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Metric relations in the plane obtained by using complex numbers

ABSTRACT.

The main purpose of this paper is to obtain some important metric relations in the Euclidean plane by using complex numbers. In the first Section
we prove the Lagrange’s formula (Theorem [I.1) and we derive a generalization of the well-known Stewart’s relation (Theorem. Section 2 is
devoted to Zarantonello’s inequality (Theorem[2.4) and to its connection to the problem of finding the group of plane isometries (Theorem[2.5).

1. LAGRANGE’S THEOREM AND SOME CONSEQUENCES

The method of using complex numbers in Geometry is a strong one. It can be used to solve some important
classes of problems, especially involving distances, angles and orthogonality, as well as collinearity. These problems
are called metric problems. There is a vast literature on this topic, we only mention here the books [1], [4], [5], [6],
and [7]. In this section we will prove the well-known Lagrange’s theorem in the Euclidean plane by using complex
numbers and their properties. This result is also proved in book [1] (see Theorem 1, Section 4.11, pp. 141-148), where
the proof uses the real product of two complex numbers.

Theorem 1.1 (Lagrange’s Theorem). Let n be a positive integer, let z1,2a,...,2, € Cand oy, aq, ..., 0 € R such that
ay + -+ ap, = 1. Then for each z € C the following relation holds:
n n
S arlz— a2 =z —arzm = —anzal2+ > anlzr — a2 — - — anzal
k=1 k=1

Proof. Using the properties of the absolute value, we obtain

n n n
Zak|z A Zak(z —zk)(Z—7Zk) = Zak(|z|2 — 271 — Z2 + |2 ?)
k=1 k=1

k=1
n n n
= \z|2—zZak2k—ZZakzk+Zak|zk|2. (1.1)
k=1 k=1 k=1
On the other hand .
|z — o121 — - — apznl® + Zak|2’k —1z — o — pznl?
k=1
=(z—a121— —anzn)(Z—a1Z1 — + — QpZn)
n
—i—Zak(zk —1z1 — = pzn)(Zg —01Z1 —r — QnZn)

k=1

= |z\2 — ZZ aLZE — EZakzk +2(arz1+ - Fanzn)(1Z1 + -+ anZy)
k=1 k=1

n n n
+ Zak|zk|2 - Zakzk(alél + ot @nZn) — Zakék(alzl +tanzn)
k=1 k=1 k=1

n n n
= |z|2—zZaka—ZZakzk+Zak|zk|2. (1.2)
k=1 k=1 k=1
From (1.1) and (1.2) we obtain the relation to be proven. O

Remark 1.1. From a geometric point of view, we can rewrite Theorem in the following metric form:
Let n be a positive integer, let Py, ..., P, be n points in the plane and let a1, s, . . ., @, € R be real numbers such
that ay + -+ + a, = 1. Then for each point P in the plane, the following relation holds:

> ayPP? = PG+ ax PG,
k=1 k=1
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where G is the barycenter of the set { Py, ..., P,} with respect to the weights a1, ..., a,. In particular, if oy = ---

1
an = —, then G is the centroid of the polygon with vertices P, ..., P,.

Theorem 1.2 (Stewart’s Theorem). Let z1, 22 € Cand a € R. Then for each z € C the following relation holds:
|z —az; — (1 —a)zl? =alz — 21 + (1 — a)|z — 22|* — a(1l — a)|z1 — 2|
Proof. Using the properties of the absolute value, the left hand side of the equation can be written as
lz—az — (1 —a)z|> =|z+az—az —az; — (1 —a)z|?
=la(z —z1) + (1 —a)(z — )
—la(z — =) + (1 - a)(z — 22)][a(z — 71) + (1 - a)(z — 22)]
=ad?|lz— 2P+ (1 —a)*z — 2/
+a(l —a)[(z - 21)(Z - Z2) + (2 — 22)(Z — Z1))]
=a?|lz— 212+ (1 —a)?z — 2/
+a(l —a)[|z]® — 212 — 2Z2 + 21%2 + |2]? — 21 — 27 + 271].
We get
|z —az; — (1 —a)z|® = d?|z — z1)* + (1 — a)?|z — 2o?
+a(l —a)[|z — 21> + |z — 22| = |21]? = |22|* + 21Z2 + 2071

=alz— 21>+ (1 —a)lz — 2)* —a(l — a)|z — z|*.

