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Weak stability of iterative procedures for some coincidence theorems

IOANA TIMIŞ and VASILE BERINDE

ABSTRACT.
The purpose of this paper is to study the problem of weak stability of common fixed point iterative procedures for some classes of contractive type
mappings. An example to illustrate weakly stable but not stable iterative fixed point procedures is also given.

1. INTRODUCTION

In [25], Singh and Prasad have studied the (S, T )-stability of iterative procedures

Sxn+1 = f(T, xn), n = 0, 1, 2, ... , (1.1)

for some classes of contractive type mappings.
Namely, in the metric space X , for A,B, S, T : Y → X , ∀x, y ∈ Y , where q ∈ (0, 1), they are using the following

conditions :
d(Tx, Ty) ≤ qd(Sx, Sy); (1.2)

d(Tx, Ty)

≤ qmax

{
d(Sx, Sy), d(Sx, Tx), d(Sy, Ty),

[d(Sx, Ty) + d(Sy, Tx)]

2

}
; (1.3)

d(Tx,Ay)

≤ q max

{
d(Sx,By), d(Sx, Tx), d(By,Ay),

[d(Sx,Ay) + d(By, Tx)]

2

}
; (1.4)

d(Tx,Ay)

≤ qmax

{
d(Sx, Sy), d(Sx, Tx), d(Sy,Ay),

[d(Sx,Ay) + d(Sy, Tx)]

2

}
. (1.5)

For Y = X and f(T, xn) = Txn, the iterative procedure (1.1) yields the Jungck iterations, namely Sxn+1 =
Txn, n = 0, 1, ... . This procedure was essentially introduced by Jungck and it becomes the Picard iterative procedure
when S = id, the identity map on X .

Jungck showed that the maps S and T satisfying (1.2), for all x, y ∈ X have an unique common fixed point in
complete X , provided that S and T are commuting, T (X) ⊆ S(X), and S is continuous. However, the following
significantly improved version of this result is generally called the Jungck contraction principle.

Theorem 1.1. [24] Let S, T : Y → X satisfy (1.2) ∀x, y ∈ Y . If T (Y ) ⊆ S(Y ) and S(Y ) or T (Y ) is a complete subspace of
X , then S and T have a coincidence and for any x0 in Y , there exists a sequence {xn} in Y such that

(1) Sxn+1 = Txn, n = 0, 1, ...,
(2) {Sxn} converges to Sz for some z in Y , and Sz = Tz, that is, S and T have a coincidence at z.

Further, if Y = X and S, T commute (just) at z, then S and T have an unique fixed point.

The concept of stability they used is given by the next definition:

Definition 1.1. [25] Let (X, d) be a metric space and Y ⊆ X .
Let S, T : Y → X, T (Y ) ⊆ S(Y ) and z a coincidence point of T and S, that is a point for which we have

Sz = Tz = u ∈ X . For any x0 ∈ Y , let the sequence {Sxn} generated by the general iterative procedure

Sxn+1 = f(T, xn), n = 1, 2, ..., (1.6)

converge to an element. Let {Syn} ⊂ X be an arbitrary sequence, and set

εn = d(Syn+1, f(T, yn)), n = 0, 1, 2, ... .

Then the iterative procedure f(T, xn) is (S, T )-stable or stable with respect to (S, T ) if and only if

lim
n→∞

εn = 0 implies that lim
n→∞

Syn = u.

Their main stability result is the next theorem:
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Theorem 1.2. [25] Let (X, d) be a metric space and S, T maps on an arbitrary set Y with values inX such that T (Y ) ⊆ S(Y ),
and S(Y ) or T (Y ) is a complete subspace of X . Let z be a coincidence point of T and S, that is, Tz = Sz = u.

For any x0 ∈ Y , let the sequence {Sxn} generated by the iterative procedure Sxn+1 = Txn, n = 0, 1, 2, ..., converges to u.
Let {Syn} ⊂ X and then define εn = d(Syn+1, T yn), n = 0, 1, 2, ... If the pair (S, T ) is a J-contraction with q as J-constant,
that is, S and T satisfy (1.2) for all x, y ∈ Y and q < 1, then

d(u, Syn+1) ≤ d(u, Sxn+1) + qn+1d(Sx0, Sy0) +

n∑
r=0

qn−rεr.

