The refinement and generalization of the double Cosnita-Turtoiu inequality with one parameter

YU-DONG WU and MIHÁLY BENCZE

ABSTRACT.

In this short note, we give the refinement and generalization of the double Cosnita-Turtoiu inequality with one parameter by Gerretsen's inequality, Euler's inequality and an equivalent form of fundamental triangle inequality.

1. INTRODUCTION AND MAIN RESULTS

For a given triangle *ABC*, let *a*, *b*, *c* be the side-lengths, h_a , h_b , h_c the altitudes, *s* the semi-perimeter, \triangle the area, *R* the circumradius and *r* the inradius, respectively. Moreover, we will customarily use the cyclic sum symbol, that is:

$$\sum f(a) = f(a) + f(b) + f(c),$$
$$\sum f(b,c) = f(a,b) + f(b,c) + f(c,a)$$
$$\prod f(a) = f(a)f(b)f(c)$$

and

etc.

In 1965, C. Cosnita and F. Turtoiu (see [2, pp. 66, Theorem 6.22]) built the following so-called **Cosnita-Turtoiu** inequality.

$$6 \le \sum \frac{h_a + r}{h_a - r} \tag{1.1}$$

In 2003, Tian [5] considered the upper-bound of **Cosnita-Turtoiu** inequality and get the result as follows.

$$\sum \frac{h_a + r}{h_a - r} < 7 \tag{1.2}$$

In fact, Zhang [6] obtained the following result in 1998.

$$\frac{19}{3} - \frac{2r}{3R} \le \sum \frac{h_a + r}{h_a - r} \le 7 - \frac{2r}{R}$$
(1.3)

It's easy to find that the right hand of inequality (1.3) is better than inequality (1.2).

And in 1999, Chu [3] generalized Cosnita-Turtoiu inequality with one parameter.

$$\frac{3(3+\lambda)}{3-\lambda} \le \sum \frac{h_a + \lambda r}{h_a - \lambda r} (\lambda \le 2)$$
(1.4)

In this paper, we establish the following result.

Theorem 1.1. *In* $\triangle ABC$, we have

$$\frac{6+\lambda}{2-\lambda} - \frac{4\lambda^2}{(\lambda-2)(\lambda-3)} \cdot \frac{r}{R} \ge \sum \frac{h_a + \lambda r}{h_a - \lambda r} \\
\ge \begin{cases} \frac{3(3+\lambda)}{3-\lambda} + \frac{2\lambda^2}{(4-\lambda)(3-\lambda)(2-\lambda)} \cdot \left(1 - \frac{2r}{R}\right) \left(\lambda < \frac{7-\sqrt{17}}{2}\right), \\
\frac{3(3+\lambda)}{3-\lambda} + \frac{16(\lambda-1)}{(3-\lambda)^3} \cdot \left(1 - \frac{2r}{R}\right) \left(\frac{7-\sqrt{17}}{2} \le \lambda \le 2\right).
\end{cases}$$
(1.5)

Received: 08.05.2009; In revised form: 12.01.2010; Accepted: 08.02.2010.

²⁰⁰⁰ Mathematics Subject Classification. 51M16.

Key words and phrases. Cosnita-Turtoiu inequality, Gerretsen's inequality, Euler's inequality.

2. PRELIMINARY RESULTS

Lemma 2.1. In $\triangle ABC$, we have

$$\sum \frac{h_a + \lambda r}{h_a - \lambda r} = \frac{(6 + \lambda)(2 - \lambda)s^2 + \lambda^2(6\lambda - 4)Rr - \lambda^2 r^2}{(\lambda - 2)^2 s^2 - \lambda^2(2\lambda - 4)Rr + \lambda^2 r^2}$$
(2.6)

Proof. Utilizing the known identities

$$h_a = \frac{2\triangle}{a}, \ h_b = \frac{2\triangle}{b}, \ h_c = \frac{2\triangle}{c} \text{ and } \triangle = rs.$$

we can get

$$\sum \frac{h_a + \lambda r}{h_a - \lambda r} = \sum \frac{\frac{2rs}{a} + \lambda r}{\frac{2rs}{a} - \lambda r} = \sum \frac{2s + \lambda a}{2s - \lambda a} = \sum \frac{(1+\lambda)a + b + c}{(1-\lambda)a + b + c}$$

$$= \frac{\sum [(1+\lambda)a + b + c][(1-\lambda)b + c + a][(1-\lambda)c + a + b]}{\prod [(1-\lambda)a + b + c]}$$

$$= \frac{(3-\lambda)(\sum a)^3 - \lambda^2 \sum a \sum bc + 3\lambda^3 \prod a}{(1-\lambda)(\sum a)^3 + \lambda^2 \sum a \sum bc - \lambda^3 \prod a}.$$
(2.7)

With known identities [4, pp. 52]:

$$a + b + c = 2s$$
, $ab + bc + ca = s^2 + 4Rr + r^2$, $abc = 4Rrs$

together with (2.7), we obtain identity (2.6) immediately.

