
CREATIVE MATH. & INF.
19 (2010), No. 2, 122 - 129

Online version available at http://creative-mathematics.ubm.ro/
Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

Certain aspects of some geometric inequalities

MIHÁLY BENCZE, NICUŞOR MINCULETE and OVIDIU T. POP

ABSTRACT.
In this paper we prove some new inequalities for the triangle. We also improve Euler’s Edwards and Weitzenböck inequalities.

1. INTRODUCTION AND TERMINOLOGY

Among the well known geometric inequalities, we recall the famous inequality R ≥ 2r of Euler [6], the inequality
s ≥ 3

√
3r of Edwards [5], and the inequality

a2 + b2 + c2 ≥ 4
√

3∆ (1.1)

of Weitzenböck [12]. The more general form

∆ ≤
√

3

4

(
ak + bk + ck

3

) 2
k

(k > 0) (1.2)

of (1.1) appeared in [7], and (1.1) appeared again as a problem in the IMO in 1961 [4, pp. 30, 337] .
In this paper, we shall obtain several improvements of these inequalities.
In the following, we will use the following notations: a, b, c− the lengths of the sides, ha, hb, hc are the lengths of

the altitudes, s is the semi-perimeter; R is the circumradius, r is the inradius, and ∆ is the area of the triangle ABC.

2. MAIN RESULTS

Lemma 2.1. If x, y ≥ 0 and λ ∈ [0, 1], then the inequality(
x+ y

2

)2

≥ [(1− λ)x+ λy] · [λx+ (1− λ) y] ≥ xy (2.1)

holds.

Proof. This lemma is proved in [1]. Here we will give another proof.
The lemma says that if Dλ (x, y) = [(1− λ)x+ λy] · [λx+ (1− λ) y] , where x, y ≥ 0 and λ ∈ [0, 1] , then D 1

2
≥

Dλ ≥ D0. But this trivially follows from the fact that Dλ (x, y) , being nothing but

(
x+ y

2

)2

− (1− 2λ)
2

(
x− y

2

)2

,

increases as λ increases from 0 to
1

2
(and from Dλ = D1−λ). �

Theorem 2.1. If x, y ≥ 0 and λ ∈ [0, 1] then the inequality(
x+ y + z

3

)3

≥ [(1− λ)x+ λy] · [(1− λ) y + λz] · [(1− λ) z + λx] ≥ xyz (2.2)

holds.

Proof. The inequality (
x+ y + z

3

)3

≥ [(1− λ)x+ λy] · [(1− λ) y + λz] · [(1− λ) z + λx]

trivially follows from the arithmetic-geometric mean inequality.
Now, without loss of generality, let us suppose that z = min {x, y, z} .Dividing by z3 the inequality [(1− λ)x+ λy]·

[(1− λ) y + λz] · [(1− λ) z + λx] ≥ xyz and writing
x

z
= u and

y

z
= v, this inequality becomes

[(1− λ)u+ λv] · [(1− λ) v + λ] · [(1− λ) + λu] ≥ uv. (2.3)

We prove the inequality
[(1− λ) v + λ] · [(1− λ) + λu] ≥ (1− λ) v + λu. (2.4)
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122



Certain aspects of some geometric inequalities 123

It is easy to see that inequality (2.4) is equivalent to the inequality uv + 1 ≥ u+ v, so (u− 1) (v − 1) ≥ 0, which is

true, because u =
x

z
≥ 1 and v =

y

z
≥ 1.

Hence, combining lemma (2.1) and inequality (2.4), we have

[(1−λ)u+λv] · [(1−λ) v+λ] · [(1−λ)+λu]≥ [(1−λ)u+λv] · [(1−λ) v+λu]≥uν.

Consequently, inequality (2.3) is proved. �

If we consider the expression

Eλ (x, y, z) = [(1− λ)x+ λy] · [(1− λ) y + λz] · [(1− λ) z + λx] ,

then relation (2.2) becomes
x+ y + z ≥ 3 3

√
Eλ (x, y, z) ≥ 3 3

√
xyz. (2.5)

Corollary 2.1. In any triangle ABC, there are the following inequalities:

R ≥ 2

3 3

√
Eλ

(
1
ha
, 1
hb
, 1
hc

) ≥ 2r, (2.6)

s ≥ 3

√
3Eλ (s− a, s− b, s− c)

s
≥ 3
√

3r (2.7)

and

a2α + b2α + c2α ≥ 3 3
√
Eλ (a2α, b2α, c2α) ≥ 3

(
4∆√

3

)α
(2.8)

for all integers n ≥ 0, for all α > 0 and λ ∈ [0, 1] .