Further,
lim
n→∞

Syn = u if and only if lim
n→∞

εn = 0.

In other words, Theorem 1.2 shows that the iterative procedure Sxn+1 = Txn, n = 0, 1, 2, ... is stable with respect
to (S, T ).

The definition of (S, T )-stability iterative procedures used in [25], like that in [5] and [6] is based on the choice of
an arbitrary sequence {Syn}. However, as shown in [?], chapter 7, by considering an arbitrary sequence in Definition
1.1 we do not treat the problem of stability in its general context.

The aim of this note is to restate all results in the paper of [25] in the case of the concept of weak stability.

2. PRELIMINARIES

For our purposes here, we need some coincidence theorems for maps on an arbitrary nonempty set Y with values
in a metric space X .

Theorem 2.3. [25] Let (X, d) be a metric space and S, T : Y → X such that T (Y ) ⊆ S(Y ) and (1.2) holds with q < 1. If
S(Y ) or T (Y ) is a complete subspace of X , then S and T have a coincidence.

Indeed, for any x0 ∈ Y , there exists a sequence {xn} in Y such that Sn+1 = Txn, n = 0, 1, 2, ... and {Sxn} converges
to Sz for some z in Y and Sz = Tz, that is, S and T have a coincidence at z.

Further, if Y = X and S and T commute (just) at z, then S and T have an unique common fixed point.

Theorem 2.4. [25] Let (X, d) be a metric space and A,B, S, T : Y → X such that T (Y ) ⊆ B(Y ), A(Y ) ⊆ S(Y ) and (1.4)

holds, with q < 1 and λ < 1, where λ = max

{
q,

q

2− q

}
. If one of A(Y ), B(Y ), S(Y ) or T (Y ) is a complete subspace of X ,

then
(1) T and S have a coincidence, i.e. there exists a v ∈ Y such that Sv = Tv;
(2) A and B have a coincidence, i.e. there exists a w ∈ Y such that Bw = Aw.

Further, if Y = X , then
(3) T and S have a common fixed point provided that T and S commute (just) at the coincidence point v;
(4) A and B have a common fixed point provided that A and B commute (just) at the coincidence point w;
(5) S, T , A and B have a common fixed point provided (3) and (4) both are true.

Corollary 2.1. Let (X, d) be a metric space and A, B, S, T : Y → X such that A(Y ) ∪ T (Y ) ⊆ S(Y ) and the following
holds

d(Tx,Ay) ≤ qmax

{
d(Sx, Sy), d(Sx, Tx), d(Sy,Ay),

[d(Sx,Ay) + d(Sy, Tx)]

2

}
with q < 1 and λ < 1, where λ = max

{
q,

q

2− q

}
.

If one of A(Y ), S(Y ) or T (Y ) is a complete subspace of X , then there exists a z such that Az = Tz = Sz.
Further, if Y = X , then
(1) T and S have a common fixed point, provided that T and S commute (just) at z;
(2) A and S have a common fixed point, provided that A and S commute (just) at z;
(3) A, T and S have a common fixed point, provided that S commute with each of A and T (just) at z.

In the Theorem 2.4, for T = A and S = B, we have the following:

Corollary 2.2. Let (X, d) be a metric space and S, T : Y → X such that T (Y ) ⊆ S(Y ) and (1.3) holds with q < 1. If S(Y )
or T (Y ) is a complete subspace of X , then S and T have a coincidence.

Indeed, for any x0 ∈ Y , there exists a sequence {xn} in Y such that Sn+1 = Txn, n = 0, 1, 2, ... and {Sxn} converges
to Sz for some z in Y and Sz = Tz, that is, S and T have a coincidence at z.

Further, if Y = X and S and T commute (just) at z, then S and T have an unique common fixed point.

Lemma 2.1. [?] Let {εn} be a sequence of nonnegative real numbers. Then,

lim
n→∞

εn = 0 iif lim
n→∞

sn = 0, where sn =

n∑
i=0

kn−iεi and k ∈ [0, 1) .
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3. WEAK STABILITY OF ITERATIVE PROCEDURES

The concept of stability is not very precise because of the sequence {yn}∞n=0 which is arbitrary taken. It would be
more natural that {yn} to be an approximate sequence of {xn} and then to introduce a weaker concept of stability, called
weak stability. Therefore, any stable iteration will be also weakly stable but he reverse is not generally true.

