i = 1, 2, ...n} which does not agree with what

we assumed. This implies that A has a g̃-complete accumulation point. Now assume that X is not g̃-compact and
that every infinite subset A of X has a g̃-complete accumulation point in X . It follows that there exists a g̃-cover S
with no finite subcover. Set α = min{n(Ψ): Ψ ⊂ S , where Ψ is a g̃-cover of X} . Fix Ψ = S for which n(Ψ) = α
and

⋃
{U : U ∈ Ψ} = X . Then, by hypothesis α ≥ n(N), where N denotes the set of all natural numbers. By

well-ordering of Ψ by some minimal well-ordering ”∼”, suppose that U is any member of Ψ. By minimal well-
ordering ”∼” we have n({V : V ∈ Ψ, V ∼ U}) < n({V : V ∈ Ψ}). Since Ψ cannot have any subcover with
cardinality less than α, then for each U ∈ Ψ we have X 6=

⋃
{V ;V ∈ Ψ, V ∼ U}). For each U ∈ Ψ, choose a

point x(U) ∈ X\
⋃
{V ∪ {x(V )};V ∈ Ψ, V ∼ U}). We are always able to do this if not one can choose a cover of

smaller cardinality from Ψ. If H = {x(U) : U ∈ Ψ}, then to finish the proof we will show that H has no g̃-complete
accumulation point in X . Suppose z ∈ X . Since Ψ is a g̃-cover of X , z is a point of some set, say W in Ψ. By the
fact that U ∼ W , we have x(U) ∈ W . It follows that T = {U : U ∈ Ψ and x(U) ∈ W} ⊂ {V ;V ∈ Ψ, V ∼ W}. But
n(T ) < α. Therefore, n(H ∩W ) < α. But n(H) = α ≥ n(N). Since for two distinct points U and W in Ψ, we have
x(U) 6= x(W ). This means that H has no g̃-complete accumulation point in X , which contradicts our assumption.
Therefore X is g̃-compact. �

Theorem 3.6. For a topological space (X, τ), the following statements are equivalent:
(i) X is g̃-compact;

(ii) Every net in X with a well-ordered directed set as its domain g̃-accumulates to some point of X .

Proof. (i) ⇒ (ii): Suppose that X is g̃-compact and A = {xα : α ∈ ∆} a net with a well-ordered directed set ∆ as
domain. Assume that A has no g̃-adherent point in X . Then for each x ∈ X , there exists V (x) ∈ G̃O(X,x) and
an α(x) ∈ ∆ such that V (x) ∩ {xα : α ≥ α(x)} = ∅. This implies that {xα : α ≥ α(x)} is a subset of X\V (x).
Then the collection F = {V (x) : x ∈ X} is a g̃-open cover of X . Since X is g̃-compact, F has a finite subfamily

{Vxi : i = 1, 2, ...n} such that X =
n⋃
i=1

{V (xi) : i = 1, 2, ...n}. Suppose that the corresponding elements of ∆ are

{α(xi)}, where i = 1, 2, ...n. Since ∆ is well-ordered and {α(xi) : i = 1, 2, ...n} is finite, the largest element of {α(xi)}

exists. Suppose it is {α(xi)}. Then for β ≥ {α(xi)}, we have {xδ : δ ≥ β} ⊂
n⋂
i=1

{X\V (xi)} = X\
n⋃
i=1

V (xi) = ∅,

which is impossible. This shows that A has at least one g̃-adherent point in X . (ii)⇒ (i): Now it is enough to prove
that each infinite subset has a g̃-complete accumulation point by utilizing Theorem 3.5. Suppose that S is an infinite
subset of X . According to Zorn’s Lemma, the infinite set S can be well-ordered. This means that we can assume S to
be a net with a domain which is a well-ordered index set. It follows that S has a g̃-adherent point z. Therefore, z is a
g̃-complete accumulation point of S. This shows that X is g̃-compact. �
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Theorem 3.7. A topological space X is g̃-compact if and only if each family of g̃-closed subsets of X with the finite intersection
property has a nonempty intersection.

Proof. Straightforward. �

Theorem 3.8. A topological space X is g̃-compact if and only if each filterbase in X has at least one g̃-adherent point.

Proof. Suppose that X is g̃-compact and F = {Fα : α ∈ ∆} a filterbase in it. Since all finite intersections of Fα’s are
nonempty, it follows that all finite intersection of g̃Cl(Fα)’s are also nonempty. Now it follows from Theorem 3.6 that⋂
α∈∆

g̃Cl(Fα) 6= ∅. This implies that F has at least one g̃-adherent point. Now suppose F is a family of g̃-closed sets.

