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Empirical study of a Padé type accelerating method of Picard iteration

OANA BUMBARIU and VASILE BERINDE

ABSTRACT.
We use a Padé type acceleration technique for the method of successive approximations in [J. Biazar and A. Amirteimoori, An improvement to
the fixed point iterative method, Applied Mathematics and Computation 182 (2006), 567-571, doi:10.1016/j.amc.2006.04.019] to empirically study the
possibility of accelerating Picard iteration for some other known test functions.

1. INTRODUCTION

Recently, Biazar and Amirteimoori considered in [9] a Padé-type technique to accelerate Picard iteration method
for solving three scalar equations of the form

f(x) = 0 (1.1)
which were equivalently written as a fixed point problem

x = g(x), (1.2)

where g : [a, b]→ [a, b] is the iteration function.
Under appropriate assumptions on f (and therefore on g), the Picard iteration (or the sequence of successive

approximations, as it is generally known), i.e.,

xn+1 = g(xn), n ≥ 0, (1.3)

converges to the (unique) fixed point of g, say α, which is the (unique) solution of (1.1) in the interval [a, b].
Note that for a certain nonlinear equation (1.1), the fixed point problem (1.2) is not uniquely defined. For example,

the equation x3 + 4x2 − 10 = 0 can be written under a fixed point form as x = 1
2

√
10− x3 or x = 3

√
10− 4x2.

As the convergence order of the Picard iteration (1.3) is generally linear (see for example Berinde [6]), the method
converges rather slowly to the fixed point α.

In order to improve the convergence speed of (1.3), the authors in [9] considered the following equivalent fixed
point problem

x = gλ(x) (1.4)
with gλ of the form

gλ(x) =
g(x) + λ1x+ λ2x

2 + λ3x
3 + . . .+ λkx

k

1 + λ1 + λ2x+ λ3x2 + . . .+ λkxk−1
, (1.5)

where k ∈ N, k ≥ 2 and λ1, λ2, λ3, . . . , λk ∈ R are parameters that should be determined in such a way that the new
iteration function gλ will yield a faster Picard iteration.

Note that the method of constructing (1.5) is rather similar to the way in which the Padé approximant of order
(m,n), [m/n]f (x), is obtained, see for example [5]:

[m/n]f (x) =
p0 + p1x+ p2x

2 + . . .+ pmx
m

1 + q1x+ q2x2 + . . .+ qnxn
. (1.6)

This is the reason we shall name in the following (1.5) as a Padé type transform.
The aim of this paper is twofold: first, to derive the convergence order of the Picard iteration associated to (1.4)

and secondly, to perform a similar empirical study of the rate of convergence for other values of k, in the case of the
equations from [9], as well as for other test functions taken from literature. This will allow us to infer which value of
k is optimal for each equation.

2. THE PADÉ-TYPE ACCELERATION OF THE PICARD ITERATION

This result is taken from [9].
Based on the fact that the fixed point equation

x = g(x)

is equivalent to

x+ λ1x+ λ2x
2 + λ3x

3 + . . .+ λkx
k = g(x) + λ1x+ λ2x

2 + λ3x
3 + . . .+ λkx

k,

Received: 14.03.2010; In revised form: 01.07.2010; Accepted: 15.08.2010.
2000 Mathematics Subject Classification. 47H10, 65B99.
Key words and phrases. Fixed point, Picard iterations, Padé type acceleration, order of convergence.
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which can be written under the form

x = gλ(x) =
g(x) + λ1x+ λ2x

2 + λ3x
3 + . . .+ λkx

k

1 + λ1 + λ2x+ λ3x2 + . . .+ λkxk−1
(2.7)

we get exactly the fixed point problem (1.4).
It is tacitely assumed that gλ(x) is well defined on the interval [a, b] where the original equation is solved, that is, the
equation

