On the generalized Coşniţă-Turtoiu inequalities

Vasile Berinde

Abstract

. The aim of this note is twofold: first, to give a simple proof to a simplified version of a result of Y.-D. Wu and M. Bencze [The refinement and generalization of a double Coşniţă-Turtoiu inequality with one parameter, Creat. Math. Inf. 19 (2010), No. 1, 96-100] and, secondly, to extend this one parameter Coşniţă-Turtoiu inequality to a two parameters inequality.

1. Introduction

For a given triangle $A B C$, let a, b, c denote the side-lengths, h_{a}, h_{b}, h_{c} the altitudes lengths, s the semiperimeter, Δ the area, R the circumradius and r the inradius, respectively. To simplify the writing of some expressions we will also use the cyclic sum notation in a triangle, that is, $\sum f(a)=f(a)+f(b)+f(c)$ etc.

In 1961, C. Coşniţă and F. Turtoiu proposed the inequality

$$
\begin{equation*}
6 \leq \sum \frac{h_{a}+r}{h_{a}-r} \tag{1.1}
\end{equation*}
$$

as Problem 33. 1) at page 158, in [3]. In the third edition of [3], that is, in the problems book [4], it appears as Problem 75 at page 162. This inequality has been completed in 2003 to a double inequality by Tian [6], who showed that

$$
\begin{equation*}
\sum \frac{h_{a}+r}{h_{a}-r}<7 \tag{1.2}
\end{equation*}
$$

Inequality $\sqrt{1.2}$ is actually a particular case of the right hand side of the following beautiful refined Coşniţă-Turtoiu double inequality, obtained in 1998 by Zhang [8]:

$$
\begin{equation*}
\frac{19}{3}-\frac{2 r}{3 R} \leq \sum \frac{h_{a}+r}{h_{a}-r} \leq 7-\frac{2 r}{R} . \tag{1.3}
\end{equation*}
$$

On the other hand, Chu [2] generalized the original Coşniţă-Turtoiu inequality (1.1) by introducing a parameter λ and proved that for, any $\lambda \leq 2$, the following inequality holds:

$$
\begin{equation*}
\frac{3(3+\lambda)}{3-\lambda} \leq \sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r} \tag{1.4}
\end{equation*}
$$

Clearly, (1.1) is obtained from (1.4) for $\lambda=1$.
By combining Zhang's and Chu's inequalities, Wu and Bencze [7] proved very recently the following refined Coşniţă-Turtoiu double inequality with one parameter.

Theorem 1.1. In any triangle $A B C$ we have:

$$
\begin{equation*}
\frac{6+\lambda}{2-\lambda}-\frac{4 \lambda^{2}}{(\lambda-2)(\lambda-3)} \cdot \frac{r}{R} \geq \sum \frac{h_{a}+\lambda r}{h_{a}-\lambda r} \geq E(\lambda, R, r) \tag{1.5}
\end{equation*}
$$

where

$$
E(\lambda, R, r)=\frac{3(3+\lambda)}{3-\lambda}+\frac{2 \lambda^{2}}{(4-\lambda)(3-\lambda)(2-\lambda)} \cdot\left(1-\frac{2 r}{R}\right), \text { if } \lambda<\frac{7-\sqrt{17}}{2}
$$

and

$$
E(\lambda, R, r)=\frac{3(3+\lambda)}{3-\lambda}+\frac{16(\lambda-1)}{(3-\lambda)^{3}} \cdot\left(1-\frac{2 r}{R}\right), \text { if } \frac{7-\sqrt{17}}{2} \leq \lambda \leq 2
$$

Remark 1.1. It is easy to check that for $\lambda=1<\frac{7-\sqrt{17}}{2}$, by the inequality 1.5 we obtain exactly the double inequality (1.3) and that, in view of Euler's inequality, $R \geq 2 r,(1.4)$ is also a consequence of (1.5).

The aim of this paper is to give a simpler proof than the one in [7] for a simplified version of the right hand side of (1.5), and simultaneously, to obtain a two parameters version of this inequality.

[^0]
2. The main result

Our main result is a simplified (and weaker) version of the right-hand side inequality 1.5 with two parameters. Theorem 2.2. In any triangle $A B C$, for any $\mu \leq 2$ and $\lambda \in \mathbb{R}$ satisfying $(\lambda+\mu) \mu \geq 0$, we have

$$
\begin{equation*}
\frac{3(3+\lambda)}{3-\mu} \leq \sum \frac{h_{a}+\lambda r}{h_{a}-\mu r} \tag{2.6}
\end{equation*}
$$

Proof. By using the well known identity in a triangle $\Delta=r s$, we get $h_{a}=\frac{2 \Delta}{a}=\frac{2 r s}{a}$ as well as the other two similar ones, and hence

$$
\begin{equation*}
\sum \frac{h_{a}+\lambda r}{h_{a}-\mu r}=\sum \frac{\frac{2 r s}{a}+\lambda r}{\frac{2 r s}{a}-\mu r}=\sum \frac{(\lambda+1) a+b+c}{(1-\mu) a+b+c} \tag{2.7}
\end{equation*}
$$