Definition 3.2. [?] Let (X, d) be a metric space and {xn}∞n=1 ⊂ X be a given sequence. We shall say that {yn}∞n=0 ∈ X
is an approximate sequence of {xn} if, for any k ∈ N, there exists η = η(k) such that

d(xn, yn) ≤ η, for all n ≥ k.

Remark 3.1. We can have approximate sequences of both convergent and divergent sequences.

The following result will be useful in the sequel.

Lemma 3.2. [?] The sequence {yn} is an approximate sequence of {xn} if and only if there exists a decreasing sequence of
positive numbers {ηn} converging to some η ≥ 0 such that

d(xn, yn) ≤ ηn, for any n ≥ k (fixed).

Definition 3.3. [?] Let (X, d) be a metric space and T : X → X be a map. Let {xn} be an iteration procedure defined
by x0 ∈ X and

xn+1 = f(T, xn), n ≥ 0. (3.7)
Suppose that {xn} converges to a fixed point p of T . If for any approximate sequence {yn} ⊂ X of {xn}

lim
n→∞

d(yn+1, f(T, yn)) = 0

implies
lim
n→∞

yn = p,

then we shall say that (3.7) is weakly T-stable or weakly stable in respect to T.

Further on, we will present some examples from [?] in order to show how important and natural is to restrict the
stability concept to approximate sequences {yn} of {xn}.

Example 3.1. [?] Let T : R → R be given by Tx =
1

2
x, where R is endowed with the usual metric. As T is an

1

2
-contraction, the Ishikawa iteration {xn}∞n=1 is T -stable, hence almost T -stable and weakly T -stable, too.

To prove the fact that the Ishikawa iteration is not T -stable, in [?] is used the sequence {yn}∞n=1 given by yn =
n

1 + n
, n ≥ 0.

But this is obviously nonsense, because xn → 0, the unique fixed point of T , while yn → 1 as n→∞, although, by
construction, {yn}∞n=1 would have to be an approximate sequence of {xn} .

Example 3.2. [?] Let T : [0, 1]→ [0, 1] be given by

Tx =


1

2
, x ∈

[
0,

1

2

]
0, x ∈

(
1

2
, 1

]
where

[
0, 1

]
is endowed with the usual metric. We have FT =

{
1

2

}
and we know that the Picard iteration is not

T -stable.
In [?] is showed that the Picard iteration is also not weakly T -stable.

Let x0 ∈ [0, 1] and xn+1 = Txn, for n = 1, 2, . . .. If x0 ∈
[
0,

1

2

]
, then x1 = Tx0 =

1

2
and if x0 ∈

(
1

2
, 1

]
, then

x1 = Tx0 = 0. Results that xn =
1

2
for all n ≥ 2, hence

lim
n→∞

xn =
1

2
= T

(
1

2

)
.

Let {yn} be an approximate sequence of {xn}. There exists a decreasing sequence of positive numbers {ηn} con-
verging to some η ≥ 0 such that

|xn − yn| ≤ ηn, for n ≥ k.
In particular, we can take yn = xn + (−1)n · ηn, n ≥ k which is equivalent to

yn =
1

2
+ (−1)n ηn, for each n ≥ 2.
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Then

Tyn =


1

2
, if n is odd

0, if n is even

and hence |yn+1−Tyn| = |yn+1−
1

2
| if n = 2p+1 is odd and |yn+1−Tyn| = 0 if n = 2p is even. By lim

n→∞
|yn+1−Tyn| = 0

results

lim
p→∞

y2p+2 =
1

2
and lim

p→∞
y2p+1 = 0.

This shows that {yn} is not convergent and this implies that the Picard iteration is not weakly T -stable.

Example 3.3. [?] Let T : [0, 1]→ [0, 1] be given by

Tx =


0, x ∈

[
0,

1

2

]
1

2
, x ∈

(
1

2
, 1

]
where [0, 1] is endowed with the usual metric.

Let x0 ∈ [0, 1] and xn+1 = Txn, for n = 1, 2, . . .. If x0 ∈
[
0,

1

2

]
, then x1 = Tx0 = 0 and if x0 ∈

(
1

2
, 1

]
, then

x1 = Tx0 =
1

2
. Results that xn = 0 for all n ≥ 2, hence lim

n→∞
xn = 0 = T (0).