1 + λ1 + λ2x+ λ3x
2 + . . .+ λkx

k−1 = 0

has no real roots on [a, b].
The main idea of constructing such an accelerated method is to determine the parameters λ1, λ2, . . . , λk such that the
new iteration function gλ satisfies

g
(i)
λ (α) = 0, i = 1, 2, . . . , k, (2.8)

where α is the unique solution of (1.1) and (1.2) in the interval [a, b].
Using (2.7), the equation (2.8) yields an upper diagonal linear system of equations with the unknowns λ1, λ2, . . . , λk

which always is uniquely solvable, as in the case of the original Padé transform. Indeed, by (2.7) we have

gλ(x)(1 + λ1 + λ2x+ λ3x
2 + . . .+ λkx

k−1) = g(x) + λ1x+ λ2x
2 + λ3x

3 + . . .+ λkx
k

which, by differentiating with respect to x, gives

g′λ(x)(1 + λ1 + λ2x+ . . .+ λkx
k−1) + gλ(x)(λ2 + 2λ3x+ . . .+ (k − 1)λkx

k−2) =

= g′(x) + λ1 + 2λ2x+ . . .+ kλkx
k−1. (2.9)

If we take x = α in (2.9) and use the fact that gλ(α) = gλ(x) = α and g′λ(α) is required to be zero, we get the linear
equation

λ1 + 2λ2α+ . . .+ kλkα
k−1 = −g′(α).

Now we differentiate again (2.9) and then, by letting x = α, we are lead to the linear equation

2λ2 + 3λ3α+ . . .+ k(k − 1)λkα
k−1 = −g′′(α)

and so on. The generic formula for the ith derivative of gλ is

−g(j)(α) =
k∑
i=j

i(i− 1)(i− 2) . . . (i− j + 1)λiα
i−j , j = 1, 2, . . . , k. (2.10)

If we rewrite the linear k × k system (2.10) in a matrix form we have
1 2α 3α2 . . . kαk−1

0 2 6α . . . k(k − 1)αk−2

0 0 6 . . . k(k − 1)(k − 2)αk−3

...
...

... . . .
...

0 0 0 . . . k!




λ1
λ2
λ3
...
λk

 =


−g′(α)
−g(2)(α)
−g(3)(α)

...
−g(k)(α)

 . (2.11)

By solving (2.11), we can uniquely find the values of λ1, λ2, λ3, . . . , λk and hence get the iteration function of the
accelerated process

xn+1 = gλ(xn), n ≥ 0.

We end this section by reminding the concept of convergence order that will be used in the paper.
Let {xn} ⊂ R be a sequence of real numbers convergent to α ∈ R (which is obtained by iterating a fixed point

equation)

Definition 2.1. [13]Let {xn} converge to α. If there exist an integer constant p, and a real positive constant C such
that

lim
n→∞

∣∣∣∣ xn+1 − α
(xn − α)p

∣∣∣∣ = C,

then p is called the order and C the constant of convergence.

The concept of rate of convergence given by Definition 2.1 is also known as the Q-order of convergence, see the
monographs by Măruşter [13] and Ortega and Rheinboldt [14].

The next theorem shows how the fixed point iteration defined by the function gλ accelerates the fixed point itera-
tion defined by g.

Theorem 2.1. Let g ∈ Ck+1[a, b] such that the associated iteration function gλ satisfy (2.8), where α is the unique solution in
[a, b] of (1.2). Then the accelerated Picard iteration

xλn+1 = g(xλn), n ≥ 0

has Q-order of convergence k.
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Proof. By the Taylor expansion of gλ at x we find

gλ(xn) = gλ(x) +
g′λ(x)

1!
(xn − x) + . . .+

g
(k)
λ (x)

k!
(xn − x)k + . . .

which yields, in view of gλ(α) = α and (2.8)

gλ(xn)− α =
g
(k+1)
λ (x)

(k + 1)!
(xn − α)k+1 + . . .

that is

lim
n→∞

|xn+1 − α|
|xn − α|k+1

=
g
(k+1)
λ (α)

(k + 1)!
,

which completes the proof. �

Remark 2.1. Note that, generally, g′(α) 6= 0, so (xn) has the Q-order of convergence equal to 1, see the Examples in
the next section.

