Certain aspects of some geometric inequalities

Mihály Bencze, Nicuşor Minculete and Ovidiu T. Pop

Abstract.

In this paper we prove some new inequalities for the triangle. We also improve Euler's Edwards and Weitzenböck inequalities.

1. INTRODUCTION AND TERMINOLOGY

Among the well known geometric inequalities, we recall the famous inequality $R \geq 2 r$ of Euler [6], the inequality $s \geq 3 \sqrt{3} r$ of Edwards [5], and the inequality

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq 4 \sqrt{3} \Delta \tag{1.1}
\end{equation*}
$$

of Weitzenböck [12]. The more general form

$$
\begin{equation*}
\Delta \leq \frac{\sqrt{3}}{4}\left(\frac{a^{k}+b^{k}+c^{k}}{3}\right)^{\frac{2}{k}}(k>0) \tag{1.2}
\end{equation*}
$$

of (1.1) appeared in [7], and (1.1) appeared again as a problem in the IMO in 1961 [4, pp. 30, 337].
In this paper, we shall obtain several improvements of these inequalities.
In the following, we will use the following notations: a, b, c - the lengths of the sides, h_{a}, h_{b}, h_{c} are the lengths of the altitudes, s is the semi-perimeter; R is the circumradius, r is the inradius, and Δ is the area of the triangle $A B C$.

2. MAin Results

Lemma 2.1. If $x, y \geq 0$ and $\lambda \in[0,1]$, then the inequality

$$
\begin{equation*}
\left(\frac{x+y}{2}\right)^{2} \geq[(1-\lambda) x+\lambda y] \cdot[\lambda x+(1-\lambda) y] \geq x y \tag{2.1}
\end{equation*}
$$

holds.
Proof. This lemma is proved in [1]. Here we will give another proof.
The lemma says that if $D_{\lambda}(x, y)=[(1-\lambda) x+\lambda y] \cdot[\lambda x+(1-\lambda) y]$, where $x, y \geq 0$ and $\lambda \in[0,1]$, then $D_{\frac{1}{2}} \geq$ $D_{\lambda} \geq D_{0}$. But this trivially follows from the fact that $D_{\lambda}(x, y)$, being nothing but $\left(\frac{x+y}{2}\right)^{2}-(1-2 \lambda)^{2}\left(\frac{x-y}{2}\right)^{2}$, increases as λ increases from 0 to $\frac{1}{2}$ (and from $D_{\lambda}=D_{1-\lambda}$).
Theorem 2.1. If $x, y \geq 0$ and $\lambda \in[0,1]$ then the inequality

$$
\begin{equation*}
\left(\frac{x+y+z}{3}\right)^{3} \geq[(1-\lambda) x+\lambda y] \cdot[(1-\lambda) y+\lambda z] \cdot[(1-\lambda) z+\lambda x] \geq x y z \tag{2.2}
\end{equation*}
$$

holds.
Proof. The inequality

$$
\left(\frac{x+y+z}{3}\right)^{3} \geq[(1-\lambda) x+\lambda y] \cdot[(1-\lambda) y+\lambda z] \cdot[(1-\lambda) z+\lambda x]
$$

trivially follows from the arithmetic-geometric mean inequality.
Now, without loss of generality, let us suppose that $z=\min \{x, y, z\}$. Dividing by z^{3} the inequality $[(1-\lambda) x+\lambda y]$.
$[(1-\lambda) y+\lambda z] \cdot[(1-\lambda) z+\lambda x] \geq x y z$ and writing $\frac{x}{z}=u$ and $\frac{y}{z}=v$, this inequality becomes

$$
\begin{equation*}
[(1-\lambda) u+\lambda v] \cdot[(1-\lambda) v+\lambda] \cdot[(1-\lambda)+\lambda u] \geq u v . \tag{2.3}
\end{equation*}
$$

We prove the inequality

$$
\begin{equation*}
[(1-\lambda) v+\lambda] \cdot[(1-\lambda)+\lambda u] \geq(1-\lambda) v+\lambda u \tag{2.4}
\end{equation*}
$$

[^0]It is easy to see that inequality (2.4) is equivalent to the inequality $u v+1 \geq u+v$, so $(u-1)(v-1) \geq 0$, which is true, because $u=\frac{x}{z} \geq 1$ and $v=\frac{y}{z} \geq 1$.