Remark 1.2. From a geometric point of view, we can rewrite Theorem [I.2)in the following metric form:

O

Let P, P» be two points in the plane and let a € [0, 1]. For each point P in the plane, the following relation holds:

PM? = aPP? + (1 — a)PP? — a(1 — a) P, P,
where M is the point which divides the segment P; P, into the ratio a, thus we have
MP,
a= .
PP,
Replacing a, our relation becomes the well-known Stewart’s relation (see [3, pp. 6]):

PP}-MP, + PP} -MP, = PM?-P,Py+ MP, - MP, - P, P,.

This theorem is useful in computing the length of a cevian in a triangle when we know the ratio a.
Stewart’s theorem can be generalized in the following way:

Theorem 1.3. Let n be a positive integer, n>2, z1, 22, ..., 2, €Cand a1, aq,...,a, €R such that a; + --- + a,, = 1. Then

for each z € C we have:
2

n
= Zak\z — z? — Z agay|ze — z1)°.
k=1

1<k<i<n

n
z — Z A2k
k=1
Proof. The relation we have to prove is equivalent to

(2—26%2%) (z—Zakzk> :Z ak(z —Zk>(§—§k) — Z akal(zk —Zl)<§k —El)
k=1 k=1 k=1

1<k<i<n

and we obtain

n n
2z — E apzZp — E apzKz + E araIZK2]
k=1 k=1 1<k,i<n

n
= E ak(zé — 2Zk — 2Kz + Zk§k> — E akal(zkék — ZKZ] — 212k + Zlfl).
k=1 1<k<I<n

It suffices to prove that

n n
_ _ 2 _
E arai(zxZi + 2121) + E apzpZi = g A2k Tk

1<k<I<n k=1 k=1
which is equivalent to

n
Zak(l — ag)zkZk = Z arai(zkZr + 21Z1),
k=1

1<k<I<n
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and we get
n
Z ar(ay + - +ag—1 +app1 + -+ an)2zy = Z arar(z1Zk + 271),
k=1 1<k<I<n
which is true, so the theorem is proved. O

Remark 1.3. From a geometric point of view, we can rewrite Theorem [1.3]in the following metric form:
Let n be a positive integer, n > 2, let P, P, ..., P, be n points in the plane and let a;,a2,...,a, € R be real
numbers such that a; + - - - + a,, = 1. Then for each point P in the plane, the following relation holds:

PG =Y"ayPPE— Y apaPP?,
k=1 1<k<i<n

where G is the barycenter of the set { P, ..., P, } with respect to the weights a1,...,a,. If a1,...,a, > 0, then Gisa
point in the convex envelope of the polygon with vertices P, ..., P,.

Theorem [1.3|shows a way of computing the distance from a point in the plane to a point in the convex envelope
of a finite set of points in the plane.
Theorem|[1.3|has some interesting consequences:

Corollary 1.1. If n is a positive integer, n > 2, z1, 22, . .., 2n, € C, then for each z € C the following relation holds:

2 n
1 1
ﬁZ|Z—Z"'|2 3 Z l2e — 21)°.
k=1

1<k<i<n

Z_21+22+"'+Zn
n

1
Proof. In Theorem wetakea; =ay =---=a, = —. [l

n

Remark 1.4. Corollary[I.T|can be rewritten in the following metric form:
Let n be a positive integer, n > 2 and let P, ..., P, be n points in the plane. Then for each point P in the plane,
the following relation holds:

1 < 1
2 2 2
PG __EE PPk——nz § P.P?,
k=1 1<k<lI<n

where G is the centroid of the polygon with vertices Py, Ps, ..., P,.
Corollary 1.2. If n is a positive integer, n > 2, z1, 22, . . ., zn, € C, then
n 2 n
2 =2_lal* =
k=1 k=1
21+ 22+ -+ 2,

Proof. In Corollarywe take z = 0, then we take z = -
prove. O

21+ zo+ -+ 2y 2

n

Z1t+ 29+ + 2n
n

Zk —

and we obtain the equality we wanted to

Remark 1.5. From a geometric point of view, we can rewrite Corollary [T.2]in the following metric form:
Let n be a positive integer, n > 2 and let P, . .., P, be n points in the plane. Then the following relation holds:

Zn: P.G? = Zn: OP? — nOG?,
k=1 k=1

where G is the centroid of the polygon with vertices P, P», ..., P, and O is the origin of the complex plane.

