The refinement and generalization of the double Cosnita-Turtoiu inequality with one parameter

Yu-Dong Wu and Mifály Bencze

Abstract

. In this short note, we give the refinement and generalization of the double Cosnita-Turtoiu inequality with one parameter by Gerretsen's inequality, Euler's inequality and an equivalent form of fundamental triangle inequality.

1. Introduction and main results

For a given triangle $A B C$, let a, b, c be the side-lengths, h_{a}, h_{b}, h_{c} the altitudes, s the semi-perimeter, \triangle the area, R the circumradius and r the inradius, respectively. Moreover, we will customarily use the cyclic sum symbol, that is:

$$
\begin{gathered}
\sum f(a)=f(a)+f(b)+f(c), \\
\sum f(b, c)=f(a, b)+f(b, c)+f(c, a)
\end{gathered}
$$

and

$$
\prod f(a)=f(a) f(b) f(c)
$$

etc.
In 1965, C. Cosnita and F. Turtoiu (see [2, pp. 66, Theorem 6.22]) built the following so-called Cosnita-Turtoiu inequality.

$$
\begin{equation*}
6 \leq \sum \frac{h_{a}+r}{h_{a}-r} \tag{1.1}
\end{equation*}
$$

In 2003, Tian [5] considered the upper-bound of Cosnita-Turtoiu inequality and get the result as follows.

$$
\begin{equation*}
\sum \frac{h_{a}+r}{h_{a}-r}<7 \tag{1.2}
\end{equation*}
$$

In fact, Zhang [6] obtained the following result in 1998.

$$
\begin{equation*}
\frac{19}{3}-\frac{2 r}{3 R} \leq \sum \frac{h_{a}+r}{h_{a}-r} \leq 7-\frac{2 r}{R} \tag{1.3}
\end{equation*}
$$

It's easy to find that the right hand of inequality $\sqrt{1.3}$) is better than inequality (1.2).
And in 1999, Chu [3] generalized Cosnita-Turtoiu inequality with one parameter.

$$
\begin{equation*}
\frac{3(3+\lambda)}{3-\lambda} \leq \sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r}(\lambda \leq 2) \tag{1.4}
\end{equation*}
$$

In this paper, we establish the following result.
Theorem 1.1. In $\triangle A B C$, we have

$$
\begin{align*}
\frac{6+\lambda}{2-\lambda} & -\frac{4 \lambda^{2}}{(\lambda-2)(\lambda-3)} \cdot \frac{r}{R} \geq \sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r} \\
& \geq\left\{\begin{array}{l}
\frac{3(3+\lambda)}{3-\lambda}+\frac{2 \lambda^{2}}{(4-\lambda)(3-\lambda)(2-\lambda)} \cdot\left(1-\frac{2 r}{R}\right)\left(\lambda<\frac{7-\sqrt{17}}{2}\right), \\
\frac{3(3+\lambda)}{3-\lambda}+\frac{16(\lambda-1)}{(3-\lambda)^{3}} \cdot\left(1-\frac{2 r}{R}\right)\left(\frac{7-\sqrt{17}}{2} \leq \lambda \leq 2\right)
\end{array}\right. \tag{1.5}
\end{align*}
$$

[^0]
2. Preliminary results

Lemma 2.1. In $\triangle A B C$, we have

$$
\begin{equation*}
\sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r}=\frac{(6+\lambda)(2-\lambda) s^{2}+\lambda^{2}(6 \lambda-4) R r-\lambda^{2} r^{2}}{(\lambda-2)^{2} s^{2}-\lambda^{2}(2 \lambda-4) R r+\lambda^{2} r^{2}} \tag{2.6}
\end{equation*}
$$

Proof. Utilizing the known identities

$$
h_{a}=\frac{2 \triangle}{a}, h_{b}=\frac{2 \triangle}{b}, h_{c}=\frac{2 \triangle}{c} \text { and } \triangle=r s
$$

we can get

$$
\begin{align*}
\sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r} & =\sum \frac{\frac{2 r s}{a}+\lambda r}{\frac{2 r s}{a}-\lambda r}=\sum \frac{2 s+\lambda a}{2 s-\lambda a}=\sum \frac{(1+\lambda) a+b+c}{(1-\lambda) a+b+c} \tag{2.7}\\
& =\frac{\sum[(1+\lambda) a+b+c][(1-\lambda) b+c+a][(1-\lambda) c+a+b]}{\prod[(1-\lambda) a+b+c]} \\
& =\frac{(3-\lambda)\left(\sum a\right)^{3}-\lambda^{2} \sum a \sum b c+3 \lambda^{3} \prod a}{(1-\lambda)\left(\sum a\right)^{3}+\lambda^{2} \sum a \sum b c-\lambda^{3} \prod a} .
\end{align*}
$$