Hence, combining lemma (2.1) and inequality (2.4), we have

$$
[(1-\lambda) u+\lambda v] \cdot[(1-\lambda) v+\lambda] \cdot[(1-\lambda)+\lambda u] \geq[(1-\lambda) u+\lambda v] \cdot[(1-\lambda) v+\lambda u] \geq u \nu .
$$

Consequently, inequality (2.3) is proved.
If we consider the expression

$$
E_{\lambda}(x, y, z)=[(1-\lambda) x+\lambda y] \cdot[(1-\lambda) y+\lambda z] \cdot[(1-\lambda) z+\lambda x],
$$

then relation 2.2 becomes

$$
\begin{equation*}
x+y+z \geq 3 \sqrt[3]{E_{\lambda}(x, y, z)} \geq 3 \sqrt[3]{x y z} \tag{2.5}
\end{equation*}
$$

Corollary 2.1. In any triangle $A B C$, there are the following inequalities:

$$
\begin{gather*}
R \geq \frac{2}{3 \sqrt[3]{E_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}, \frac{1}{h_{c}}\right)}} \geq 2 r, \tag{2.6}\\
s \geq 3 \sqrt{\frac{3 E_{\lambda}(s-a, s-b, s-c)}{s}} \geq 3 \sqrt{3} r \tag{2.7}
\end{gather*}
$$

and

$$
\begin{equation*}
a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha} \geq 3 \sqrt[3]{E_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}, c^{2 \alpha}\right)} \geq 3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha} \tag{2.8}
\end{equation*}
$$

for all integers $n \geq 0$, for all $\alpha>0$ and $\lambda \in[0,1]$.
Proof. Using the substitutions $x=\frac{1}{h_{a}}, y=\frac{1}{h_{b}}$ and $z=\frac{1}{h_{c}}$ in inequality 2.5, we obtain

$$
\begin{equation*}
\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}} \geq 3 \sqrt[3]{E_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}, \frac{1}{h_{c}}\right)} \geq 3 \sqrt[3]{\frac{1}{h_{a} h_{b} h_{c}}} \tag{2.9}
\end{equation*}
$$

In view of the equalities
$h_{a}=\frac{2 \Delta}{a}, h_{b}=\frac{2 \Delta}{b}, h_{c}=\frac{2 \Delta}{c}, \Delta=\frac{a b c}{4 R}$ and taking into account the inequality $\frac{3 \sqrt{3}}{2} R \geq s$ of Padoa [9] and Euler's inequality $R \geq 2 r$, we have

$$
\begin{equation*}
\frac{3 \sqrt{3}}{4} R^{2} \geq s r=\Delta \tag{2.10}
\end{equation*}
$$

Therefore, we have

$$
3 \sqrt[3]{\frac{1}{h_{a} h_{b} h_{c}}}=\frac{3}{2 \Delta} \sqrt[3]{a b c}=\frac{3}{2} \sqrt[3]{\frac{4 R}{\Delta^{2}}} \geq \frac{2}{R} .
$$

If we use the identity

$$
\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r}
$$

and the inequality from above, then inequality (2.9) becomes

$$
\begin{equation*}
\frac{1}{r} \geq 3 \sqrt[3]{E_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}, \frac{1}{h_{c}}\right)} \geq \frac{2}{R} \tag{2.11}
\end{equation*}
$$

Consequently, inequality (2.6) holds.
If in inequality (2.5) we take $x=s-a, y=s-b$ and $z=s-c$, then we deduce the inequality

$$
s \geq 3 \sqrt[3]{E_{\lambda}(s-a, s-b, s-c)} \geq 3 \sqrt[3]{(s-a)(s-b)(s-c)}=3 \sqrt[3]{s r^{2}}
$$

so

$$
s^{3} \geq 27 E_{\lambda}(s-a, s-b, s-c) \geq 27 s r^{2},
$$

which means that

$$
s \geq 3 \sqrt{\frac{3 E_{\lambda}(s-a, s-b, s-c)}{s}} \geq 3 \sqrt{3} r .
$$

Making the substitutions $x=a^{\alpha}, y=b^{\alpha}$ and $z=c^{\alpha}$ in inequality (2.5), we obtain the following inequality:

$$
a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha} \geq 3 \sqrt[3]{E_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}, c^{2 \alpha}\right)} \geq 3\left[\sqrt[3]{(a b c)^{2}}\right]^{\alpha}
$$