Corollary 1.3. If n is a positive integer, n > 2, z1, 22, . . ., zn, € C, then

n
Z lzp — 2* = nz |zx|? — n?
k=1

n
>
1<k<lI<n k=1

Proof. In Corollary [T} we take z = 0. 4

2

3=

Remark 1.6. Corollary[I.3|can be rewritten as:
Let n be a positive integer, n > 2 and let P, . .., P, be n points in the plane. Then

Y PP = nzn: OP? —n*0G?,
k=1

1<k<I<n

where G is the centroid of the polygon with vertices P;, Ps, ..., P, and O is the origin of the complex plane.
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Corollary 1.4. If n is a positive integer, n > 2, z1,22,...,2, € C, a1,a2,...,ay, b1,b2,...,b, € R are real numbers such
that a1 +ag + -+ ap = by + by + - - - + by, = 1, then the following relation holds:
|brz1 + -+ bz —a121 — - — anzn|2 = — Z (ar, — br)(ar — by)|zk — zl|2.
1<k<I<n

Proof. Using Theorem[1.3} we get

lbrzi + - A bpzn — 121 — - — nzp|? = 1]z —brzr — = bpzat F ...

Fan|zn —b121 — - — bpzy|? — Z apay|zr — 2)* = ay(by]z1 — 21> 4. ..
1<k<I<n
+bn|Z1—Zn|2— Z bkb;|zk—z;|2)+---+an(b1|zn—zl|2+...
1<k<I<n
+bn|zn — Zn|2 — Z bkbl|z;c — Zl|2) — Z akal|zk — Zl|2.
1<k<i<n 1<k<i<n
Since a; +as + -+ + a,, = 1, we obtain

2 2 2
[brz1+ -+ bpzn —a121 — - — Ayt = E apby|zi — 217 — § ara|zi — 2
1<k, l<n 1<k<i<n

— Z bkbl|zk—zl|2 = — Z (ak—bk)(al—bl)|zk—zl|2.
1<k<I<n 1<k<l<n
(]

Remark 1.7. Corollary[I.4]can be rewritten as:
Let n be a positive integer, n > 2, let P, ..., P, be n points in the plane and let a1, a2, ..., an, b1,b2,...,b, € Rbe
real numbers such that a; + az + - -+ + an = b1 + b2 + - - - + b, = 1. Then the following relation holds:

]\4]\72 = — Z (ak - bk)(al - bg)PkPZQ,
1<k<I<n
where M and N are the barycenters of the set {Pi,..., P,} with respect to the weights a1,...,a, and by,...,b,,
respectively. If a1,...,a, > 0and b1,...,b, > 0, then M and N are points in the convex envelope of the polygon
with vertices Py, ..., P,.

Corollary [1.4]is useful in computing the distance between two points in the affine envelope of a polygon. This
result extends the result contained in [1, Theorem 2, pp.117], where the formula is obtained for a triangle and the
distance is expressed in terms of the barycentric coordinates of the points. As a nice application, if we consider the
origin of the complex plane at the circumcenter of triangle ABC, then the Nagel point of the triangle has the complex
coordinate zy = (1 — %)a+ (1 - g)b + (1= 1)c, and we get the formula ON = R — 2r (for more details see [1, pp.113]
or paper [2]). Here a, 3, v represent the sides lengths, s the semi-perimeter, and a, b, ¢ the complex coordinates of the
vertices of triangle ABC.

