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An implementation of the piecewise-linear homotopy algorithm for the
computation of fixed points

ANDREI BOZANTAN

ABSTRACT.
This paper describes the main aspects of the “piecewise-linear homotopy method” for fixed point approximation proposed by Eaves and Saigal
[Homotopies for computation of fixed points on unbounded regions, Mathematical Programming 3 (1972), 225-237]. The implementation of the method
is developed using the modern programming language C# and some interesting details are given.

1. INTRODUCTION

In 1967 Herbert Scarf proposed a method for approximating fixed points of continuous mappings. The algorithm
proposed by Scarf, which is also a numerically implementable constructive proof of the Brouwer fixed point theo-
rem, has its origins in the Lemke-Howson complementary pivoting algorithm for solving linear complementarity
problems [8]. Beside the generalization and applications in fixed point theory, the Lemke-Howson algorithm is also
famous for its applications in finding Nash equilibrium points for bimatrix games, see for example the newer de-
velopments in [6]. Several improvements to the algorithm developed by Scarf were made by Terje Hansen in 1967,
see [14] and by Harold W. Kuhn in 1968 [7]. But the decisive advancements came in 1972, when Eaves [4] and then
Eaves and Saigal [5] described a piecewise-linear (PL) homotopy deformation algorithm as an improvement for the
algorithm proposed by Scarf. Another PL algorithm, related to the one proposed by Eaves and Saigal, was presented
by Orin H. Merrill in 1972 [9]. The main practical advantage of the PL homotopy methods is that they don’t re-
quire smoothness of the underlying map, and in fact they can be used to calculate fixed points of set-valued maps.
Although PL methods can be viewed in the more general context of complementary pivoting algorithms, see [10],
usually they are considered to be included in the special class of homotopy or continuation methods [2].

Starting from this background, our primary aim in this paper is to describe the important aspects of the piecewise-
linear homotopy method for fixed point approximation proposed by Eaves and Saigal. Using this presentation we
will then describe our implementation of the method which is developed using the modern programming language
C#, for which some interesting details are given.

2. BASIC CONCEPTS

The homotopy methods are useful alternatives and aides for the Newton methods in solving systems of n nonlin-
ear equations in n variables:

F (x) = 0, F : Rn → Rn (2.1)
mainly when very little a priori knowledge regarding the zero points of F is available and so, a poor starting value
could cause a divergent Newton iteration sequence.

The idea of the homotopy methods is to consider a new function G : Rn → Rn, related to F , with a known
solution, and then to gradually deform this new function into the original function F . Typically one can define the
convex homotopy:

H(x, λ) = λG(x) + (1− λ)F (x) (2.2)
and can try to trace the implicitly defined curve

H−1(0) = {x ∈ Rn | ∃ λ ∈ [0, 1] such that H(x, λ) = 0} (2.3)

from a starting point (x0, 1) to a solution point (x∗, 0). The implicit function theorem ensures that the set H−1(0) is at
least locally a curve under the assumption that (x0, 1) is a regular value of H , i.e., the Jacobian H ′(x0, 1) has full rank
n.

However, because we don’t require any smoothness conditions onF , a more complex approach involving piecewise-
linear approximations is needed.

Definition 2.1. Let v1, v2, . . . , vk+1 ∈ Rn+1 be affinely independent points. We call k-simplex in Rn+1 the con-
vex hull [v1, v2, . . . , vk+1] := co{v1, v2, . . . , vk+1}. The convex hull [w1, . . . wj+1] of any subset {w1, . . . , wj+1} ⊂
{v1, v2, . . . , vk+1} is an j-face of the simplex. Of particular interest are: the 0-faces called vertices (vertex), the 1-
faces called edges and the (k − 1)-faces called facets of the simplex. The facets are important in the PL methods and
are obtained by eliminating one vertex of the simplex.
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Definition 2.2. Let T be a non-empty family of (n+ 1)-simplexes in Rn+1. We call T a triangulation of Rn+1 if:
(1) the reunion of the simplexes cover all Rn+1;
(2) any two simplexes in T intersect in a common face or not at all;
(3) any bounded set in Rn+1 intersects only finitely many simplexes in T .