With known identities [4, pp. 52]:

$$
a+b+c=2 s, a b+b c+c a=s^{2}+4 R r+r^{2}, a b c=4 \operatorname{Rr} s
$$

together with 2.7, we obtain identity (2.6) immediately.
Lemma 2.2. ([1]) For any triangle $A B C$, the following inequalities hold true:

$$
\begin{equation*}
\frac{1}{4} \delta(4-\delta)^{3} \leq \frac{s^{2}}{R^{2}} \leq \frac{1}{4}(2-\delta)(2+\delta)^{3} \tag{2.8}
\end{equation*}
$$

where $\delta=1-\sqrt{1-\frac{2 r}{R}} \in(0,1]$. Furthermore, the equality holds in left (or right) inequality of (2.8) if and only if the triangle is isosceles.
Lemma 2.3. If $0<\delta \leq 1$ and $\lambda<\frac{7-\sqrt{17}}{2}$, then

$$
\begin{equation*}
(\lambda-1) \delta+\lambda^{2}-7 \lambda+8 \geq 0 \tag{2.9}
\end{equation*}
$$

Proof. Define the function

$$
f(\delta)=(\lambda-1) \delta+\lambda^{2}-7 \lambda+8, \delta \in(0,1] \quad\left(\lambda<\frac{7-\sqrt{17}}{2}\right)
$$

It's easy to see $f(\delta)$ is a linear function with respect to δ. Hence, inequality 2.9 holds if and only if $f(0) \geq 0$ and $f(1) \geq 0$.
(i) For $\lambda<\frac{7-\sqrt{17}}{2}<\frac{7+\sqrt{17}}{2}$, it's easy to find

$$
f(0)=\lambda^{2}-7 \lambda+8=\left(\lambda-\frac{7-\sqrt{17}}{2}\right)\left(\lambda-\frac{7+\sqrt{17}}{2}\right)>0
$$

(ii) For $\lambda<\frac{7-\sqrt{17}}{2}<3-\sqrt{2}<3+\sqrt{2}$, we can get

$$
f(1)=\lambda^{2}-6 \lambda+7=[\lambda-(3-\sqrt{2})][\lambda-(3+\sqrt{2})]>0
$$

From (i) and (ii), we can get inequality 2.9 immediately.

3. THE PROOF OF THEOREM 1.1

Proof. We prove Theorem 1.1 with three steps.
(i) First, we prove the left hand of inequality (1.5).

By Lemma 2.1 and $\lambda<2$, the left hand of inequality (1.5) is equivalent to

$$
\frac{(6+\lambda)(2-\lambda) s^{2}+\lambda^{2}(6 \lambda-4) R r-\lambda^{2} r^{2}}{(\lambda-2)^{2} s^{2}-\lambda^{2}(2 \lambda-4) R r+\lambda^{2} r^{2}} \leq \frac{6+\lambda}{2-\lambda}-\frac{4 \lambda^{2}}{(\lambda-2)(\lambda-3)} \cdot \frac{r}{R}
$$

$$
\begin{gather*}
\frac{4 \lambda^{2} r}{(\lambda-2)(\lambda-3)\left[(\lambda-2)^{2} s^{2}-\lambda^{2}(2 \lambda-4) R r+\lambda^{2} r^{2}\right]} \tag{3.10}\\
\cdot\left[-(\lambda-2)^{2} s^{2}-(\lambda-2)(\lambda-3)(\lambda-4) R^{2}\right. \\
\left.+2\left(\lambda^{3}-2 \lambda^{2}-\lambda+3\right) R r-\lambda^{2} r^{2}\right] \geq 0 .
\end{gather*}
$$

And inequality (3.10) is equivalent to

$$
\begin{align*}
(2-\lambda)^{2}\left(4 R^{2}\right. & \left.+4 R r+3 r^{2}-s^{2}\right)+(2-\lambda)\left(\lambda^{2}-3 \lambda+4\right)(R-2 r)^{2} \tag{3.11}\\
& +2\left[(2-\lambda)^{3}+(2-\lambda)+1\right](R-2 r) r \geq 0
\end{align*}
$$

From $\lambda<2$, Gerretsen's inequality ([2, pp. 50, Theorem 5.8])

$$
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

and Euler's inequality ([2, pp. 48, Theorem 5.1])

$$
R \geq 2 r,
$$

we can conclude that inequality (3.11) holds.
(ii) Second, we prove the following inequality.