Lemma 2.2. ([1]) For any triangle ABC, the following inequalities hold true:

$$\frac{1}{4}\delta(4-\delta)^3 \le \frac{s^2}{R^2} \le \frac{1}{4}(2-\delta)(2+\delta)^3,$$
(2.8)

where $\delta = 1 - \sqrt{1 - \frac{2r}{R}} \in (0, 1]$. Furthermore, the equality holds in left (or right) inequality of (2.8) if and only if the triangle is isosceles.

Lemma 2.3. If
$$0 < \delta \le 1$$
 and $\lambda < \frac{7 - \sqrt{17}}{2}$, then
 $(\lambda - 1)\delta + \lambda^2 - 7\lambda + 8 \ge 0.$ (2.9)

Proof. Define the function

$$f(\delta) = (\lambda - 1)\delta + \lambda^2 - 7\lambda + 8, \ \delta \in (0, 1] \quad \left(\lambda < \frac{7 - \sqrt{17}}{2}\right)$$

It's easy to see $f(\delta)$ is a linear function with respect to δ . Hence, inequality (2.9) holds if and only if $f(0) \ge 0$ and $f(1) \ge 0$.

(i) For $\lambda < \frac{7 - \sqrt{17}}{2} < \frac{7 + \sqrt{17}}{2}$, it's easy to find $f(0) = \lambda^2 - 7\lambda + 8 = \left(\lambda - \frac{7 - \sqrt{17}}{2}\right) \left(\lambda - \frac{7 + \sqrt{17}}{2}\right) > 0.$ (ii) For $\lambda < \frac{7 - \sqrt{17}}{2} < 3 - \sqrt{2} < 3 + \sqrt{2}$, we can get

 $\lambda < -\frac{1}{2} < 3 - \sqrt{2} < 3 + \sqrt{2}$, we can get $f(1) = \lambda^2 - 6\lambda + 7 = [\lambda - (3 - \sqrt{2})][\lambda - (3 + \sqrt{2})] > 0.$

From (i) and (ii), we can get inequality (2.9) immediately.

3. The proof of theorem 1.1

Proof. We prove Theorem 1.1 with three steps.

(*i*) First, we prove the left hand of inequality (1.5). By Lemma 2.1 and $\lambda < 2$, the left hand of inequality (1.5) is equivalent to

$$\frac{(6+\lambda)(2-\lambda)s^2+\lambda^2(6\lambda-4)Rr-\lambda^2r^2}{(\lambda-2)^2s^2-\lambda^2(2\lambda-4)Rr+\lambda^2r^2} \leq \frac{6+\lambda}{2-\lambda} - \frac{4\lambda^2}{(\lambda-2)(\lambda-3)} \cdot \frac{R}{R}$$

97

98 or

$$\frac{4\lambda^{2}r}{(\lambda-2)(\lambda-3)[(\lambda-2)^{2}s^{2}-\lambda^{2}(2\lambda-4)Rr+\lambda^{2}r^{2}]}$$

$$\cdot [-(\lambda-2)^{2}s^{2}-(\lambda-2)(\lambda-3)(\lambda-4)R^{2}$$

$$+2(\lambda^{3}-2\lambda^{2}-\lambda+3)Rr-\lambda^{2}r^{2}] \geq 0.$$
(3.10)

And inequality (3.10) is equivalent to

$$(2-\lambda)^{2}(4R^{2}+4Rr+3r^{2}-s^{2})+(2-\lambda)(\lambda^{2}-3\lambda+4)(R-2r)^{2} + 2[(2-\lambda)^{3}+(2-\lambda)+1](R-2r)r \ge 0.$$
(3.11)

From $\lambda < 2$, **Gerretsen**'s inequality ([2, pp. 50, Theorem 5.8])

$$s^2 \le 4R^2 + 4Rr + 3r^2$$

and Euler's inequality ([2, pp. 48, Theorem 5.1])

$$R \ge 2r$$
,

we can conclude that inequality (3.11) holds.