Let {yn} be an approximate sequence of {xn}. There exists a decreasing sequence of positive numbers {ηn} con-
verging to some η ≥ 0 such that

|xn − yn| ≤ ηn, for n ≥ 0.

Then

xn − ηn ≤ yn ≤ xn + ηn, n ≥ 0.

Since xn = 0 for all n ≥ 2, we obtain 0 ≤ yn ≤ ηn for all n ≥ 2. So, we can choose {ηn} such that ηn ≤
1

2
for all n ≥ 2.

Then Tyn = 0, n ≥ 2 and by lim
n→∞

|yn+1 − Tyn| = 0 results

lim
n→∞

yn = 0 = T (0) .

This shows that the Picard iteration is weakly T -stable.

Now, let us show that the Picard iteration is not T -stable. Indeed, if we take {yn}, yn =
n+ 2

2n
, n ≥ 1, then

εn = |yn+1 − Tyn| =
∣∣∣∣ n+ 3

2(n+ 1)
−

1

2

∣∣∣∣,
because yn ≥

1

2
, for n ≥ 1.

Therefore, lim
n→∞

εn = 0 but lim
n→∞

yn =
1

2
, so the Picard iteration is not T -stable.

The concept of T -stability now will be transposed to (S, T )-stability in a metric space.

Definition 3.4. Let (X, d) be a metric space and Y ⊆ X .
Let S, T : Y → X be such as T (Y ) ⊆ S(Y ) and z is a coincidence point of S and T , that is, Sz = Tz = u.
For any x0 ∈ Y , let the sequence {Sxn} be generated by the general iterative procedure

Sxn+1 = f(T, xn), n = 1, 2, ..., (3.8)

convergent to an element u ∈ X .
If for any approximate sequence {Syn} ⊂ X of {Sxn}, we have that

lim
n→∞

d(Syn+1, f(T, yn)) = 0

implies

lim
n→∞

Syn = u,

then we shall say that (3.8) is weakly (S, T )-stable or weakly stable with respect to (S, T ).
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4. WEAK STABILITY RESULTS

A basic result for the stability of J-iterations, i.e., Theorem 1.2 will be transposed to weak stability.

Theorem 4.5. Let (X, d) be a metric space and S, T maps on an arbitrary set Y with values in X such that T (Y ) ⊆ S(Y ),
and S(Y ) or T (Y ) is a complete subspace of X . Let z be a coincidence point of T and S, that is, Tz = Sz = u.

For any x0 ∈ Y , let the sequence {Sxn} generated by the iterative procedure Sxn+1 = Txn, n = 0, 1, 2, ..., converge to u.
Let {Syn} ⊂ X be an approximate sequence of {Sxn} and then define εn = d(Syn+1, T yn), n = 0, 1, 2, ... If the pair (S, T ) is
a J-contraction with q as J-constant, that is, S and T satisfy (1.2) for all x, y ∈ Y and q < 1, then

(1) d(u, Syn+1) ≤ d(u, Sxn+1) + qn+1d(Sx0, Sy0) +
n∑
r=0

qn−rεr;

(2) lim
n→∞

Syn = u if and only if lim
n→∞

εn = 0.

Proof. By the triangle inequality and the condition (1.2), we have

d(u, Syn+1) ≤ d(u, Sxn+1) + qd(Sxn, Syn) + εn ≤
≤ d(u, Sxn+1) + q [d(Txn−1, T yn−1) + d(Tyn−1, Syn)] + εn.

After n− 1 steps of this process, yields (1).
To prove (2), first suppose that limn→∞ Syn = u. Then,

εn = d(Syn+1, Tyn) ≤ d(Syn+1, Sxn+1) + d(Txn, Tyn) ≤
≤ d(Syn+1, Sxn+1) + qd(Sxn, Syn)→ 0, as n→∞.

Now, suppose that lim
n→∞

εn = 0. Then, lim
n→∞

n∑
i=0

qn−iεi = 0. Also, lim
n→∞

Sxn = u implies that lim
n→∞

d(u, Sxn+1) =

0. �

Theorem 4.6. Let (X, d) be a metric space and S, T maps on an arbitrary set Y with values in X such that T (Y ) ⊆ S(Y ),
and S(Y ) or T (Y ) is a complete subspace of X . Let z be a coincidence point of T and S, that is, Tz = Sz = u.