3. SOME USEFUL FIXED POINT THEOREMS

In this section we present three known results in fixed point theory, taken from [6], that ensure, under various
assumptions, the existence and uniqueness of a fixed point of a mapping g as well as the convergence of the Picard
iteration to that fixed point. For two of them, the rate of convergence is also given.

Theorem 3.2 (Contraction Mapping Principle). Let (X, d) be a complete metric space and T : X −→ X a map satisfying

d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X , (3.12)

where 0 ≤ a < 1 is constant. Then:
(p1) T has a unique fixed point x∗ in X ;
(p2) The Picard iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . . (3.13)

converges to x∗, for any x0 ∈ X .
(p3) The following estimate holds:

d(xn+i−1, x
∗) ≤ ai

1− a
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.14)

(p4) The rate of convergence of Picard iteration is given by

d(xn, x
∗) ≤ a d(xn−1, x∗) , n = 1, 2, . . . (3.15)

Theorem 3.3 (Zamfirescu’s Mapping Principle). Let (X, d) be a complete metric space and let T : X → X be a mapping
for which there exist a ∈ [0, 1), b, c ∈ [0, 12 ) such that for all x, y ∈ X, at least one of the following conditions is true:

(z1) d(Tx, Ty) ≤ a d(x, y);
(z2) d(Tx, Ty) ≤ b

[
d(x, Tx) + d(y, Ty)

]
;

(z3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
.

Then the Picard iteration {xn} defined by (3.13) and starting from x0 ∈ X converges to the unique fixed point x∗ of T with
the following error estimate

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

where δ = max

{
a,

b

1− b
,

c

1− c

}
.

Moreover, the convergence rate of the Picard iteration is given by

d(xn, x
∗) ≤ δ · d(xn−1, x∗) , n = 1, 2, . . . (3.16)

Theorem 3.4 (Almost Contraction Mapping Principle). Let (X, d) be a complete metric space and T : X → X an almost
contraction, that is, a mapping for which there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (3.17)

Then
1) F (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 ∈ X , the Picard iteration {xn}∞n=0 given by (1.2) converges to some x∗ ∈ F (T );
3) The following estimate holds

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.18)
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4. NUMERICAL EXAMPLES

Example 4.1. [9]Test function: f(x) = x3 + 4x2 − 10, which has a unique root in the interval (1,2). We use an
approximate value for α, α ∼= 1.5 and g(x) = 1

2

√
10− x3. The values of the parameters λi involved in (2.7) are

For k = 2:
λ1 = −1.15660903, λ2 = 1.20815133.

For k = 3:
λ1 = 1.57623135, λ2 = −2.43563586, λ3 = 1.21459573.

For k = 4:
λ1 = −3.122090855, λ2 = 6.961008590, λ3 = −5.049833910, λ4 = 1.392095477.

and for k = 5:
λ1 = 6.176012965, λ2 = −17.83393493, λ3 = 19.74510962, λ4 = −9.627879427,

λ5 = 1.836662484. The results for the three fastest methods used in Example 4.1 are listed in Table 1.

Table 1

n k = 2 k = 3 k = 4 k = 5
xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = g(xn)

0 1.5 1.5 1.5 1.5 1.5
1 1.37131921 1.37131920 1.37131921 1.37131923 1.28695377
2 1.36517040 1.36525174 1.36523987 1.36524189 1.40254080
3 1.36523078 1.36523005 1.36523000 1.36523001 1.34545838
4 1.36523000 1.36523001 1.36523001 1.37517025
5 1.36523001 1.36009419
6 1.36784697
...

...
25 1.36523001

For Example 4.1 we observe that for k = 5 we have the best rate of convergence.