In the following discussion we assume that H : Rn+1 → Rn is a map and T is a triangulation of Rn+1. We want to
approximate the components of H−1(0) by using only the values of H on the nodes of T .

If σ is a simplex of T and τ ∈ σ is a facet of σ, then there is exactly one simplex σ̃ ∈ T such that σ̃ 6= σ and σ∩σ̃ = τ .
Also there is exactly one vertex v ∈ σ which is not a vertex of σ̃ and there is exactly one vertex ṽ ∈ σ̃ which is not a
vertex of σ. We call v the vertex of σ opposite τ and ṽ the vertex of σ̃ opposite τ . We say that the simplex σ is pivoted
across τ into σ̃ and that the vertex v of σ is pivoted into ṽ.

Definition 2.3. We call two simplexes σ, σ̃ ∈ T adjacent if they meet in a common facet τ = σ ∩ σ̃.

In the PL algorithms, a triangulation is stored in the computer’s memory using only a current simplex and a
current facet of this simplex. A pivoting step is used to move from the current simplex to an adjacent simplex, which
then becomes the new current simplex.The pivoting step is performed in the PL algorithms by a subroutine which
implements the pivoting rules of the triangulation.

Definition 2.4. The piecewise linear approximation of H (with respect to T ) is defined as the union

HT =
⋃
σ∈T

Hσ (2.4)

where Hσ : σ → Rn is the uniquely defined affine map which coincides with H on the vertices of σ.

Hσ can be uniquely extended to an affine map on the affine space spanned by σ. The Jacobian H ′σ has the property
H ′σ(x− y) = Hσ(x)−Hσ(y) for x, y in this affine space.

Definition 2.5. A point x ∈ Rn+1 is called a regular point of the PL map HT if x is not contained in any face of
dimension smaller than n, and if H ′τ has maximal rank n for all faces τ containing x. A value y ∈ Rn is a regular
value of HT if all points in H−1(y) are regular. If a point is not regular it is called singular. If a value is not regular it
is called singular.

3. PIECEWISE LINEAR METHODS

For ε > 0, we introduce the following notation:

−→ε :=

 ε1

...
εN

 (3.5)

Definition 3.6. We call an n-simplex τ completely labeled if it contains solutions of the equation Hτ (v) = ~ε for all
sufficiently small ε > 0.

In other words, we define an n-simplex τ to be completely labeled if it contains a zero point of the PL approxima-
tion Hτ , and if this property of τ is stable under certain small perturbations in the above sense.

Definition 3.7. An (n + 1)-simplex σ ∈ T is called transverse (with respect to H) if it contains a completely labeled
n-face.

Definition 3.8. If τ = [v1, . . . , vn+1] ∈ T is an n-simplex, we call the matrix:

L(τ) :=
(

1 . . . 1
H(v1) . . . H(vn+1)

)
(3.6)

the labeling matrix on τ induced by H .

Proposition 3.1. The n-simplex τ = [v1, . . . , vn+1] is completely labeled if and only if: the labeling matrix L(τ) is nonsingular
and L(τ)−1 is lexicographically positive i.e. the first non-zero entry in any row of L(τ)−1 is positive.

Proposition 3.2 (Door-In-Door-Out Principle [2]). An (n+ 1)-simplex has either zero or two completely labeled n-faces.

We assume that σ is transverse and consider the equation Hσ(v) = ~ε for v ∈ σ. An analogue version of Sard’s
theorem - the perturbation lemma - can be demonstrated for piecewise linear maps, see [2]. From this lemma we
have that for any compact subset C ⊂ Rn+1 there are at most finitely many ε > 0 such that C ∩ H−1T (~ε) contains a
singular point of HT . As a consequence, ~ε is a regular value of HT for almost all ε > 0. So for ε > 0 being sufficiently
small, the solutions v form a line which does not intersect lower-dimensional faces of σ. Hence, the line intersects
exactly two n-faces of σ. These two n-faces cannot change as ε→ 0, since otherwise a lower dimensional face would
be traversed and the perturbation lemma would be contradicted. In other words, exactly two n-faces of σ contain
solutions of the equation Hσ(v) = ~ε for ε > 0 being sufficiently small. �
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The PL algorithm for tracing certain components of H−1T (0) can now be easily described via the Door-In-Door-
Out-Principle. Heuristically, let us imagine that the (n+ 1)-simplexes σ ∈ T are “rooms” in an “infinite” building T ,
and the “walls” of a room σ are its n-faces τ . A wall has a “door” if it is completely labeled. Hence a room has either
no or exactly two doors. The algorithm consists of passing from one room to the next, and the following rule must
be obeyed: if a room is entered through one door, it must be exited through the other door [2].