For any x0 ∈ Y , let the sequence {Sxn} generated by the iterative procedure Sxn+1 = Txn, n = 0, 1, 2, ..., converge to u.
Let {Syn} ⊂ X be an approximate sequence of {Sxn} and then define εn = d(Syn+1, T yn), n = 0, 1, 2, ... If the pair (S, T )
satisfy

d(Tx, Ty) ≤ qd(Sx, Sy) + Ld(Sx, Tx) (4.9)
for all x, y ∈ Y , where q ∈ (0, 1) and L ≥ 0, then

(1) d(u, Syn+1) ≤ d(u, Sxn+1) + qn+1d(Sx0, Sy0) + L
∑n
r=0 q

n−rd(Sxr, Txr) +
n∑
r=0

qn−rεr;

(2) lim
n→∞

Syn = u if and only if lim
n→∞

εn = 0.

Proof. From (4.9), for any nonnegative integer n, we have

d(Sxn+1, Syn+1) = d(Tx, Syn+1) ≤ d(Txn, T yn) + d(Tyn, Syn+1) ≤
≤ qd(Sxn, Syn) + Ld(Sxn, Txn) + εn ≤

≤ q2d(Sxn−1, Syn−1) + qLd(Sxn−1, Txn−1) + Ld(Sxn, Txn) + qεn−1 + εn.

After n− 1 steps, we obtain

d(Sxn+1, Syn+1) ≤ qn+1d(Sx0, Sy0) + L

n∑
r=0

qn−rd(Sxr, Tyr) +

n∑
r=0

qn−rεr.

Therefore,
d(u, Syn+1) ≤ d(u, Sxn+1) + d(Sxn+1, Syn+1) ≤

≤ d(u, Sxn+1) + qn+1d(Sx0, Sy0) + L

n∑
r=0

qn−rd(Sxr, T yr) +

n∑
r=0

qn−rεr.

This provides (1).
Now, assume that lim

n→∞
Syn = u. Then,

εn = d(Syn+1, Tyn) ≤ d(Syn+1, Sxn+1) + d(Txn, T yn) ≤
≤ d(Syn+1, Sxn+1) + qd(Sxn, Syn) + Ld(Sxn, Txn).

For n→∞, we obtain that εn → 0.
Now, suppose that lim

n→∞
εn = 0. Since q ∈ (0, 1) and lim

n→∞
Sxn = u, applying Lemma 2.1 and passing (1) to the

limit, we obtain

lim
n→∞

d(u, Syn+1) ≤ lim
n→∞

{
L

n∑
r=0

qn−rd(Sxr, Txr) +

n∑
r=0

qn−rεr

}
. (4.10)
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LetA denote the lower triangular matrix with entries anr = qn−r. Then, lim
n→∞

anr = 0 for each r and lim
n→∞

n∑
r=0

anr =

1
1−q .

For any convergent sequence {sn}, we have lim
n→∞

A(sn) =
1

1− q
. Thus, the right side of (4.10) vanishes. �

Theorem 4.7. Let (X, d) be a metric space and S, T maps on an arbitrary set Y with values in X such that T (Y ) ⊆ S(Y ),
and S(Y ) or T (Y ) is a complete subspace of X . Let z be a coincidence point of T and S, that is, Tz = Sz = u.

For any x0 ∈ Y , let the sequence {Sxn} generated by the iterative procedure Sxn+1 = Txn, n = 0, 1, 2, ..., converge to u.
Let {Syn} ⊂ X be an approximate sequence of {Sxn} and then define εn = d(Syn+1, Tyn), n = 0, 1, 2, ... If the pair (S, T )
satisfy (1.3) for all x, y ∈ Y and q ∈ (0, 1), then

(1) d(u, Syn+1) ≤ d(u, Sxn+1) + αnd(Sx1, Sy1) + α
n∑
r=0

αn−rd(Sxr, Txr) + +
n∑
r=0

αn−rεr, where α =
q

1− q
;

(2) lim
n→∞

Syn = u, if and only if lim
n→∞

εn = 0.

Proof. From (1.3), for any x, y ∈ Y , one of the following is true:
• d(Tx, Ty) ≤ qd(Sx, Sy),
• d(Tx, Ty) ≤ qd(Sx, Tx),
• d(Tx, Ty) ≤ qd(Sx, Ty) ≤ q [d(Sy, Sx) + d(Sx, Ty)] ≤

≤ k

1− k
[d(Sx, Sy) + d(Sx, Tx)] , and

• d(Tx, Ty) ≤
q

2
[d(Sx, Ty) + d(Sy, Tx)] ≤

≤
k

2− k
d(Sx, Sy) +

2k

2− k
d(Sx, Tx).