Example 4.2. [9]Test function f(x) = x−tanx = 0. This equation has a root which lies near
3π

2
. Let g(x) = tanx, then

g′(x) = 1 + tan2 x ≥ 1, which is not a suitable g(x). Let α ∼= 4.5 and g(x) = tanx. We show that the new technique
works even in this case. The values of the parameters λi involved in (2.7) are
For k = 3:

λ1 = −28939.740120, λ2 = 13060.829480, λ3 = −1474.394932.
For k = 4:

λ1 = 814467.2540, λ2 = −54910.4993, λ3 = 123474.7892, λ4 = −9255.495122.
For k = 5:

λ1 = −2.152270898 · 107, λ2 = 1.930605732 · 107, λ3 = −6.494947820 · 106,
λ4 = 9.712515583 · 105, λ5 = −54472.61408.

and for k = 6:
λ1 = 5.464009450 · 108, λ2 = −6.117202249 · 108, λ3 = 2.739611774 · 108,

λ4 = −6.135233180 · 107, λ5 = 6.870369979 · 106, λ6 = −3.077707818 · 105.

The results for the three fastest methods used in Example 4.2 are listed in Table 2.
Table 2

n k = 3 k = 4 k = 5 k = 6
xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = g(xn)

0 4.5 4.5 4.5 4.5 4.5
1 4.493616 4.493280632 4.488372093 5.444444444 4.637332
2 4.493410 4.493716711 4.487779511 5.444305527 13.298192
3 4.493170168 4.479895561 5.444414683 0.898203
4 4.493888939 4.487352445 5.444477321 1.255520
5 4.493311705 4.495007882 5.444416274
...

...
...

...
...

10 -0.076296
...

...
...

...
...

25 4.493647770 4.504339881

For Example 4.2 we observe that for k = 3 we have the best rate of convergence.
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Example 4.3. [9]
Test function f(x) = x− 3−x = 0. f(x) is continuous on [ 13 , 1] and f( 13 ) · f(1) < 0. By Weierstrass’ theorem, α, the

root of f(x), lies in ( 13 , 1). Let α ∼= 0.6 ∈ ( 13 , 1) and g(x) = 3−x. The values of the parameters λi involved in (2.7) are
For k = 5:

λ1 = 1.0979516, λ2 = −1.2013119, λ3 = 0.6435174, λ4 = −0.2083743, λ5 = 0.0344936.

For k = 6:
λ1 = 1.0985408, λ2 = −1.2062230, λ3 = 0.6598879, λ4 = −0.2356586, λ5 = 0.0572306,

λ6 = −0.00755790.
For k = 7:

λ1 = 1.0986056, λ2 = −1.2068705, λ3 = 0.6625857, λ4 = −0.2416536, λ5 = 0.0647243,

λ6 = −0.0125748, λ7 = 0.0013877.
and for k = 8:

λ1 = 1.0986117, λ2 = −1.2069416, λ3 = 0.6629413, λ4 = −0.2426415, λ5 = 0.0663709,

λ6 = −0.0142213, λ7 = 0.0023024, λ8 = 0.0002177.

The results for the three fastest methods used in Example 4.3 are listed in Table 3.
Table 3

n k = 5 k = 6 k = 7 k = 8
xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = g(xn)

0 0.33333 0.33333 0.33333 0.33333 0.33333
1 0.53769 0.5376929282 0.5376928610 0.5376928590 0.69336
2 0.54779 0.5477874354 0.5477874346 0.5477874349 0.46686
3 0.54781 0.5478086216 0.5478086216 0.5478086223 0.59876
4 0.54781 0.5478086219 0.5478086213 0.5478086215 0.51799
5 0.5478086217 0.5478086215 0.5478086219
6 0.5478086213 0.5478086214
7 0.5478086215 0.5478086216
8 0.5478086218
9 0.5478086218
...

...
...

...
...

21 0.54781

For the Example 4.3 we observe that for k = 5 we have the best rate of convergence.

Example 4.4. [11]Test function: f(x) = (x − 1)3 − 1 = 0. We observe that x = 2 is a root of f(x). We use an
approximative value for α, α ∼= 1.7 and g(x) = 3

√
3x2 − 3x+ 2. Note that g is a contraction on R. The values of the

parameters λi involved in (2.7) are
For k = 2:

λ1 = −0.8007005397, λ2 = 0.0217115888.