The next result, also a consequence of Theorem solves in C an extreme problem which in the real case was
solved by E. Laguerre.

e 1
Corollary 1.5. Let n be a positive integer, n > 2, 21, 29,...,2n € C, 20 = —————"" and let ¢ = — Z |2k — 21 2
n n

1<k<i<n
Then for each k € {1,2,...,n} the following relation holds:

|z — 20l < /(0 —1)ec.
Proof. In Corollary [I.Twe take z = z, and we obtain that
|21 — 202 + -+ 4 |20 — 20]2 = nec.
Take k = 1. By applying Cauchy-Schwarz inequality, we have
(Iz2 = 20l + |23 = 20| + -+ + |20 = 201)* < (n = 1)(J22 — 20" + - + |20 — 20[*).
Using the absolute value inequality, we obtain that
22+ 23+ oz — (0= 1)z0* < (n = 1)(l22 = 20 + - + |20 — 20/,
which is equivalent to
Inzo — 21 — (n = Dzo|* < (n = 1)(|z2 = 20/* + - + |20 — 20[%),
and we get
nlzr — 20| < (n—1)(|z1 — 20/* + |22 — 20/ + - - + |20 — 20?) = n(n — 1)

|21 — 20| < v/ (n—1)c.

Thus we obtain
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O
Remark 1.8. In the real case, E. Laguerre’s result says that:
Let n be a positive integer, x1,x2,...,2n € R,
a_ﬂc1+x2+--~+xn b_ac%—i—:r%—im- —&—x%
n ’ n

Then for each k € {1,2,...,n} the following relation holds:
|z —a| < v/ (n—1)(b—a?).
For n = 1, the relation holds. If n. > 2, then from Corollary [L.5 we get
jax —al < /(n—1)e.
On the other hand b — a? = c and thus the result in Corollaryis a generalization of Laguerre’s theorem.

Remark 1.9. From a geometric point of view, we can rewrite Corollary [L.5]in the following metric form:
Let n be a positive integer, n > 2, let P, P, ..., P, be n points in the plane, let G be the centroid of the polygon
with vertices Py, P, ..., P, and let
1 2
c:ﬁVE: P.P?.

1<k<i<n
Then for each k € {1,2,...,n} the following relation holds:

GP, < +/(n—1)c.
2. ZARANTONELLO’S INEQUALITY AND THE ISOMETRIES OF THE COMPLEX PLANE

In this section we will use the result in Theorem [1.3in order to prove the so-called Zarantonello’s inequality in the
complex plane. This inequality was proved in [8] for mappings in Hilbert spaces. It will give us an useful instrument
to describe the plane isometries.

Theorem 2.4 (Zarantonello’s inequality). Let f : C — C be a function such that
[f(2) = f(w)] < |z = w],

foreach z,w € C. Then for any positive integer n, n > 2, for any real numbers a1, asz, ...,an > 0withay +az+---+ap, =1
and for any z1, 22, . . ., zn, € C, the following relation holds:
|f(alzl + o+ anzn) - alf(zl) - anf(zn)|2
< Z aar(|zk — 211> = | f(z) = fF(20)]?).
1<k<I<n
Proof. By applying Theorem (1.3} we obtain
|flarz1 4+ + anzn) —arf(z1) =+ — anf(za)|°
= a|flarz1 + -+ anzn) = f(20)]* + ..
tan|flarz ot anz) = S = Y0 akalf(m) = S (23)
1<k<I<n

Using the contraction condition for f, we get
arlflarzi+ - anza) = f(21) P+ - an| flarzi+ - Fanzn) = f(20)]
<ailzr —a1zr — = apznP ot aplzn — a1z — - — anzal®. (2.4)

Taking in Theorem[I.3]|z = @121 + - - - + a2y, the following relation holds:

2

a1lz1—a121— - —apzp P4 Fan|zn — a1z — - —anz|?= Z apay|zr—2)?,
1<k<I<n
and together with relations (2.3) and (2.4) we obtain the inequality we wanted to prove. O

Corollary 2.6. Let f : C — C be a function such that

[f(z) = fw)] < |z — wl,
and let z1, 22, . . ., zn, € C be fixed complex numbers. If | f(z) — f(z1)| = |2k — 21|, for k,1 = 1,2, ...,n, k # |, then for any real
numbers ay, as, . ..,a, > 0 with a1 + as + - -+ + a, = 1, we have:

f(alzl + 4+ anzn) = alf(zl) +o 4+ anf(z’ﬂ)

Proof. Indeed, we have |z, — 2/|> — |f(2x) — f(21)|?> = 0 and aga; > 0 for k,l = 1,2,...,n, k # [. From Zarantonello’s
inequality it follows |f(aiz1 + -+ anzy) — a1 f(21) — -+ — anf(2a)|> = 0, hence the conclusion. O
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The result contained in the previous Corollary shows that any function f : C — C satisfying the contraction
condition | f(z) — f(w)| < |z — w]|, for any z,w € C and preserving all distances in the set {z1, 22, ..., z,, } is affine on
the convex envelope of this set.