Proof. Using the substitutions x = 1
ha
, y = 1

hb
and z = 1

hc
in inequality (2.5), we obtain

1

ha
+

1

hb
+

1

hc
≥ 3 3

√
Eλ

(
1

ha
,

1

hb
,

1

hc

)
≥ 3 3

√
1

hahbhc
. (2.9)

In view of the equalities

ha =
2∆

a
, hb =

2∆

b
, hc =

2∆

c
,∆ =

abc

4R
and taking into account the inequality

3
√

3

2
R ≥ s of Padoa [9] and Euler’s

inequality R ≥ 2r, we have
3
√

3

4
R2 ≥ sr = ∆. (2.10)

Therefore, we have

3 3

√
1

hahbhc
=

3

2∆
3
√
abc =

3

2
3

√
4R

∆2
≥ 2

R
.

If we use the identity
1

ha
+

1

hb
+

1

hc
=

1

r

and the inequality from above, then inequality (2.9) becomes

1

r
≥ 3 3

√
Eλ

(
1

ha
,

1

hb
,

1

hc

)
≥ 2

R
. (2.11)

Consequently, inequality (2.6) holds.
If in inequality (2.5) we take x = s− a, y = s− b and z = s− c, then we deduce the inequality

s ≥ 3 3
√
Eλ (s− a, s− b, s− c) ≥ 3 3

√
(s− a) (s− b) (s− c) = 3

3
√
sr2,

so
s3 ≥ 27 Eλ (s− a, s− b, s− c) ≥ 27 sr2,

which means that

s ≥ 3

√
3Eλ (s− a, s− b, s− c)

s
≥ 3
√

3r.

Making the substitutions x = aα, y = bα and z = cα in inequality (2.5) , we obtain the following inequality:

a2α + b2α + c2α ≥ 3 3
√
Eλ (a2α, b2α, c2α) ≥ 3

[
3

√
(abc)

2

]α
.
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Applying the inequality 3
√
a2b2c2 ≥ 4∆√

3
of Pólya-Szegö [10, 11] or of Carlitz-Leuenberger [3], we deduce

a2α + b2α + c2α ≥ 3 3
√
Eλ (a2α, b2α, c2α) ≥ 3

(
4∆√

3

)α
.

Thus, the statement is true. �

Remark 2.1. For α = 1 in inequality (2.8), we obtain

a2 + b2 + c2 ≥ 3 3
√
Eλ (a2, b2, c2) ≥ 4

√
3∆

which proves Weitzenböck’s inequality

We consider, also, another expression, namely

Fλ (x, y) (n) = [(1 + (1− 2λ)
n
)x+ (1− (1− 2λ)

n
) y] ·

[(1− (1− 2λ)
n
)x+ (1 + (1− 2λ)

n
) y] ,

(2.12)

with λ ∈ [0, 1] , for any x, y ≥ 0 and for all integers n ≥ 0.

Theorem 2.2. There are the following relations:

Fλ ((1− λ)x+ λy, λx+ (1− λ) y) (n) = Fλ (x, y) (n+ 1) , (2.13)

F 1
2

(x, y) ≥ Fλ (x, y) (n) ≥ F0 (x, y) (2.14)

and
Fλ (x, y) (n+ 1) ≥ Fλ (x, y) (n) (2.15)

for any λ ∈ [0, 1] , for any x, y ≥ 0 and for all integers ≥ 0.

Proof. These all follow trivially from the fact that Fλ (x, y) (n) is the expression

Fλ (x, y) (n) = (x+ y)
2 − (1− 2λ)

2n
(x− y)

2
.

Thus, relation (2.13) is obtained as follows:

Fλ ((1− λ)x+ λy, λx+ (1− λ) y) (n)=(x+ y)
2−(1−2λ)

2n
(1−2λ)

2
(x−y)

2

= (x+ y)
2 − (1− 2λ)

2(n+1)
(x− y)

2
= Fλ (x, y) (n+ 1) .

Inequality (2.14) follows from the obvious fact that Fλ increases as λ increases from 0 to 1
2 , and from F0 (x, y) =

4xy, F1/2 (x, y) = (x+ y)
2
. Similarly, inequality (2.15) follows from the fact that Fλ, increases with n.

Thus, the proof of Theorem 2.2 is complete. �

Remark 2.2. In fact, n does not have to be a natural number and can range over positive reals.