Denote

$$
\begin{equation*}
(1-\mu) a+b+c=x, a+(1-\mu) b+c=y, a+b+(1-\mu) c=z \tag{2.8}
\end{equation*}
$$

From $\mu \leq 2$, it follows that $x=(1-\mu) a+b+c \geq-a+b+c>0$, by the fundamental triangle inequality. So, $x, y, z>0$.
If $\mu=0$, then $x=y=z$ and

$$
\sum \frac{(\lambda+1) a+b+c}{(1-\mu) a+b+c}=\sum \frac{(\lambda+1) a+b+c}{a+b+c}=\lambda+3
$$

which by 2.7 shows that (2.6) is indeed true in this case.
Assume by now that $\mu \neq 0$. By summing the three identities in 2.8 we get

$$
a+b+c=\frac{x+y+z}{3-\mu} \text { which implies } a=\frac{(\mu-2) x+y+z}{\mu(3-\mu)}
$$

and hence

$$
\begin{gathered}
(1+\lambda) a+b+c=\frac{x+y+z}{3-\mu}+\lambda \cdot \frac{(\mu-2) x+y+z}{\mu(3-\mu)}= \\
=\frac{(\lambda \mu+\mu-2 \lambda) x+(\lambda+\mu) y+(\lambda+\mu) z}{\mu(3-\mu)}
\end{gathered}
$$

and the other similar ones. Therefore

$$
\begin{equation*}
\sum \frac{(\lambda+1) a+b+c}{(1-\mu) a+b+c}=3 \cdot \frac{\lambda \mu+\mu-2 \lambda}{\mu(3-\mu)}+\frac{\lambda+\mu}{\mu(3-\mu)} \cdot F(x, y, z) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
F(x, y, z)=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{z}{y}+\frac{y}{z}\right) \geq 2 \cdot 3 \tag{2.10}
\end{equation*}
$$

since x, y, z are positive numbers. Using the fact that, by hypothesis, $\frac{\lambda+\mu}{\mu(3-\mu)} \geq 0$, by $2.7,2.2$ and 2.10 we now get the desired conclusion, i.e.,

$$
\sum \frac{h_{a}+\lambda r}{h_{a}-\mu r} \geq 3 \cdot \frac{\lambda \mu+\mu-2 \lambda}{\mu(3-\mu)}+6 \cdot \frac{\lambda+\mu}{\mu(3-\mu)}=\frac{3(\lambda+3)}{3-\mu}
$$

Remark 2.2. If $\lambda=\mu \leq 2$, then $\frac{\lambda+\mu}{\mu(3-\mu)}=\frac{2}{3-\mu}>0$ and by inequality 2.6) we get exactly the inequality 1.4 .
Note that in the same books [3] and [4], Coşniţă and Turtoiu also included the inequality

$$
\begin{equation*}
\sum \frac{h_{a}-r_{a}}{h_{a}+r_{a}} \leq 0 \tag{2.11}
\end{equation*}
$$

as Problem 33. 2), p. 158, in [3] and as Problem 76, p. 162, in [4], respectively. The corresponding result to inequality (2.11) similar to that in inequality 1.4 is given by

Theorem 2.3. In any triangle $A B C$, for any $\lambda \geq 0$ we have

$$
\begin{equation*}
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\lambda r_{a}} \leq \frac{3(1-\lambda)}{\lambda+1}(0 \leq \lambda \leq 2) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\lambda r_{a}} \geq \frac{3(1-\lambda)}{\lambda+1}(\lambda>2) \tag{2.13}
\end{equation*}
$$

Proof. We have

$$
\frac{h_{a}-\lambda r_{a}}{h_{a}+\lambda r_{a}}=\frac{\frac{2 \Delta}{a}-\lambda \frac{\Delta}{s-a}}{\frac{2 \Delta}{a}+\lambda \frac{\Delta}{s-a}}=\frac{-(\lambda+1) a+b+c}{(\lambda-1) a+b+c}
$$

Denote

$$
x=(\lambda-1) a+b+c ; y=a+(\lambda-1) b+c ; y=a+b+(\lambda-1) c .
$$

From the assumption $\lambda \geq 0$, it follows that $x, y, z>0$. Similarly to the proof of Theorem 2.2, we get

$$
a+b+c=\frac{x+y+z}{\lambda+1}
$$

and for $\lambda \neq 2$, we get

$$
a=\frac{\lambda x-y-z}{(\lambda-2)(\lambda+1)}
$$

and

$$
-(\lambda+1) a+b+c=\frac{-\left(\lambda^{2}+\lambda+2\right) x+2 \lambda y+2 \lambda z}{(\lambda-2)(\lambda+1)} .
$$