Generic PL Continuation Algorithm
input

begin
σ0 ∈ T transverse (starting simplex)
τ0 completely labeled n-face of σ0;

end
repeat for n := 1, 2, . . .

find σn ∈ T , σn 6= σn−1 (pivoting step)
such that τn−1 = σn ∩ σn−1;

find the completely labeled n-face τn of σn (door-in-door-out step)
such that τn 6= τn−1;

until traversing is stopped.

In the general PL methods a suitable starting simplex has to be constructed, but for the special case of homotopy
methods the choice of the starting simplex is straightforward.

The pivoting step finds the simplex which is adjacent to the current simplex on a given facet. The implementation
of the pivoting step depends on the chosen triangulation and typically is performed using only a few operations
which define the pivoting rules of the triangulation.

The door-in-door-out step finds the second completely labeled n-face of a transverse simplex. This step is com-
putationally more expensive than the pivoting step because it involves the solving of linear equations in a manner
typical for linear programming methods and so it is also referred as linear programming (LP) step.

4. PIECEWISE LINEAR HOMOTOPY ALGORITHMS

The idea of the piecewise linear continuation algorithm can be used to approximate a fixed point of a continuous
bounded map F : Rn → Rn. We consider the homotopy:

H : Rn+1 → Rn, H(x, λ) = x− λx0 − (1− λ)F (x) (4.7)

and we try to follow the solution path from (x0, 1) to (x∗, 0), where x0 is the initial approximation of the solution and
x∗ is a fixed point of F which we try to approximate. Because there are no smoothness conditions on F , we use the
piecewise linear continuation algorithm in conjunction with a special triangulation.

We consider a triangulation T of Rn × (0, 1] into (n+ 1)-simplexes σ such that every simplex is contained in some
slab Rn × [2−k, 2−k−1], k ∈ N. Let σ = [v1, v2, . . . , vn+1, vn+2] ∈ T be an (n + 1)-simplex and let π : Rn × R → R be
the following canonical projection: π(x, λ) = λ. We define the level of σ as maxi=1,n+2 π(vi), which is the maximum
of the last co-ordinates of all vertices of σ. We call T a refining triangulation if the diameter of σ tends to zero as the
level of σ tends to zero.

We define the piecewise linear map HT which interpolates H on the vertices of the given refining triangulation
T . It can be shown that T induces a triangulation on the frontier of Rn × (0, 1] so we have an induced triangulation
over Rn × {1}. If we assume that the starting point u0 := (x0, 1) is in the interior of a facet τ0, then it is clear that
τ0 is the only completely labeled facet on Rn × {1}. So the algorithm cannot terminate on the boundary Rn × {1},
so it generates a sequence τ0, τ1, . . . of completely labeled facets. It is possible to follow the polygonal solution path
parametrized by arclength 0 ≤ s < s0 ≤ ∞, c(s) = (x(s), λ(s)) in H−1(0), starting at c(0) = (x0, 1). From the
boundedness of the map it follows that λ(s) tends to zero as s tends to s0 and

lim
s→s0

||x(s)− F (x(s))|| = 0 (4.8)

Since x(s) remains bounded as s tends to s0, this implies that every accumulation point of x(s) is a fixed point of F .

5. IMPLEMENTATION DETAILS

5.1. Input and Output. The input data required by the algorithm is:
• n - the dimension of the problem;
• F : Rn → Rn - the function for which we calculate a fixed point, specified as an expression depending on the

variables x1, x2, . . . , xn;
• v1, . . . , vn+1 ∈ Rn - the vertices of a starting simplex;
• x0 ∈ Rn - an initial approximation of the fixed point.