Applying the inequality $\sqrt[3]{a^{2} b^{2} c^{2}} \geq \frac{4 \Delta}{\sqrt{3}}$ of Pólya-Szegö [10, 11] or of Carlitz-Leuenberger [3], we deduce

$$
a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha} \geq 3 \sqrt[3]{E_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}, c^{2 \alpha}\right)} \geq 3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha}
$$

Thus, the statement is true.
Remark 2.1. For $\alpha=1$ in inequality (2.8), we obtain

$$
a^{2}+b^{2}+c^{2} \geq 3 \sqrt[3]{E_{\lambda}\left(a^{2}, b^{2}, c^{2}\right)} \geq 4 \sqrt{3} \Delta
$$

which proves Weitzenböck's inequality
We consider, also, another expression, namely

$$
\begin{align*}
F_{\lambda}(x, y)(n)= & {\left[\left(1+(1-2 \lambda)^{n}\right) x+\left(1-(1-2 \lambda)^{n}\right) y\right] . } \tag{2.12}\\
& {\left[\left(1-(1-2 \lambda)^{n}\right) x+\left(1+(1-2 \lambda)^{n}\right) y\right], }
\end{align*}
$$

with $\lambda \in[0,1]$, for any $x, y \geq 0$ and for all integers $n \geq 0$.
Theorem 2.2. There are the following relations:

$$
\begin{gather*}
F_{\lambda}((1-\lambda) x+\lambda y, \lambda x+(1-\lambda) y)(n)=F_{\lambda}(x, y)(n+1), \tag{2.13}\\
F_{\frac{1}{2}}(x, y) \geq F_{\lambda}(x, y)(n) \geq F_{0}(x, y) \tag{2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
F_{\lambda}(x, y)(n+1) \geq F_{\lambda}(x, y)(n) \tag{2.15}
\end{equation*}
$$

for any $\lambda \in[0,1]$, for any $x, y \geq 0$ and for all integers ≥ 0.
Proof. These all follow trivially from the fact that $F_{\lambda}(x, y)(n)$ is the expression

$$
F_{\lambda}(x, y)(n)=(x+y)^{2}-(1-2 \lambda)^{2 n}(x-y)^{2} .
$$

Thus, relation (2.13) is obtained as follows:

$$
\begin{aligned}
F_{\lambda}((1-\lambda) x+\lambda y, \lambda x+(1-\lambda) y)(n)=(x+y)^{2}-(1-2 \lambda)^{2 n} & (1-2 \lambda)^{2}(x-y)^{2} \\
& =(x+y)^{2}-(1-2 \lambda)^{2(n+1)}(x-y)^{2}=F_{\lambda}(x, y)(n+1) .
\end{aligned}
$$

Inequality (2.14) follows from the obvious fact that F_{λ} increases as λ increases from 0 to $\frac{1}{2}$, and from $F_{0}(x, y)=$ $4 x y, F_{1 / 2}(x, y)=(x+y)^{2}$. Similarly, inequality (2.15) follows from the fact that F_{λ}, increases with n.

Thus, the proof of Theorem 2.2 is complete.
Remark 2.2. In fact, n does not have to be a natural number and can range over positive reals.
Corollary 2.2. There are the following inequalities:

$$
\begin{gather*}
x+y \geq \sqrt{F_{\lambda}(x, y)(n)} \geq 2 \sqrt{x y} ; \tag{2.16}\\
x^{2}+y^{2} \geq \sqrt{F_{\lambda}\left(x^{2}, y^{2}\right)(n)} \geq 2 x y ; \tag{2.17}\\
x+y+z \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}(x, y)(n)} \geq \sqrt{x y}+\sqrt{y z}+\sqrt{z x} ; \tag{2.18}\\
x^{2}+y^{2}+z^{2} \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(x^{2}, y^{2}\right)(n)} \geq x y+y z+z x ; \tag{2.19}\\
x^{2}+y^{2}+z^{2}+x y+y z+z x \geq \frac{1}{2} \sum_{\text {cyclic }} F_{\lambda}(x, y)(n) \geq 2(x y+y z+z x) \tag{2.20}
\end{gather*}
$$

and

$$
\begin{equation*}
(x+y)(y+z)(z+x) \geq \sqrt{\prod_{\text {cyclic }} F_{\lambda}(x, y)(n)} \geq 8 x y z \tag{2.21}
\end{equation*}
$$

for any $x, y, z \geq 0$, for all integers $n \geq 0$ and $\lambda \in[0,1]$.
Proof. From Theorem 2.2, we easily deduce inequality (2.16). Using the substitutions $x \rightarrow x^{2}$ and $y \rightarrow y^{2}$ in inequality (2.16), we obtain inequality (2.17). Adding (2.16) to its analogues

$$
y+z \geq \sqrt{F_{\lambda}(y, z)(n)} \geq 2 \sqrt{y z} \text { and } z+x \geq \sqrt{F_{\lambda}(z, x)(n)} \geq 2 \sqrt{z x},
$$

we obtain

$$
x+y+z \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}(x, y)(n)} \geq \sqrt{x y}+\sqrt{y z}+\sqrt{z x} .
$$