$$
\begin{equation*}
\sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r} \geq \frac{3(3+\lambda)}{3-\lambda)}+\frac{2 \lambda^{2}\left(1-\frac{2 r}{R}\right)}{(4-\lambda)(3-\lambda)(2-\lambda)}\left(\lambda<\frac{7-\sqrt{17}}{2}\right) \tag{3.12}
\end{equation*}
$$

By Lemma 2.1, inequality (3.12) is equivalent to

$$
\begin{align*}
& \frac{(6+\lambda)(2-\lambda) s^{2}+\lambda^{2}(6 \lambda-4) R r-\lambda^{2} r^{2}}{(\lambda-2)^{2} s^{2}-\lambda^{2}(2 \lambda-4) R r+\lambda^{2} r^{2}} \tag{3.13}\\
\geq & \frac{3(3+\lambda)}{3-\lambda)}+\frac{2 \lambda^{2}}{(4-\lambda)(3-\lambda)(2-\lambda)} \cdot\left(1-\frac{2 r}{R}\right)\left(\lambda<\frac{7-\sqrt{17}}{2}\right) .
\end{align*}
$$

For $\lambda<\frac{7-\sqrt{17}}{2}$, inequality (3.13) is equivalent to

$$
\begin{equation*}
(2-\lambda)^{2}[(3-\lambda) R+2 r]\left(s^{2}-16 R r+5 r^{2}\right)+4\left(\lambda^{2}-5 \lambda+5\right)(R-2 r) r^{2} \geq 0 \tag{3.14}
\end{equation*}
$$

From $\lambda<\frac{7-\sqrt{17}}{2}$ and Lemma 2.2. we can get

$$
\begin{align*}
& (2-\lambda)^{2}[(3-\lambda) R+2 r]\left(s^{2}-16 R r+5 r^{2}\right)+4\left(\lambda^{2}-5 \lambda+5\right)(R-2 r) r^{2} \tag{3.15}\\
\geq & (2-\lambda)^{2}[(3-\lambda) R+2 r]\left[\frac{1}{4} \delta(4-\delta)^{3} R^{2}-16 R r+5 r^{2}\right] \\
& +4\left(\lambda^{2}-5 \lambda+5\right)(R-2 r) r^{2} \\
= & \delta^{2}(\delta-1)^{2}(4-\delta-\lambda)\left[(\lambda-1) \delta+\lambda^{2}-7 \lambda+8\right] R^{3}
\end{align*}
$$

For $\lambda<\frac{7-\sqrt{17}}{2}$ and $0<\delta \leq 1$, we can easily find

$$
\begin{equation*}
4-\delta-\lambda>0 \tag{3.16}
\end{equation*}
$$

From inequality (3.16), $0<\delta \leq 1$ and Lemma 2.3 , we can get

$$
\begin{equation*}
\delta^{2}(\delta-1)^{2}(4-\delta-\lambda)\left[(\lambda-1) \delta+\lambda^{2}-7 \lambda+8\right] R^{3} \geq 0 \tag{3.17}
\end{equation*}
$$

Inequality (3.14) follows from inequalities (3.15) and (3.17) immediately, hence, inequality (3.12) holds.
(iii) Third, we prove the following inequality.

$$
\begin{equation*}
\sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r} \geq \frac{3(3+\lambda)}{3-\lambda)}+\frac{16(\lambda-1)}{(3-\lambda)^{3}} \cdot\left(1-\frac{2 r}{R}\right)\left(\frac{7-\sqrt{17}}{2} \leq \lambda \leq 2\right) \tag{3.18}
\end{equation*}
$$

With Lemma 2.1, inequality 3.18 is equivalent to

$$
\begin{align*}
& \frac{(6+\lambda)(2-\lambda) s^{2}+\lambda^{2}(6 \lambda-4) R r-\lambda^{2} r^{2}}{(\lambda-2)^{2} s^{2}-\lambda^{2}(2 \lambda-4) R r+\lambda^{2} r^{2}} \tag{3.19}\\
\geq & \frac{3(3+\lambda)}{3-\lambda)}+\frac{16(\lambda-1)}{(3-\lambda)^{3}} \cdot\left(1-\frac{2 r}{R}\right)\left(\frac{7-\sqrt{17}}{2} \leq \lambda \leq 2\right)
\end{align*}
$$

For $\lambda \leq 2$, inequality 3.19 is equivalent to

$$
\begin{align*}
& (2-\lambda)\left[\left(\lambda^{2}-3 \lambda+4\right)^{2}(R-2 r)+2 \lambda^{2}(\lambda-3)^{2} r\right] s^{2}+\lambda^{2}\left(14 \lambda^{3}-92 \lambda^{2}\right. \\
& \quad+222 \lambda-184) R^{2} r-\lambda^{2}\left(\lambda^{3}+32 \lambda^{2}-115 \lambda+110\right) R r^{2}+16(\lambda-1) r^{3} \geq 0 . \tag{3.20}
\end{align*}
$$