There are also some parameters for flow controlling:
• the minimum required contraction factor for the Newton steps;
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• the maximal allowed bisection level of the triangulation;
• the maximal number of steps to be performed;
• the stopping tolerance for ||F ||.

If an approximate solution is found the algorithm will output this solution and the number of steps performed in
order to find it. During the execution, the algorithm will output the current point of the followed polygonal path.

5.2. The Triangulation and Pivoting Step. The triangulation used in the algorithm is the refining triangulation J3
of Rn × (0, 1], but in the implementation any other refining triangulation can be easily used instead of J3. The
presentation of the J3 triangulation and the corresponding pivoting rules follows the description given by Saigal
[12].

The vertices of the triangulation J3 are given by the following set of points:

J0
3 = {v = (v1, . . . , vn+1) | vn+1 = 2−k, k ∈ N and

vi
vn+1

∈ Z, i = i, . . . , n}. (5.9)

In addition, the following subset of vertices in J0
3 are called central vertices:

J
0

3 = {v = (v1, . . . , vn+1) ∈ J0
3 |

vi
vn+1

is an odd integer, i = 1, . . . , n}. (5.10)

A vertex v ∈ J0
3 has the level k if vn+1 = 2−k. Each central vertex of depth k ≥ 1 has an unique nearest central vertex

of depth k − 1 obtained as

y(v) = v − vn+1 · ν(v) (5.11)

where

ν(v) = (ν1(v), ν2(v), . . . , νn+1(v))

νi(v) =


−1, if vi

vn+1
mod 4 = 1

+1, if vi
vn+1

mod 4 = 3.
(5.12)

Each simplex σ ∈ J3 has an unique representation by a triplet (v, π, s) where v = (v1, . . . , vn+1) is a central vertex,
π a permutation of {1, . . . , n+1} and s = (s1, . . . , sn+1) with si ∈ {−1,+1}. The vertices of this simplex are obtained
as follows:

γ1 = v
γi+1 = γi + vn+1sπ(i)eπ(i) i = 1, . . . , j − 1

γj+1 = γj − vn+1

n+1∑
k=j+1

νπ(k)eπ(k) + vn+1en+1

γk+1 = γk + 2xn+1νπ(k)eπ(k) j + 1 ≤ k ≤ n+ 1

(5.13)

where ν = ν(v), e1, . . . , en+1 is the standard unit basis in Rn+1 and j is the index such that π(j) = n+ 1.
Next we will present the pivoting rules for the J3 triangulation. Let (v, π, s) be a simplex in J3, and let π(j) = n+1.

Also, let γ1, . . . , γn+2 be the vertices of this simplex generated by the above relations. We define the n-dimensional
vector b such that bπ(i) = sπ(i) for 1 ≤ i ≤ j − 1 and bπ(i) = νπ(i) for j + 1 ≤ i ≤ n+ 1. We assume that γi is the vertex
which has to be pivoted. The new simplex (v′, π′, s′) is obtained by the following rules.
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i = 1, j = 1 v′ = v − vn+1(−1, b)
π′ = (π(2), . . . , π(n+ 1), π(1))
b′ = b

i = 1, j > 1 v′ = v + 2vn+1bπ(1)eπ(1)
π′ = π
b′ = b− 2bπ(1)eπ(1)

2 ≤ i ≤ j − 1 v′ = v
π′ = (π(1), . . . , π(i+ 1), π(i), . . . , π(n+ 1))
b′ = b

i = j, bπ(j−1) = νπ(j−1) v′ = v
π′ = (π(1), . . . , π(j), π(j − 1), . . . , π(n− 1))
b′ = b

i = j, bπ(j−1) = −νπ(j−1) v′ = v
π′ = (π(1), . . . , π(j − 2), π(j), . . . , π(n+ 1), π(j − 1))
b′ = b− 2bπ(j−1)eπ(j−1)

j + 1 ≤ i ≤ n+ 1 v′ = v
π′ = (π(1), . . . , π(i+ 1), π(i), . . . , π(n+ 1))
b′ = b

i = n+ 2, j = n+ 1 v′ = v + 1
2vn+1(−1, b)