Let each finite intersection be nonempty. The sets Fα with their finite intersection establish a filterbase F . Therefore,
F g̃-accumulates to some point z ∈ X . It follows that z ∈

⋂
α∈∆

Fα. Now we have by Theorem 3.6 X is g̃-compact. �

Theorem 3.9. A topological space X is g̃-compact if and only if each filterbase on X with at least one g̃-adherent point is
g̃-convergent.

Proof. Suppose that X is g̃-compact, x ∈ X and F is a filterbase on X . The g̃-adherence of F is a subset of {x}.
Then the g̃-adherence of F is equal to {x} by Theorem 3.6. Assume that there exists V ∈ G̃O(X,x) such that for all
F ∈ F , F ∩ (X\V ) 6= ∅. Then Ψ = {F\V : F ∈ F} is a filterbase on X . It follows that the g̃-adherence of Ψ is
nonempty. However,

⋂
F∈F

g̃Cl(F\V ) = (
⋂
F∈F

g̃Cl(F )) ∩ (X\V ) = {x} ∩ (X\V ) = ∅, a contradiction. Hence for each

V ∈ G̃O(X,x), there exists an F ∈ F with F ⊂ V . This shows that F g̃-converges to x. To prove the converse, it
suffices to show that each filterbase in X has at least one g̃-accumulation point. Assume that F is a filterbase on X
with no g̃-adherent point. By hypothesis, F g̃-converges to some point z ∈ X . Suppose Fα is an arbitrary element of
F . Then for each V ∈ G̃O(X,x), there exists Fβ ∈ F such that Fβ ⊂ V . SinceF is a filterbase, there exists a γ such that
Fγ ⊂ Fα ∩ Fβ ⊂ Fα ∩ V , where Fα 6= ∅. This means that Fα ∩ V 6= ∅ for every V ∈ G̃O(X,x) and corresponding for
each α, z is a point of g̃Cl(Fα). It follows that z ∈

⋂
α
g̃Cl(Fα). Therefore, z is a g̃-adherent point of F , a contradiction.

This shows that X is g̃-compact. �

Definition 3.11. A subset K of a topological space X is said to be g̃-closed relative to X if for any cover {Ui : i ∈ I}
of K by g̃-open sets, there exists a finite subset I0 of I such that K ⊂

⋃
{g̃Cl(Ui) : i ∈ I0}.

We say that X is g̃-closed if X is g̃-closed relative to X . Obviously every set which is g̃-compact relative to X is also
g̃-closed relative to X .

Definition 3.12. Let X be a topological space. A point x ∈ X is said to be g̃-θ-cluster point of a net {xα}α∈∆ if
{xα}α∈∆ is frequently in the g̃-closure of every g̃-open set containing x.

Theorem 3.10. A topological space X is g̃-compact if and only if each net {xα}α∈∆ in X , has at least one g̃-cluster point.

Proof. Similar to the proof of Theorem 3.3 �

Definition 3.13. A filterbase F on a topological space X is said to be:
(i) g̃-θ-converge to x ∈ X if for each g̃-open set U containing x, there exists B ∈ F such that B ⊂ g̃Cl(U).

(ii) g̃-θ-accumulate at x ∈ X if g̃Cl(U) ∩B 6= ∅ for each g̃-open set U containing x and every B ∈ F .

Remark 3.2. A filterbase F is g̃-θ-convergent to a point x ∈ X if and only if F contains the collection {g̃Cl(U) : U ∈
G̃O(X,x)}.

Theorem 3.11. For a topological space X , the following statements are equivalent:
(i) X is g̃-closed;

(ii) Every maximal filterbase g̃-θ-converges to some point of X ;
(iii) Every filterbase g̃-θ-accumulates to some point of X ;
(iv) For every family {Vi : i ∈ I} of g̃-closed sets that ∩{Vi : i ∈ I} = ∅, there exists a finite subset I0 of I such that⋂

{g̃ Int(Vi) : i ∈ I0} = ∅.