(*ii*) Second, we prove the following inequality.

$$\sum \frac{h_a + \lambda r}{h_a - \lambda r} \ge \frac{3(3+\lambda)}{3-\lambda} + \frac{2\lambda^2(1-\frac{2r}{R})}{(4-\lambda)(3-\lambda)(2-\lambda)} \left(\lambda < \frac{7-\sqrt{17}}{2}\right)$$
(3.12)

By Lemma 2.1, inequality (3.12) is equivalent to

$$\frac{(6+\lambda)(2-\lambda)s^2 + \lambda^2(6\lambda - 4)Rr - \lambda^2r^2}{(\lambda - 2)^2s^2 - \lambda^2(2\lambda - 4)Rr + \lambda^2r^2}$$

$$\geq \frac{3(3+\lambda)}{3-\lambda)} + \frac{2\lambda^2}{(4-\lambda)(3-\lambda)(2-\lambda)} \cdot \left(1 - \frac{2r}{R}\right) \left(\lambda < \frac{7-\sqrt{17}}{2}\right).$$
(3.13)

For $\lambda < \frac{7 - \sqrt{17}}{2}$, inequality (3.13) is equivalent to

$$(2-\lambda)^{2}[(3-\lambda)R+2r](s^{2}-16Rr+5r^{2})+4(\lambda^{2}-5\lambda+5)(R-2r)r^{2} \ge 0.$$
(3.14)

From $\lambda < \frac{7-\sqrt{17}}{2}$ and Lemma 2.2, we can get

$$(2 - \lambda)^{2}[(3 - \lambda)R + 2r](s^{2} - 16Rr + 5r^{2}) + 4(\lambda^{2} - 5\lambda + 5)(R - 2r)r^{2}$$

$$\geq (2 - \lambda)^{2}[(3 - \lambda)R + 2r] \left[\frac{1}{4}\delta(4 - \delta)^{3}R^{2} - 16Rr + 5r^{2}\right]$$

$$+ 4(\lambda^{2} - 5\lambda + 5)(R - 2r)r^{2}$$

$$= \delta^{2}(\delta - 1)^{2}(4 - \delta - \lambda)[(\lambda - 1)\delta + \lambda^{2} - 7\lambda + 8]R^{3}$$
(3.15)

For $\lambda < \frac{7-\sqrt{17}}{2}$ and $0 < \delta \leq 1,$ we can easily find

$$4 - \delta - \lambda > 0. \tag{3.16}$$

From inequality (3.16), $0 < \delta \le 1$ and Lemma 2.3, we can get

$$\delta^{2}(\delta-1)^{2}(4-\delta-\lambda)[(\lambda-1)\delta+\lambda^{2}-7\lambda+8]R^{3} \ge 0.$$
(3.17)

Inequality (3.14) follows from inequalities (3.15) and (3.17) immediately, hence, inequality (3.12) holds.

(*iii*) Third, we prove the following inequality.

$$\sum \frac{h_a + \lambda r}{h_a - \lambda r} \ge \frac{3(3+\lambda)}{3-\lambda} + \frac{16(\lambda-1)}{(3-\lambda)^3} \cdot \left(1 - \frac{2r}{R}\right) \left(\frac{7-\sqrt{17}}{2} \le \lambda \le 2\right)$$
(3.18)

With Lemma 2.1, inequality (3.18) is equivalent to

$$\frac{(6+\lambda)(2-\lambda)s^2 + \lambda^2(6\lambda - 4)Rr - \lambda^2r^2}{(\lambda - 2)^2s^2 - \lambda^2(2\lambda - 4)Rr + \lambda^2r^2}$$

$$\geq \frac{3(3+\lambda)}{3-\lambda)} + \frac{16(\lambda - 1)}{(3-\lambda)^3} \cdot \left(1 - \frac{2r}{R}\right) \left(\frac{7 - \sqrt{17}}{2} \le \lambda \le 2\right)$$
(3.19)