Recall that the function f : C — Cis an isometry, if | f(z) — f(w)| = |z — w]|, for each z, w € C. That is an isometry
preserves the distances. A similar argument as in the proof of the previous Corollary shows that the following result
holds:

For any positive integer n, n > 2, for any real numbers a1,az,...,a, > 0 with a1 + a2 + --- + a, = 1 and for any
21, %2, - .., 2n, € C the following relation holds:

flarzi+ -+ apzn) = arf(z1) + - 4 an f(zn).
This simple remark is useful to determine all isometries of the Euclidean plane.

Theorem 2.5. A function f : C — C is an isometry if and only if there exists o, 5 € C, |a| = 1 such that f(z) = az+ B or
f(z) = aZ + B, for each z € C.

Proof. If f(z) = az+ B or f(z) = aZ + B, || = 1, it is easy to check that f is an isometry.
Conversely, let us define g : C — C, g(z) = f(z) — f(0). If f : C — Cis anisometry, ie. |f(z) — f(w)| = |z — w|, for
each z, w € C, then the function g : C — C, defined by g(z) = f(z) — f(0) is additive, i.e.
9(z + w) = g(2) + g(w),
for each z,w € C.
Indeed, we notice that g is also an isometry and we obtain

, (z;w) _ o) +ow)

for each z, w € C. Since ¢g(0) = 0, we get

2y _9)
g ( ) TR
foreach z € C.

Thus, we have proved that

) _ o)+ o)

j I — g(2) + glw),

9(z+w) =29 (
for each z,w € C.
It is easy to prove that g(t - z) =t - g(z), foreacht € Rand z € C.
Let z = z + iy. Then we have

9(2) = g(z +1iy) = g(x) + g(iy) =a-z+7-y,
where o = ¢(1) and v = ¢(¢). From the relations |g(1) — ¢g(0)| = |1 — 0] and |g(¢) — ¢g(0)| = |i — 0] we obtain that
la| = |y| = 1, and from the relation |g(1 +4) — g(0)| = |1 & i| = v/2 we obtain that |a 4+ 7| = V2.
Thus,y =i -aorvy = —i-a, and we get g(z) = az + aiy = az or g(z) = ax — iay = aZ. O

REFERENCES

[1] Andreescu, T. and Andrica, D., Complex Numbers from A to...Z, Birkhauser, Boston-Basel-Berlin, 2006

[2] Andrica, D. and Nguyen, K. L., A note on the Nagel and Gergonne points, Creative Math. and Inf. 17 (2008), 127-136

[3] Coxeter, H. S. M. and Greitzer, S. L., Geometry Revisited, Random House, New York, 1967

[4] Fenn, R., Geometry, Springer-Verlag, New York, 2001

[5] Hahn, L., Complex Numbers and Geometry, The Mathematical Association of America, 1994

[6] Modenov, P. S., Problems in Geometry, MIR, Moscow, 1981

[7] Saldgean, Gr. S., The Geometry of Complex Plane (in Romanian), Promedia-Plus, Cluj-Napoca, 1997

[8] Zarantonello, E. H., Projections on convex sets in Hilbert spaces and spectral theory, Contributions to Nonlinear Functional Analysis (Ed.E. H.
Zarantonello), Acad. Press, New York, 1971, pp. 237-424

”"BABES-BOLYAI” UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
CLUJ-NAPOCA, ROMANIA

E-mail address: teoandrica@Ryahoo.com



	1. Lagrange's Theorem and some consequences
	2. Zarantonello's inequality and the isometries of the complex plane
	References