Corollary 2.2. There are the following inequalities:

x+ y ≥
√
Fλ (x, y) (n) ≥ 2

√
xy; (2.16)

x2 + y2 ≥
√
Fλ (x2, y2) (n) ≥ 2xy; (2.17)

x+ y + z ≥ 1

2

∑
cyclic

√
Fλ (x, y) (n) ≥ √xy +

√
yz +

√
zx; (2.18)

x2 + y2 + z2 ≥ 1

2

∑
cyclic

√
Fλ (x2, y2) (n) ≥ xy + yz + zx; (2.19)

x2 + y2 + z2 + xy + yz + zx ≥ 1

2

∑
cyclic

Fλ (x, y) (n) ≥ 2 (xy + yz + zx) (2.20)

and
(x+ y) (y + z) (z + x) ≥

√ ∏
cyclic

Fλ (x, y) (n) ≥ 8xyz (2.21)

for any x, y, z ≥ 0, for all integers n ≥ 0 and λ ∈ [0, 1] .

Proof. From Theorem 2.2, we easily deduce inequality (2.16). Using the substitutions x→ x2 and y → y2 in inequality
(2.16), we obtain inequality (2.17). Adding (2.16) to its analogues

y + z ≥
√
Fλ (y, z) (n) ≥ 2

√
yz and z + x ≥

√
Fλ (z, x) (n) ≥ 2

√
zx,

we obtain
x+ y + z ≥ 1

2

∑
cyclic

√
Fλ (x, y) (n) ≥ √xy +

√
yz +

√
zx.
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It is easy to see that, by making the substitutions x→ x2 and y → y2 in inequality (2.18), we obtain inequality (2.19).
Adding (2.14) to its analogues (y + z)

2 ≥ Fλ (y, z) (n) ≥ 4yz and (z + x)
2 ≥ Fλ (z, x) (n) ≥ 4zx, we obtain inequality

(2.20).
Multiplying (2.16) to its analogues, we deduce inequality (2.21) . �

Lemma 2.2. For any triangle ABC, the following inequality
√
ab+

√
bc+

√
ca ≥ 4∆

R
, (2.22)

holds.

Proof. We apply the arithmetic-geometric mean inequality and we find that
√
ab+

√
bc+

√
ca ≥ 3

3
√
abc.

Suffice it to show that

3
3
√
abc ≥ 4∆

R
. (2.23)

Inequality (2.23) is equivalent to 27abc ≥
64∆3

R3
, so 27 · 4R∆ ≥

64∆3

R3
, which means that 27R4 ≥ 16∆2, which is

true from inequality (2.10). �

Corollary 2.3. In any triangle ABC, there are the following inequalities:

R ≥ 4∑
cyclic

√
Fλ

(
1
ha
, 1
hb

)
(n)

≥ 2r; (2.24)

s ≥ 1

2

∑
cyclic

√
Fλ (s− a, s− b) (n) ≥ 3

√
3r (2.25)

and

a2α + b2α + c2α ≥ 1

2

∑
cyclic

√
Fλ (a2α, b2α) (n) ≥ 3

(
4∆√

3

)α
, (2.26)

for all integers n ≥ 0, for all α > 0 and λ ∈ [0, 1] .

Proof. Making the substitutions x = 1
ha
, y = 1

hb
and z = 1

hc
in inequality (2.18), we obtain

1

ha
+

1

hb
+

1

hc
≥ 1

2

∑
cyclic

√
Fλ

(
1

ha
,

1

hb

)
(n) ≥ 1√

hahb
+

1√
hbhc

+
1√
hcha

. (2.27)

In view of the equalities

ha =
2∆

a
, hb =

2∆

b
and hc =

2∆

c
,

we have
1√
hahb

+
1√
hbhc

+
1√
hcha

=
1

2∆

(√
ab+

√
bc+

√
ca
)
.

From Lemma 2.2, we deduce
1√
hahb

+
1√
hbhc

+
1√
hcha

≥ 2

R
. (2.28)

If we use the identity
1

ha
+

1

hb
+

1

hc
=

1

r

and inequality (2.28), then inequality (2.27) becomes

1

r
≥ 1

2

∑
cyclic

√
Fλ

(
1

ha
,

1

hb

)
(n) ≥ 2

R
.