The refinement and generalization of the double Cosnita-Turtoiu inequality

For $\lambda \leq 2$, inequality (3.19) is equivalent to

$$(2 - \lambda)[(\lambda^2 - 3\lambda + 4)^2(R - 2r) + 2\lambda^2(\lambda - 3)^2r]s^2 + \lambda^2(14\lambda^3 - 92\lambda^2 + 222\lambda - 184)R^2r - \lambda^2(\lambda^3 + 32\lambda^2 - 115\lambda + 110)Rr^2 + 16(\lambda - 1)r^3 \ge 0.$$
(3.20)

From $\lambda \leq 2$ and Lemma 2.2, we can get

$$(2 - \lambda)[(\lambda^{2} - 3\lambda + 4)^{2}(R - 2r) + 2\lambda^{2}(\lambda - 3)^{2}r]s^{2} + \lambda^{2}(14\lambda^{3} - 92\lambda^{2} + 222\lambda - 184)R^{2}r - \lambda^{2}(\lambda^{3} + 32\lambda^{2} - 115\lambda + 110)Rr^{2} + 16(\lambda - 1)r^{3}$$

$$\geq (2 - \lambda)[(\lambda^{2} - 3\lambda + 4)^{2}(R - 2r) + 2\lambda^{2}(\lambda - 3)^{2}r] \cdot \frac{1}{4}\delta(4 - \delta)^{3}R^{2} + \lambda^{2}(14\lambda^{3} - 92\lambda^{2} + 222\lambda - 184)R^{2}r - \lambda^{2}(\lambda^{3} + 32\lambda^{2} - 115\lambda + 110)Rr^{2} + 16(\lambda - 1)r^{3}$$

$$= 2\delta(\delta - 1)^{2}(4 - \delta - \lambda)[2(\lambda - 1)\delta + \lambda^{2} - 7\lambda + 8]^{2}R^{3}.$$
(3.21)

From inequality (3.16) and $0 < \delta \leq 1$, we can get

$$2\delta(\delta-1)^2(4-\delta-\lambda)[2(\lambda-1)\delta+\lambda^2-7\lambda+8]^2R^3 \ge 0.$$
(3.22)

Inequality (3.20) follows from inequalities (3.21) and (3.22) immediately. Thus, Inequality (3.18) holds. From the three steps above, the proof of Theorem 1.1 is completed.

Remark 3.1. From the proof of Theorem 1.1, we can find that inequality (3.18) holds for $\lambda \le 2$, but inequality (3.12) is better than inequality (3.18) when $\lambda < \frac{7-\sqrt{17}}{2}$, because

$$\frac{2\lambda^2}{(4-\lambda)(3-\lambda)(2-\lambda)} - \frac{16(\lambda-1)}{(3-\lambda)^3} = \frac{2(\lambda^2 - 7\lambda + 8)^2}{(3-\lambda)^3(4-\lambda)(2-\lambda)} > 0$$
$$\Longrightarrow \frac{2\lambda^2}{(4-\lambda)(3-\lambda)(2-\lambda)} > \frac{16(\lambda-1)}{(3-\lambda)^3}.$$

Acknowledgement. The authors would like to thank the anonymous referee for his careful reading and some valuable suggestions.

REFERENCES

- Bencze, M., Wu, H.-H. and Wu, S.-H., An equivalent form of fundamental triangle inequality and its application, Octogon Mathematical Magazine 16 (2008), No. 1, 36-41
- [2] Bottema, O., Djordević, R. Ž., Janić, R. R., Mitrinović, D. S. and Vasić, P. M., Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969
- [3] Chu, X.-G., Research information Cxx-205, Communication in Studies of Ineq. 6 (1998), 67-68 (in Chinese)
- [4] Mitrinović, D. S., Pečarić, J. E. and Volenec, V., Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989
- [5] Tian, Z.-P., An inequality relating to the altitudes, The Monthly Journal of High School Math. 26 (2003), 42 (in Chinese)
- [6] Zhang, X.-M., The relation between $\prod \cos \frac{A}{2}$ and $\prod \sin \frac{A}{2}$ and its applications, Communication in Studies of Inequalities 5 (1998), 14-17 (in Chinese)

ZHEJIANG XINCHANG HIGH SCHOOL DEPARTMENT OF MATHEMATICS 195 XINZHONG ROAD, 312500, XINCHANG, PEOPLE'S REPUBLIC OF CHINA *E-mail address*: yudong.wu@yahoo.com.cn

HARMANULUI 6, SACELE 505600 BRASOV, ROMANIA *E-mail address*: benczemihaly@gmail.com