It is easy to see that, by making the substitutions $x \rightarrow x^{2}$ and $y \rightarrow y^{2}$ in inequality (2.18), we obtain inequality (2.19). Adding (2.14) to its analogues $(y+z)^{2} \geq F_{\lambda}(y, z)(n) \geq 4 y z$ and $(z+x)^{2} \geq F_{\lambda}(z, x)(n) \geq 4 z x$, we obtain inequality (2.20).

Multiplying (2.16) to its analogues, we deduce inequality (2.21).
Lemma 2.2. For any triangle $A B C$, the following inequality

$$
\begin{equation*}
\sqrt{a b}+\sqrt{b c}+\sqrt{c a} \geq \frac{4 \Delta}{R}, \tag{2.22}
\end{equation*}
$$

holds.
Proof. We apply the arithmetic-geometric mean inequality and we find that

$$
\sqrt{a b}+\sqrt{b c}+\sqrt{c a} \geq 3 \sqrt[3]{a b c}
$$

Suffice it to show that

$$
\begin{equation*}
3 \sqrt[3]{a b c} \geq \frac{4 \Delta}{R} \tag{2.23}
\end{equation*}
$$

Inequality (2.23) is equivalent to $27 a b c \geq \frac{64 \Delta^{3}}{R^{3}}$, so $27 \cdot 4 R \Delta \geq \frac{64 \Delta^{3}}{R^{3}}$, which means that $27 R^{4} \geq 16 \Delta^{2}$, which is true from inequality 2.10 .

Corollary 2.3. In any triangle $A B C$, there are the following inequalities:

$$
\begin{gather*}
R \geq \frac{4}{\sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}\right)(n)}} \geq 2 r ; \tag{2.24}\\
s \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}(s-a, s-b)(n)} \geq 3 \sqrt{3} r \tag{2.25}
\end{gather*}
$$

and

$$
\begin{equation*}
a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha} \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}\right)(n)} \geq 3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha} \tag{2.26}
\end{equation*}
$$

for all integers $n \geq 0$, for all $\alpha>0$ and $\lambda \in[0,1]$.
Proof. Making the substitutions $x=\frac{1}{h_{a}}, y=\frac{1}{h_{b}}$ and $z=\frac{1}{h_{c}}$ in inequality 2.18, we obtain

$$
\begin{equation*}
\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}} \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}\right)(n)} \geq \frac{1}{\sqrt{h_{a} h_{b}}}+\frac{1}{\sqrt{h_{b} h_{c}}}+\frac{1}{\sqrt{h_{c} h_{a}}} . \tag{2.27}
\end{equation*}
$$

In view of the equalities

$$
h_{a}=\frac{2 \Delta}{a}, h_{b}=\frac{2 \Delta}{b} \text { and } h_{c}=\frac{2 \Delta}{c},
$$

we have

$$
\frac{1}{\sqrt{h_{a} h_{b}}}+\frac{1}{\sqrt{h_{b} h_{c}}}+\frac{1}{\sqrt{h_{c} h_{a}}}=\frac{1}{2 \Delta}(\sqrt{a b}+\sqrt{b c}+\sqrt{c a}) .
$$

From Lemma 2.2, we deduce

$$
\begin{equation*}
\frac{1}{\sqrt{h_{a} h_{b}}}+\frac{1}{\sqrt{h_{b} h_{c}}}+\frac{1}{\sqrt{h_{c} h_{a}}} \geq \frac{2}{R} . \tag{2.28}
\end{equation*}
$$

If we use the identity

$$
\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r}
$$

and inequality 2.28 , then inequality 2.27 becomes

$$
\frac{1}{r} \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}\right)(n)} \geq \frac{2}{R} .
$$

Consequently, we obtain

$$
R \geq \frac{4}{\sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}\right)(n)}} \geq 2 r .
$$