Therefore

$$
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\lambda r_{a}}=\frac{-3\left(\lambda^{2}+\lambda+2\right)}{(\lambda-2)(\lambda+1)}+\frac{2 \lambda}{(\lambda-2)(\lambda+1)} \cdot F(x, y, z)
$$

where $F(x, y, z)$ satisfies 2.10. If $\lambda<2$ then

$$
\frac{2 \lambda}{(\lambda-2)(\lambda+1)} \cdot F(x, y, z) \leq \frac{12 \lambda}{(\lambda-2)(\lambda+1)}
$$

and hence

$$
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\lambda r_{a}} \leq \frac{3(1-\lambda)}{\lambda+1}
$$

which is 2.12. Note that if $\lambda=2$, then $x=y=z=a+b+c, \frac{3(1-\lambda)}{\lambda+1}=-1$ and

$$
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\lambda r_{a}}=\sum \frac{-3 a+b+c}{a+b+c}=-1 .
$$

If $\lambda>2$ then

$$
\frac{2 \lambda}{(\lambda-2)(\lambda+1)} \cdot F(x, y, z) \geq \frac{12 \lambda}{(\lambda-2)(\lambda+1)}
$$

and hence

$$
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\lambda r_{a}} \geq \frac{3(1-\lambda)}{\lambda+1}
$$

which is (2.13). This completes the proof.
Remark 2.3. 1) If $\lambda=1$ then by Theorem 2.3 we obtain exactly the inequality (2.11);
2) Theorem 2.3 can be further extended to a two parameter inequality, similarly to Theorem 2.2

Theorem 2.4. In any triangle $A B C$, for $\mu \geq 0$ and $\lambda \in \mathbb{R}$ satisfying $\lambda+\mu \geq 0$, we have

$$
\begin{equation*}
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\mu r_{a}} \leq \frac{3(1-\lambda)}{\mu+1}(0 \leq \mu \leq 2) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\mu r_{a}} \geq \frac{3(1-\lambda)}{\mu+1}(\mu>2) \tag{2.15}
\end{equation*}
$$

Proof. Here if $\mu \neq 2$, we have

$$
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\mu r_{a}}=\frac{-3(\lambda \mu+\mu+2)}{(\mu-2)(\mu+1)}+\frac{\lambda+\mu}{(\mu-2)(\mu+1)} \cdot F(x, y, z)
$$

where $F(x, y, z)$ satisfies 2.10, while for $\mu=2$,

$$
\sum \frac{h_{a}-\lambda r_{a}}{h_{a}+\mu r_{a}}=1-\lambda
$$

The rest of the proof is similar to that of Theorem 2.3
Remark 2.4. 1) If we take $\mu=\lambda$, by Theorem 2.4 we obtain Theorem 2.3 ,
2) The following problem also naturally arise: extend the two parameter inequality (2.6) in the same way in which the inequality 1.4 has been extended and refined to obtain 1.5 .

Hint. Similarly to [7] we get

$$
\begin{gathered}
\sum \frac{h_{a}+\lambda r}{h_{a}-\mu r}= \\
=\frac{[(\lambda+4)(\lambda-2 \mu)+12] s^{2}+2 \mu(2 \mu+3 \lambda \mu-4 \lambda) R r+\mu(\mu-2 \lambda) r^{2}}{(\mu-2)^{2} s^{2}+2 \mu^{2}(2-\mu) R r+\mu^{2} r^{2}} .
\end{gathered}
$$

References

[1] Bencze, M., Wu, H.-H. and Wu S.-H., An equivalent form of fundamental triangle inequality and its applications, Octogon Math. Magazine, 16 (2008), No. 1, 36-41
[2] Chu, X.-G., Research Information Cxx-205, Communication in Studies of Inequalities 6 (1998), 67-68 (in Chinese)
[3] Coşniță, C. and Turtoiu, F., Culegere de probleme de algebră, Editura Tehnică, Bucureşti, 1961
[4] Coşniță, C. and Turtoiu, F., Probleme de algebră, Editura Tehnică, Bucureşti, 1972
[5] Mitrinović, D. S., Pečarić, J. E. and Volenec, V., Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989.
[6] Tian, Z.-P., An inequality relating to the altitudes, The Monthly Journal of High School Mathematics 26 (2003), pp. 42 (in Chinese)
[7] Wu, Y.-D. and Bencze, M., The refinement and generalization of a double Coşniţă-Turtoiu inequality with one parameter, Creat. Math. Inf. 19 (2010), No. 1, 96-100
[8] Zhang, X.-M., The relation between $\Pi \cos \frac{A}{2}$ and $\prod \sin \frac{A}{2}$ and its applications, Communication in Studies of Inequalities 5 (1998), 14-17 (in Chinese)

North University of Baia Mare
Department of Mathematics and Computer Science
Victoriei 76, 430122 Baia Mare
E-mail address: vberinde@ubm.ro

[^0]: Received: 25.04.2010; In revised form: 07.07.2010; Accepted: 15.08.2010.
 2000 Mathematics Subject Classification. 51M16, 52A40.
 Key words and phrases. Coşniţă-Turtoiu inequality.