For k = 3:
λ1 = −0.4719973830, λ2 = −0.3649980073, λ3 = 0.1137381165.

For k = 4:
λ1 = 0.2083667801, λ2 = −1.565640648, λ3 = 0.8199984934, λ4 = −0.1384824268.

For k = 5:
λ1 = 1.180921712, λ2 = −3.854005194, λ3 = 2.839143681, λ4 = −0.9303040692,

λ5 = 0.1164443592.
and for k = 6:

λ1 = 2.293100612, λ2 = −7.125119605, λ3 = 6.687513576, λ4 = −3.194051066,
λ5 = 0.7822522995, λ6 = −0.07833034592.

The results for the five fastest methods used in the Example 4.4 are listed in Table 4.
Table 4
For the Example 4.4 we observe that for k = 5 we have the best rate of convergence.

Example 4.5. [11]Test function f(x) = cosx − x = 0, which has a unique root in the interval (0, 1). We use an
approximative value for α, α ∼= 0.5 and g(x) = cosx. Note that g is a contraction on [0, 1]. The values of the
parameters λi involved in (2.7) are
For k = 2:

λ1 = 0.04063425765, λ2 = 0.8775825619.
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n k = 2 k = 3 k = 4 k = 5 k = 6
xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=g(xn)

0 1.7 1.7 1.7 1.7 1.7 1.7
1 2.007486966 2.007486965 2.007486965 2.007486949 2.007487047 1.772631238
2 1.999773454 2.000100489 1.999981347 2.000012547 2.000006093 1.828035437
3 2.000006791 2.000001178 2.000000064 2.000000040 1.999999912 1.870174554
4 1.999999796 2.000000017 1.999999996 1.999999980 2.000000124 1.902133792
5 2.000000006 1.999999998 2.000000008 2.000000000 1.999999912 1.926313267
6 1.999999999 2.000000004 2.000000004 2.000000000 2.000000124 1.944570353
7 1.999999997 2.000000000 1.999999996 1.958333871
8 1.999999997 2.000000008 1.968697038
9 2.000000004 1.976492529

10 1.999999996 1.982352284
11 2.000000008 1.986754546
...

... 2.000000008
...

...
...

32 1.999976320

For k = 3:
λ1 = −0.01929393468, λ2 = 1.117295331, λ3 = −0.2397127693.

For k = 4:
λ1 = −0.001010964635, λ2 = 1.007597511, λ3 = −0.02031712882, λ4 = −0.1462637603.

For k = 5:
λ1 = 0.0002375393714, λ2 = 0.9976094789, λ3 = 0.00964697338, λ4 = −0.1862158885,

λ5 = 0.01997606411.
and for k = 6:

λ1 = 0.0000090022458559, λ2 = 0.9998948502, λ3 = 0.0005054823177,

λ4 = −0.1679329185, λ5 = 0.001693094069, λ6 = 0.007313188016.

The results for the five fastest methods used in the Example 4.5 are listed in Table 5.
Table 5

n k = 2 k = 3 k = 4 k = 5 k = 6
xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=g(xn)

0 0.5 0.5 0.5 0.5 0.5 0.5
1 0.7552224168 0.7552224168 0.7552224168 0.7552224173 0.7552224180 0.8775825619
2 0.7393111553 0.7391639529 0.7391407837 0.73914159935 0.7391416688 0.6390124942
3 0.7390872396 0.739085247 0.7390851314 0.7390851334 0.7390851349 0.8026851007
4 0.7390851525 0.7390851333 0.7390851332 0.7390851335 0.7390851334 0.6947780268
5 0.7390851331 0.7390851327 0.7390851332 0.7390851341 0.7390851334 0.7681958313
6 0.7390851332 0.7390851335 0.719165449
7 0.7390851332 0.7390851341
...

...
...

52 0.7390852281

For the Example 4.5 we observe that for k = 2 we have the best rate of convergence.