If in inequality 2.18 we take $x=s-a, y=s-b$ and $z=s-c$, then we deduce the inequality

$$
\begin{align*}
s & \geq \frac{1}{2} \sum_{c y c l i c} \sqrt{F_{\lambda}(s-a, s-b)(n)} \\
& \geq \sqrt{(s-a)(s-b)}+\sqrt{(s-b)(s-c)}+\sqrt{(s-c)(s-a)} . \tag{2.1}
\end{align*}
$$

But, we know the identity $\sum_{\text {cyclic }} \sqrt{(s-a, s-b)}=\sum_{\text {cyclic }} \sqrt{b c} \sin \frac{A}{2}$.
Using the arithmetic-geometric mean inequality, we obtain

$$
\begin{aligned}
\sum_{c y c l i c} \sqrt{b c} \sin \frac{A}{2} & \geq 3 \sqrt[3]{a b c \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}=3 \sqrt[3]{4 R \Delta \cdot \frac{r}{4 R}}= \\
3 \sqrt[3]{\Delta r} & =3 \sqrt[3]{s r^{2}} \geq 3 \sqrt[3]{3 \sqrt{3} r^{3}}=3 \sqrt{3} r
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sqrt{(s-a)(s-b)}+\sqrt{(s-b)(s-c)}+\sqrt{(s-c)(s-a)} \geq 3 \sqrt{3} r \tag{2.30}
\end{equation*}
$$

which means, combining inequalities 2.1) and 2.30), that

$$
s \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}(s-a, s-b)(n)} \geq 3 \sqrt{3} r .
$$

Using the substitutions $x=a^{\alpha}, y=b^{\alpha}$, and $z=c^{\alpha}$ in inequality 2.18), we obtain the following inequality:

$$
\begin{equation*}
a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha} \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}\right)(n)} \geq a^{\alpha} b^{\alpha}+b^{\alpha} c^{\alpha}+c^{\alpha} a^{\alpha} \tag{2.31}
\end{equation*}
$$

Applying the arithmetic- geometric mean inequality and the inequality, $\sqrt[3]{a^{2} b^{2} c^{2}} \geq \frac{4 \Delta}{\sqrt{3}}$ of Pólya-Szegö [10, 11] or of Carlitz-Leuenberger [3], we deduce

$$
a^{\alpha} b^{\alpha}+b^{\alpha} c^{\alpha}+c^{\alpha} a^{\alpha} \geq 3 \sqrt[3]{\left(a^{2} b^{2} c^{2}\right)^{\alpha}}=3\left(\sqrt[3]{a^{2} b^{2} c^{2}}\right)^{\alpha} \geq 3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha}
$$

so

$$
\begin{equation*}
a^{\alpha} b^{\alpha}+b^{\alpha} c^{\alpha}+c^{\alpha} a^{\alpha} \geq 3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha} \tag{2.32}
\end{equation*}
$$

Combining inequalities 2.31 and 2.32 , we obtain the inequality

$$
a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha} \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}\right)(n)} \geq 3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha}
$$

The proof is complete.
Remark 2.3. For $\alpha=1$ in inequality 2.26 , we obtain

$$
\begin{equation*}
a^{2}+b^{2}+c^{2} \geq \frac{1}{2} \sum_{\text {cyclic }} \sqrt{F_{\lambda}\left(a^{2}, b^{2}\right)(n)} \geq 4 \sqrt{3} \Delta \tag{2.33}
\end{equation*}
$$

with $\lambda \in[0,1]$, which proves Weitzenböck's Inequality.
Corollary 2.4. In any triangle $A B C$, there are the following inequalities:

$$
\begin{align*}
& R-2 r \geq 3 \operatorname{Rr}\left|\sqrt[3]{E_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}, \frac{1}{h_{c}}\right)}-\sqrt[3]{E_{1-\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}, \frac{1}{h_{c}}\right)}\right| \geq 0, \tag{2.34}\\
& s-3 \sqrt{3} r \geq \frac{3}{\sqrt{s}}\left|\sqrt{3 E_{\lambda}(s-a, s-b, s-c)}-\sqrt{3 E_{1-\lambda}(s-a, s-b, s-c)}\right| \geq 0, \tag{2.35}\\
& a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha}-3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha} \\
& \geq 3\left|\sqrt[3]{E_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}, c^{2 \alpha}\right)}-\sqrt[3]{E_{1-\lambda}\left(a^{2 \alpha}, b^{2 \alpha}, c^{2 \alpha}\right)}\right| \geq 0, \tag{2.36}\\
& R-2 r \geq \frac{R r}{2} \sum_{\text {cyclic }}\left|\sqrt{F_{\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}\right)(n)}-\sqrt{F_{1-\lambda}\left(\frac{1}{h_{a}}, \frac{1}{h_{b}}\right)(n)}\right| \geq 0, \tag{2.37}
\end{align*}
$$