From $\lambda \leq 2$ and Lemma 2.2, we can get

$$
\begin{align*}
& (2-\lambda)\left[\left(\lambda^{2}-3 \lambda+4\right)^{2}(R-2 r)+2 \lambda^{2}(\lambda-3)^{2} r\right] s^{2}+\lambda^{2}\left(14 \lambda^{3}-92 \lambda^{2}\right. \tag{3.21}\\
& +222 \lambda-184) R^{2} r-\lambda^{2}\left(\lambda^{3}+32 \lambda^{2}-115 \lambda+110\right) R r^{2}+16(\lambda-1) r^{3} \\
\geq & (2-\lambda)\left[\left(\lambda^{2}-3 \lambda+4\right)^{2}(R-2 r)+2 \lambda^{2}(\lambda-3)^{2} r\right] \cdot \frac{1}{4} \delta(4-\delta)^{3} R^{2} \\
& +\lambda^{2}\left(14 \lambda^{3}-92 \lambda^{2}+222 \lambda-184\right) R^{2} r-\lambda^{2}\left(\lambda^{3}+32 \lambda^{2}-115 \lambda+110\right) R r^{2} \\
& +16(\lambda-1) r^{3} \\
= & 2 \delta(\delta-1)^{2}(4-\delta-\lambda)\left[2(\lambda-1) \delta+\lambda^{2}-7 \lambda+8\right]^{2} R^{3} .
\end{align*}
$$

From inequality 3.16 and $0<\delta \leq 1$, we can get

$$
\begin{equation*}
2 \delta(\delta-1)^{2}(4-\delta-\lambda)\left[2(\lambda-1) \delta+\lambda^{2}-7 \lambda+8\right]^{2} R^{3} \geq 0 \tag{3.22}
\end{equation*}
$$

Inequality (3.20) follows from inequalities (3.21) and (3.22) immediately. Thus, Inequality (3.18) holds.
From the three steps above, the proof of Theorem 1.1 is completed.
Remark 3.1. From the proof of Theorem 1.1, we can find that inequality (3.18) holds for $\lambda \leq 2$, but inequality (3.12) is better than inequality
$\lambda<\frac{7-\sqrt{17}}{2}$, because

$$
\begin{aligned}
& \frac{2 \lambda^{2}}{(4-\lambda)(3-\lambda)(2-\lambda)}-\frac{16(\lambda-1)}{(3-\lambda)^{3}}=\frac{2\left(\lambda^{2}-7 \lambda+8\right)^{2}}{(3-\lambda)^{3}(4-\lambda)(2-\lambda)}>0 \\
\Longrightarrow & \frac{2 \lambda^{2}}{(4-\lambda)(3-\lambda)(2-\lambda)}>\frac{16(\lambda-1)}{(3-\lambda)^{3}} .
\end{aligned}
$$

Acknowledgement. The authors would like to thank the anonymous referee for his careful reading and some valuable suggestions.

References

[1] Bencze, M., Wu, H.-H. and Wu, S.-H., An equivalent form of fundamental triangle inequality and its application, Octogon Mathematical Magazine 16 (2008), No. 1, 36-41
[2] Bottema, O., Djordević, R. Ž., Janić, R. R., Mitrinović, D. S. and Vasić, P. M., Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969
[3] Chu, X.-G., Research information Cxx-205, Communication in Studies of Ineq. 6 (1998), 67-68 (in Chinese)
[4] Mitrinović, D. S., Pečarić, J. E. and Volenec, V., Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989
[5] Tian, Z.-P., An inequality relating to the altitudes, The Monthly Journal of High School Math. 26 (2003), 42 (in Chinese)
[6] Zhang, X.-M., The relation between $\prod \cos \frac{A}{2}$ and $\prod \sin \frac{A}{2}$ and its applications, Communication in Studies of Inequalities 5 (1998), 14-17 (in Chinese)

Zhejiang Xinchang High School
Department of Mathematics
195 Xinzhong Road, 312500, Xinchang, People's Republic of China
E-mail address: yudong.wu@yahoo.com.cn
Harmanului 6, Sacele 505600
Brasov, Romania
E-mail address: benczemihaly@gmail.com

[^0]: Received: 08.05.2009; In revised form: 12.01.2010; Accepted: 08.02.2010
 2000 Mathematics Subject Classification. 51M16.
 Key words and phrases. Cosnita-Turtoiu inequality, Gerretsen's inequality, Euler's inequality.