Example 4.6. [11]Test function f(x) = (sinx)2 − x2 + 1 = 0. f(x) is continuous on [1, 2] and f(1) · f(2) < 0. By
Weierstrass theorem, α, the root of f(x), lies in (1, 2). Let g(x) =

√
1 + (sinx)2 and α ∼= 1.5. The values of the

parameters λi involved in (2.7) are
For k = 2:

λ1 = −1.103967914, λ2 = 0.7026746168.

For k = 3:
λ1 = −0.9630432881, λ2 = 0.5147751162, λ3 = 0.06263316685.

For k = 4:
λ1 = 0.03406382402, λ2 = −1.479439108, λ3 = 1.392109316, λ4 = −0.2954391443.

For k = 5:
λ1 = −0.4994602957, λ2 = −0.4317081221, λ3 = 0.7193783305, λ4 = −0.1631142617,

λ5 = 0.005723630675.
and for k = 6 we have the solutions

λ1 = −0.3772313996, λ2 = −0.8391377758, λ3 = 1.262617869, λ4 = −0.5252739538,

λ5 = 0.1264435280, λ6 = −0.01609598632.

The results for the five fastest methods used in the Example 4.6 are listed in Table 6.
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Table 6
n k = 2 k = 3 k = 4 k = 5 k = 6

xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=g(xn)
0 1.5 1.5 1.5 1.5 1.5 1.5
1 1.407839387 1.407839386 1.407839387 1.407839385 1.407839388 1.412443361
2 1.404493085 1.404495094 1.404495963 1.404495477 1.404495477 1.405394334
3 1.404491648 1.404491648 1.404491651 1.404491648 1.404491650 1.404496296
4 1.404491648 1.404491647 1.404491648 1.404493062
5 1.404491649 1.404491813
6 1.404491646

1.404491646
...

...
...

9 1.404491648

For the Example 4.6 we observe that for k = 2, 3, 5 we have the best rate of convergence.

Example 4.7. [11] Test function f(x) = ex
2+7x−30 − 1 = 0. We observe that x = 3 is a root for f(x). Let g(x) =

√
30− 7x

and an approximative value of α, α ∼= 2.5. The values of the parameters λi involved in (2.7) are
For k = 2:

λ1 = 0.2969848483, λ2 = 0.2771858582.

For k = 3:
λ1 = 1.024597726, λ2 = −0.3049044440, λ3 = 0.1164180604.

For k = 4:
λ1 = 0.1757160352, λ2 = 0.7137535850, λ3 = −0.2910451512, λ4 = 0.05432842822.

For k = 5:
λ1 = 1.215596106, λ2 = −0.9500545285, λ3 = 0.7072397170, λ4 = −0.2118808700,

λ5 = 0.02662092982.
and for k = 6:

λ1 = −0.09465278297, λ2 = 1.670443250, λ3 = −1.389158506, λ4 = 0.6266784191,

λ5 = −0.1410909280, λ6 = 0.01341694862.

The results for the five fastest methods used in the Example 4.6 are listed in Table 7.
Table 7

n k = 2 k = 3 k = 4 k = 5 k = 6
xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=gλ(xn) xn+1=g(xn)

0 2.5 2.5 2.5 2.5 2.5 2.5
1 3.020382004 3.020382004 3.020382005 3.020382007 3.020382003 3.535533906
2 2.999645349 2.999947206 3.00009189 3.000037463 3.000042237 2.291563366
3 3.000006356 3.000000021 2.999999980 2.999999986 2.999999988 3.736182067
4 2.999999888 2.999999999 2.999999989 2.999999997 2.999999973 1.961307097
5 3.000000002 3.000000000 3.000000002 3.000000001 3.000000005 4.033714209
6 3.000000001 3.000000001 3.000000005 2.999999993 1.328156821
7 3.000000000 2.999999999 3.000000005 2.999999989 4.550044203
8 3.000000002 2.999999994 ·
9 3.000000001 2.999999982 ·

10 3.000000001 2.999999991 ·
11 2.999999986
12 3.000000007
13 3.000000007

For Example 4.7 we observe that for k = 3 we have the best rate of convergence.
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