$$
\begin{equation*}
s-3 \sqrt{3} r \geq \frac{1}{2} \sum_{\text {cyclic }}\left|\sqrt{F_{\lambda}(s-a, s-b)(n)}-\sqrt{F_{1-\lambda}(s-a, s-b)(n)}\right| \geq 0 \tag{2.38}
\end{equation*}
$$

and

$$
\begin{gather*}
a^{2 \alpha}+b^{2 \alpha}+c^{2 \alpha}-3\left(\frac{4 \Delta}{\sqrt{3}}\right)^{\alpha} \\
\geq \frac{1}{2} \sum_{\text {cyclic }}\left|\sqrt{F_{\lambda}\left(a^{2 \alpha}, b^{2 \alpha}\right)(n)}-\sqrt{F_{1-\lambda}\left(a^{2 \alpha}, b^{2 \alpha}\right)(n)}\right| \geq 0 \tag{2.39}
\end{gather*}
$$

for all integers $n \geq 0$, for all $\alpha>0$ and $\lambda \in[0,1]$.
Proof. These all follow trivially from Corollary 2.1 and Corollary 2.3 taking into account that if $\lambda \in[0,1]$, then $1-\lambda \in$ $[0,1]$.

Acknowledgements. We thank Prof. Dr. Mowaffaq Hajja for suggestions leading to the improvement of the first version of this paper.

References

[1] Bencze, M., Minculete, N. and Pop, O. T., New inequalities for the triangle, Octogon Mathematical Magazine 17 (2009), No.1, 70-90
[2] Bottema, O., Djordjević, R. Z., Janic, R. R., Mitrinović, D. S. and Vasić, P. M., Geometric Inequalities, Gröningen, 1969
[3] Carlitz, L. and Leuenberger, F., Problem E 1454, Amer Math. Monthly 68 (1961), 177
[4] Djukić, D., Janković, V., Matić, I. and Petrović, N., The IMO Compendium, Springer, 2006
[5] Edwards, N. A., Problem 1273, Nouv. Ann. Math. 37 (1878), 475
[6] Euler, L., Solutio facilis problematum quorundam geometricorum difficillimorum, Novi Commentarii academiae scientiarum imperialis Petropolitanae 11(1767), 103-123 (Reprinted in Opera Omnia, I 26, 139-157, 1953)
[7] Mills, C. N. and Dunkel, O., Problem 3207, Amer Math. Monthly 34 (1927), 382-384
[8] Mitrinović, D. S., Analytic Inequalities, Springer Verlag Berlin, Heidelberg, New York, 1970
[9] Padoa, A., Una questione di minimo, Period. Mat. 5 (1925), No. 4, 80-85
[10] Pólya, G. and Szegö, Aufgaben und Lehrsätze aus der Analysis, II, Leipzig, 1925
[11] Sándor, J., On the Geometry of Equilateral Triangles, Forum Geometricorum 5 (2005), 107-117
[12] Weitzenböck, R., Über eine Ungleichung in der Dreiecksgeometrie, Mathematische Zeitschrift 5 (1919), No. 1-2, 137-146

```
"Áprily Lajos" National College,
DUPĂ ZidURI 3,
500026, BRAŞOV, ROMÂNIA
E-mail address: benczemihaly@yahoo.com
"Dimitrie Cantemir" University,
Bisericil RomÂne 107,
500026, Braşov, ROMÂNIA
E-mail address: minculeten@yahoo.com
"Mihai Eminescu" National College,
Mihai Eminescu 5,
440014, Satu Mare, RomÂNiA
E-mail address: ovidiutiberiu@yahoo.com
```


[^0]: Received: 05.02.2010; In revised form: 01.07.2010; Accepted: 15.08.2010.
 2000 Mathematics Subject Classification. 26D05, 26D15.
 Key words and phrases. Geometric inequalities, Euler's inequality, Edwards's inequality, Weitzenböck's inequality.