Proof. (i) ⇒ (ii): Let F be a maximal filterbase on X . Suppose that F does not g̃-θ-converge to any point of X .
Then by Theorem 3.10 F does not g̃-θ-accumulates at any point of X . For each x ∈ X , there exist a g̃-open set Ux
containing x and Bx ∈ F such that g̃Cl(Ux) ∩ Bx = ∅. The family {Ux : x ∈ X} is a cover of X by g̃-open sets. By
(i), there exists a finite subset {x1, x2, ....xn} of X such that X =

⋃
{g̃Cl(Uxk) : k = 1, 2, ...n}. Since F is a filterbase,

there exists F ∈ F such that F0 ⊂
⋂
{Bxk

: k = 1, 2, ...n}. It follows that F0 ⊂
⋂
{X\g̃Cl(Uxk

: k = 1, 2, ...n} =
X\

⋃
{g̃Cl(U)xk : k = 1, 2, ...n} = ∅, hence F = ∅ . This is a contradiction with the definition of filterbase. (ii)⇒ (iii):

Let F0 be a filterbase on X . There exists a maximal filterbase F such that F0 ⊂ F . By (ii), F g̃-θ-converges to
some point x0 ∈ X . Let F ∈ F0. For every U ∈ G̃O(X,x0), there exists BU ∈ F such that BU ⊂ g̃Cl(U), hence
g̃Cl(U) ∩ B ⊃ BU ∩ B is nonempty, since it contains a member of F . This shows that F0 g̃-θ-accumulates at x0.
(iii) ⇒ (iv): Let {Vi : i ∈ I} be any family of g̃-closed set such that

⋂
{Vi : i ∈ I} = ∅. Let P (I) be the family
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of all finite subsets of I. Assume that
⋂
{g̃ Int(Vi) : i ∈ J} = ∅ for every J ∈ P (I). — (**). Then, the family

F = {
⋂
{g̃ Int(Vi) : i ∈ I} : J ∈ I} is a filterbase on X . By (iii), F g̃-accumulates at some point x ∈ X . Since

{X\Vi : i ∈ I} is a cover of X , there exists i0 ∈ I such that x ∈ X\Vi0 . Then X\Vi0 is a g̃-open set containing x,
g̃ Int(Vi0) ∈ F and g̃Cl(X\Vi0)∩ g̃ Int(Vi0) = ∅. This contradicts the fact that that F g̃-accumulates at x. It follows that
(**) is false. (iv)⇒ (i): Let {Ui : i ∈ I} be a cover ofX by g̃-open sets. Denote Vi = X\Ui. Then {Vi : i ∈ I} is a family
of g̃-closed sets such that

⋂
{Vi : i ∈ I} = ∅. There exists a finite subset I0 of I such that

⋂
{g̃ Int(Vi) : i ∈ I} = ∅.

Then X = X\
⋂
{g̃ Int(Vi) : i ∈ I0} =

⋃
{X\g̃ Int(Vi) : i ∈ I0} =

⋃
{g̃Cl(Ui) : i ∈ I0}. �

Theorem 3.12. A topological space X is g̃-closed if and only if each net {xα}α∈∆ in X has at least one g̃-θ-cluster point.

Proof. Similar to the proof of Theorem 3.3. �

Definition 3.14. Let ∆ be a directed set.
(i) A set F = {xα : α ∈ ∆} g̃-accumulates at a point x ∈ X if the net is frequently in every U ∈ G̃O(X,x), that is,

for each U ∈ G̃O(X,x) and for each α0 ∈ A, there is some α ≥ α0 such that xα ∈ U .
(ii) The net F g̃-converges to a point x ∈ X if it is eventually in every

U ∈ G̃O(X,x).
(iii) A filterbase F = {Fα : α ∈ Γ} g̃-converges at a point x ∈ X if g̃-open subsets Uα of X for each α ∈ Γ such that

S ⊂
⋃
α∈F

Uα.

(iv) A filterbase F = {Fα : α ∈ Γ} g̃-converges to a point x in X if for each U ∈ G̃O(X,x), there exists an Fα in F
such that Fα ⊂ U .

Definition 3.15. If F is a filterbase on a topological space X , then the section of F , denoted by secF , is given by secF = {A ⊂
X : A ∩G 6= ∅, for all G ∈ F}.

Theorem 3.13. If a filterbase F on a topological space X , g̃-θ-adheres to some point x ∈ X , then F is g̃-θ-convergent to x.

Proof. Let a filterbase F on X , g̃-θ-adhere at x ∈ X . Then for each U ∈ G̃O(X,x) and each G ∈ F , g̃Cl(U) ∩ G 6= ∅
so that g̃Cl(U) ∈ secF , for each U ∈ G̃O(X,x), and hence X\g̃Cl(U) /∈ F . Then g̃Cl(U) ∈ F (as F is a filterbase and
X ∈ F), for each U ∈ G̃O(X,x). Hence F must g̃-θconverge to x. �

Remark 3.3. Let X be a topological space. Then for any x ∈ X , we adopt the following notions:
(i) F(g̃θ, x) = {A ⊂ X : x ∈ g̃Clθ(A)}.