Consequently, we obtain

R ≥ 4∑
cyclic

√
Fλ

(
1
ha
, 1
hb

)
(n)

≥ 2r.
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If in inequality (2.18) we take x = s− a, y = s− b and z = s− c, then we deduce the inequality

s ≥ 1

2

∑
cyclic

√
Fλ (s− a, s− b) (n)

≥
√

(s− a) (s− b) +
√

(s− b) (s− c) +
√

(s− c) (s− a). (2.1)

But, we know the identity
∑
cyclic

√
(s− a, s− b) =

∑
cyclic

√
bc sin A

2 .

Using the arithmetic-geometric mean inequality, we obtain

∑
cyclic

√
bc sin

A

2
≥ 3

3

√
abc sin

A

2
sin

B

2
sin

C

2
= 3 3

√
4R∆ · r

4R
=

3
3
√

∆r = 3
3
√
sr2 ≥ 3

3

√
3
√

3r3 = 3
√

3r.

Hence, √
(s− a) (s− b) +

√
(s− b) (s− c) +

√
(s− c) (s− a) ≥ 3

√
3r, (2.30)

which means, combining inequalities (2.1) and (2.30), that

s ≥ 1

2

∑
cyclic

√
Fλ (s− a, s− b) (n) ≥ 3

√
3r.

Using the substitutions x = aα, y = bα, and z = cα in inequality (2.18), we obtain the following inequality:

a2α + b2α + c2α ≥ 1

2

∑
cyclic

√
Fλ (a2α, b2α) (n) ≥ aαbα + bαcα + cαaα. (2.31)

Applying the arithmetic- geometric mean inequality and the inequality, 3
√
a2b2c2 ≥

4∆
√

3
of Pólya-Szegö [10, 11] or of

Carlitz-Leuenberger [3], we deduce

aαbα + bαcα + cαaα ≥ 3 3

√
(a2b2c2)

α
= 3

(
3
√
a2b2c2

)α
≥ 3

(
4∆√

3

)α
,

so

aαbα + bαcα + cαaα ≥ 3

(
4∆√

3

)α
. (2.32)

Combining inequalities (2.31) and (2.32), we obtain the inequality

a2α + b2α + c2α ≥ 1

2

∑
cyclic

√
Fλ (a2α, b2α) (n) ≥ 3

(
4∆√

3

)α
.

The proof is complete. �

Remark 2.3. For α = 1 in inequality (2.26), we obtain

a2 + b2 + c2 ≥ 1

2

∑
cyclic

√
Fλ (a2, b2) (n) ≥ 4

√
3∆, (2.33)

with λ ∈ [0, 1] , which proves Weitzenböck’s Inequality.

Corollary 2.4. In any triangle ABC, there are the following inequalities:

R− 2r ≥ 3Rr

∣∣∣∣∣ 3

√
Eλ

(
1

ha
,

1

hb
,

1

hc

)
− 3

√
E1−λ

(
1

ha
,

1

hb
,

1

hc

)∣∣∣∣∣ ≥ 0, (2.34)

s−3
√

3r ≥ 3√
s

∣∣∣√3Eλ (s−a, s−b, s−c)−
√

3E1−λ (s−a, s−b, s−c)
∣∣∣≥0, (2.35)

a2α + b2α + c2α − 3

(
4∆√

3

)α
≥ 3

∣∣∣ 3
√
Eλ (a2α, b2α, c2α)− 3

√
E1−λ (a2α, b2α, c2α)

∣∣∣ ≥ 0, (2.36)

R− 2r ≥ Rr

2

∑
cyclic

∣∣∣∣∣
√
Fλ

(
1

ha
,

1

hb

)
(n)−

√
F1−λ

(
1

ha
,

1

hb

)
(n)

∣∣∣∣∣ ≥ 0, (2.37)
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s−3
√

3r ≥ 1

2

∑
cyclic

∣∣∣√Fλ (s−a, s−b) (n)−
√
F1−λ (s−a, s−b) (n)

∣∣∣ ≥ 0 (2.38)

and

a2α + b2α + c2α − 3

(
4∆√

3

)α
≥ 1

2

∑
cyclic

∣∣∣√Fλ (a2α, b2α) (n)−
√
F1−λ (a2α, b2α) (n)

∣∣∣ ≥ 0 (2.39)

for all integers n ≥ 0, for all α > 0 and λ ∈ [0, 1] .

Proof. These all follow trivially from Corollary 2.1 and Corollary 2.3 taking into account that if λ ∈ [0, 1] , then 1−λ ∈
[0, 1] . �
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E-mail address: ovidiutiberiu@yahoo.com


	1. Introduction and terminology
	2. Main results
	References