Therefore, in all cases, we get
d(Tx, Ty) ≤ α [d(Sx, Sy) + d(Sx, Tx)] .

For any nonnegative integer n, we get

d(Sxn+1, Syn+1) = d(Sxn, Syn+1) ≤ d(Txn, Tyn) + d(Tyn, Syn+1) ≤

≤ α [d(Sxn, Syn) + d(Sxn, Txn)] + εn ≤
≤ α2d(Sxn−1, Syn−1) + α2d(Sxn−1, Txn−1) + αd(Sxn, Txn) + αεn−1 + εn.

After n− 1 steps, we obtain

d(Sxn+1, Syn+1) ≤ αn+1d(Sx0, Sy0) + α

n∑
r=0

αn−rd(Sxr, T yr) +

n∑
r=0

αn−rεr.

Therefore
d(u, Syn+1) ≤ d(u, Sxn+1) + d(Sxn+1, Syn+1) ≤

≤ d(u, Sxn+1) + αn+1d(Sx0, Sy0) + α

n∑
r=0

αn−rd(Sxr, Txr) +

n∑
r=0

αn−rεr.

This proves (1).
Now, assume that lim

n→∞
Syn = u. Then,

εn = d(Syn+1, Tyn) ≤ d(Sxn+1, Syn+1) + d(Txn, T yn) ≤

≤ d(Sxn+1, Syn+1) + α [d(Sxn, Syn) + d(Sxn, Txn)] .

Letting n→∞, we obtain εn → 0.
Suppose that lim

n→∞
εn = 0. Since α ∈ (0, 1) and lim

n→∞
Sxn = u, applying L. 2.1 and passing (1) to the limit, we obtain

lim
n→∞

d(u, Syn+1) ≤ lim
n→∞

α

n∑
r=0

αn−rd(Sxr, Txr). (4.11)

LetA denote the lower triangular matrix with entries anr = αn−r. Then, lim
n→∞

anr = 0 for each r and lim
n→∞

n∑
r=0

anr =

1
1−α .

For any convergent sequence {sn}, we have lim
n→∞

A(sn) =
1

1− α
. Thus, the right side of (4.11) vanishes. �
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5. EXAMPLE

Let S, T : [0, 1] → [0, 1] be given by Tx = 0, if x ∈
[
0,

1

2

]
and Tx =

1

2
, if x ∈

(
1

2
, 1

]
and Sx = x, where [0, 1] is

endowed with the usual metric.
We will show that the Picard iteration is not (S, T )-stable but it is (S, T )-weakly stable.

In order to prove the first claim, let (Syn) be given by Syn ≡ yn =
n+ 2

2n
, n ≥ 1.

Then
εn = |Syn+1 − f(T, xn)| = |yn+1 − Tyn| = |

n+ 3

2(n+ 1)
− 1

2
|,

because yn >
1

2
, for n ≥ 1.

Therefore, lim
n→∞

εn = 0 but lim
n→∞

yn =
1

2
, so the Picard iteration is not (S, T )-stable.

In order to show the (S, T )-weak stability, we take an approximate sequence {Syn} of Sxn. Then, there exists a
decreasing sequence of nonnegative numbers {ηn} converging to some η ≥ 0 for η →∞ such that

|Sxn − Syn| ≤ ηn, n ≥ k.
Then, −ηn ≤ Sxn − Syn ≤ ηn and results that 0 ≤ yn ≤ xn + ηn, n ≥ k.
Since xn = 0, for n ≥ 2, we obtain 0 ≤ yn ≤ ηn, n ≥ k1 = max{2, k}.

We can choose {ηn} such that ηn ≤
1

2
, n ≥ k1 and therefore 0 ≤ yn ≤

1

2
, ∀n ≥ k1. So, Tyn = 0 and results that

εn = |yn+1 − Tyn| = |yn+1| = yn+1.
Now, it is obvious that lim

n→∞
εn = 0⇔ lim

n→∞
yn = 0, so the iteration {Syn} is (S, T )-weakly stable.
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