(ii) secF(g̃θ, x) = {A ⊂ X : A ∩G 6= ∅, for all G ∈ F(g̃θ, x)}

In the next two theorems, we characterize the g̃-θ-adherence and g̃-θ-convergence of filterbase in terms of the
above notions.

Theorem 3.14. The filterbase F on a topological space X , g̃-θ-adheres to a point x ∈ X if and only if F ⊂ F(g̃θ, x).

Proof. A filterbase F on a topological space X g̃-θ-converges at x ∈ X . ⇒ g̃Cl(U) ∩G 6= ∅ for all U ∈ G̃O(X,x) and
all G ∈ F .
⇒ x ∈ g̃Clθ for all G ∈ F .
⇒ G ∈ F(g̃θ, x) for all G ∈ F .
⇒F ⊂ F(g̃θ, x).
Conversely, let F ⊂ F(g̃θ, x). Then for all G ∈ F , x ∈ g̃Clθ, so that for all U ∈ G̃O(X) and for all G ∈ F ,

g̃Cl(U) ∩G 6= ∅. Hence, F g̃-θ-adheres to a point x. �

Theorem 3.15. A filterbase F on a topological space X is g̃-θ-convergent to a point x of X if and only if secF(g̃θ, x) ⊂ F .

Proof. Let F be a filterbase on X , g̃-θ-converging to x ∈ X . Then for each U ∈ G̃O(X) there exist G ∈ F such
that G ⊂ bCl(U); hence g̃Cl(U) ∈ F for each U ∈ G̃O(X) (*). Now B ∈ secF(g̃θ, x) ⇒ X\B /∈ secF(g̃θ, x) ⇒
x /∈ g̃Clθ(X\B) ⇒ there exists U ∈ G̃O(X) such that g̃Cl(U) ∩ (X\B) = ∅ ⇒ g̃Cl(U) ⊂ B, where U ∈ G̃O(X) ⇒
B ∈ F (by (*)). Conversely, let if possible, F not belong to g̃-θ-converge to x. Then for some U ∈ G̃O(X), g̃Cl(U) /∈ F
and hence g̃Cl(U) /∈ secF(g̃θ, x). Thus for some A ∈ F(g̃θ, x), A ∩ g̃Cl(U) = ∅ (**). But A ∈ F(g̃θ, x)⇒ x ∈ g̃Clθ(A)
⇒ g̃Cl(U) ∩A 6= ∅, contradiction (**). �

We shall now derive some new characterizations of g̃-closedness in terms of filterbase and the associated concepts.

Theorem 3.16. A subset A of a topological space X is g̃-closed relative to X if and only if every filterbase F on X with A ∈ F ,
g̃-θ-converges to a point in A.

Proof. Let A be g̃-closed relative to X and F a filterbase on X satisfying A ∈ F such that F does not g̃-θ-converge to
any a ∈ A. Then to each a ∈ A, there corresponds some Uα ∈ G̃O(X, a) such that g̃Cl(Uα) /∈ F . Now {Ua : a ∈ A} is

a cover of A by g̃-open sets of X . Then A ⊂
n⋃
i=1

g̃Cl(Uai) = U (say) for some positive integer n. Since F is a filterbase,
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U ∈ F and hence A ∈ F , which is a contradiction. Conversely, let A be not g̃-closed relative to X . Then for some
cover U = {Uα : α ∈ Λ} of A by g̃-open sets of X , F = {A\

⋃
α∈Λ0

: Λ0 ⊂ Λ} is a filterbase on X . Then the family F can

be extended to an ultra-filterF∗ onX . ThenF∗ is a filterbase onX withA ∈ F∗ (as each F ofF is a subset ofA). Now
for each x ∈ A, there exist β ∈ Λ such that x ∈ Uβ , as U is a cover of A. Then for any G ∈ F∗, G ∩ (A\g̃Cl(Uβ) 6= ∅,
so that G " g̃Cl(Uβ) for all G ∈ G. Hence F∗ cannot g̃-θ-converge to any point of A. This contradiction proves the
desired result. �

Theorem 3.17. Let X be any topological space such that every filterbase F on X , with the property that
n⋂
i=1

g̃Clθ(Gi) 6= ∅ for

every finite subfamily {G1, G2, ....Gn} of F g̃-θ-adheres in X , then X is a g̃-closed space.