π′ = (π(n+ 1), π(1), . . . , π(n))
b′ = b

i = n+ 2, j < n+ 1 v′ = v
π′ = (π(1), . . . , π(j − 1), π(n+ 1), π(j), . . . , π(n))
b′ = b− 2bπ(n+1)eπ(n+1)

5.3. The Linear Programming Step. In the linear programming step we try to find the second completely labeled n-
face of a transverse simplex. This is usually a computational intensive step since involves solving of linear equations
in a manner typical for linear programming methods, so it has to be implemented using efficient methods.

We denote the current transverse (n + 1)-simplex by σn = [v1, . . . , vn+2] and its current completely labeled n-
face by τn−1 = [v1, . . . , vn+1]. Hence the vertex vn+2 was just pivoted in the preceding step. Our aim in the linear
programming step is to find a completely labeled n-face τn of σn which is different from τn−1. So we have to find
an index i ∈ {1, . . . , n + 1} such that the right inverse of the matrix obtained by deleting the i-th column of A =
L(σn) is lexicographically positive, see 3.1. One index which satisfies this is i = n + 2, since the n-face opposite
vn+2 is completely labeled. The other index which will be obtained is the new index we are seeking in the linear
programming step.

For numerical purposes, the lexicographical operations in linear programming are usually performed only over
the first coordinate of the rows. Theoretically, in cases of degeneracies, an algorithm based on this simplified test
could cycle, but this is rarely observed in practice.

Using this simplification, the numerical linear algebra of the “door-in-door-out” step consists of solving the equa-
tions

Aγ = 0, γ[j] = −1

Aα = e1

for γ, α ∈ Rn+2 and where the index j is given and corresponds to the known completely labeled n-face. Then a
minimization

min

{
α[i]

γ[i]

∣∣∣ γ[i] > 0, i = 1, . . . , n+ 2

}
is performed to find the index i corresponding to the vertex to be pivoted next. The vertex vi is pivoted into the
vertex ṽi. The corresponding label

y :=

(
1

H(ṽi)

)
is calculated, and the new labeling matrix Ã is obtained by replacing the i-th column of A by y:

Ã = A+ (y −Aei)eiᵀ.

At each step, a standard decomposition of Ã is updated from a given decomposition of A, which enables us to solve
the linear equations at each step. The cheapest such method directly updates the right inverse B of A such that
ei

ᵀB = 0 for the current pivot index i. However, this update method is not always stable, so we actually update a
QR factorization of Ã in each cycle. The required matrix operations are performed using the ALGLIB library [1].



An implementation of the piecewise-linear homotopy algorithm ... 145

5.4. Acceleration Techniques. In order to improve the convergence rate of the algorithm a technique of mixing PL
steps with Newton steps can be used, see [11]. This follows from the fact that a modified Newton’s method expressed
in barycentric coordinates leads to a system of linear equations which is closely related to the linear equations ob-
tained in the linear programming step and in fact it is possible to continue the updates of the labeling matrix during
the Newton steps on the column corresponding to the vertex which has to be pivoted next. The Newton steps are
performed when each new level Rn × {k} is reached in the algorithm. If the contraction of the Newton steps is
sufficiently strong the algorithm will continue to perform these steps until it stops with an approximate solution. If
the Newton steps are not successful then the pivoting step is executed and the PL homotopy algorithm continues
normally.

6. CONCLUSIONS AND FUTURE WORK

The main practical advantages of the PL homotopy methods is that they don’t require smoothness of the underly-
ing map, so in theory they have a very large range of applicability. Also another important feature of these methods
is that they can be applied when no a priori knowledge regarding the solutions of the system to be solved is available.

The implementation of this algorithm in a modern programming language will make possible a comparative
study with some other methods for solving non-linear equations, e.g. Newton’s method. Some preliminary results
are given in [3]. We also want to study possible applications for the newer developments related to the piecewise-
linear homotopy methods, see for example [6]. Another important research direction is to study the feasibility of
parallelizing some parts of this algorithm.
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