Proof. Let U be any ultrafilter on X . Then U is a filterbase on X and also for each finite subcollection {U1, U2, ....Un}

of U ,
n⋂
i=1

g̃Clθ(Ui) ⊃
n⋂
i=1

Ui 6= ∅ so that U is a filterbase on X with the given condition. Hence by hypothesis, U

g̃-θ-adheres. Consequently, the space X is g̃-closed. �

Definition 3.16. A filterbase F on a topological space X is said to be:

(i) g̃-θ-linked if for any two members A,B ∈ F g̃Clθ(A) ∩ g̃Clθ(B) = ∅;
(ii) g̃-θ-conjoint if for every finite subfamily A1, A2, ...., An of

F g̃ Int(
n⋂
i=1

g̃Clθ(Ai) 6= ∅.

Theorem 3.18. In a g̃-closed topological space X , every g̃-θ-conjoint filterbase g̃-θ-adheres in X .

Proof. Consider any g̃-θ-conjoint filterbase F on a g̃ -closed space X . We first note from Theorem 3.15 that for A ⊂ X ,

g̃Clθ(A) is g̃-closed. Thus {g̃Clθ(A) : A ∈ F} is a collection of g̃-closed sets in X such that g̃ Int(
n⋂
i=1

g̃Clθ(Ai)) 6= ∅

for any finite subcollection A1, A2....An of F . Thus by Theorem 3.16,
n⋂
i=1

{g̃Clθ(A) : A ∈ F} 6= ∅, that is, there exists

x ∈ X such that x ∈ g̃Clθ(A) for all A ∈ F .
Hence F ⊂ F(g̃θ, x) so that by Theorem 3.14, F g̃-θ-adheres at x ∈ X . �

Theorem 3.19. Every filterbase F on a topological space X with the property that {g̃Clθ(G) : G ∈ F0} 6= ∅ for every finite
subset F0 of F , g̃-θ-adheres in X if and only if for every family F of subsets of X for which the family {g̃Clθ(F ) : F ∈ F} has
the finite intersection property, we have

⋂
{g̃Clθ(F ) : F ∈ F} 6= ∅.

Proof. Let every filterbase on a topological spaceX satisfying the given condition, g̃-θ-adheres inX , and suppose that
F is a family of subsets of X such that the family F∗ = {g̃Clθ(F ) : F ∈ F} has the finite intersection property. Let
U be the collection of all those families of subsets of X for which F∗ = {g̃Clθ(G) : G ∈ F} has the finite intersection
property and F ⊂ G. Then F ∈ U and U is a partially ordered set under inclusion in which every chain clearly has
an upper bound. By Zorn’s lemma, F is then contained in a maximal family U∗ ∈ U . It is easy to verify that U∗ is a
filterbase with the stipulated property. Hence

⋂
{g̃Clθ(F ) : F ∈ F} ⊃ ∩{g̃Clθ(U) : U ∈ U 6= ∅. Conversely, if F is a

filterbase on X with the given property, then for every finite subfamily F0 of F ,
⋂
{g̃Clθ(F ) : F ∈ F0} 6= ∅. So, by

hypothesis,
⋂
{g̃Clθ(F ) : F ∈ F} 6= ∅. Hence F g̃-θ-adheres in X . �

Theorem 3.20. [5] For a topological space X , the following statements are equivalent:

(i) X is g̃-regular;
(ii) For each and each open set U of X containing x, there exists a g̃-open set V such that.

Theorem 3.21. Let X be a g̃-regular space. Then a subset K of X is g̃-compact if and only if K is g̃-closed relative to X .

Proof. Let {Ui : i ∈ I} be a cover of K by g̃-open sets. For each x ∈ K there exists i(x) ∈ I such that x ∈ Ui(x) and
by the assumption that X is g̃-regular, there exists, according to Theorem 3.20, a g̃-open set Vx such that x ∈ Vx ⊂
g̃Cl(Vx) ⊂ Ui(x). The family {Vx : x ∈ X} is a cover of K by g̃-open sets. Since K is g̃-closed relative to X , there
exists a finite subset {x1, x2, ....xn} of K such that K ⊂ ∪{g̃Cl(Vxk) : k = 1, 2, ...n}. Which shows that K is g̃-compact
relative to X . The necessity is obvious. �
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