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A simple proof of Gautschi-Kershaw inequality

CRISTINEL MORTICI

ABSTRACT.
The aim of this paper is to give a simple proof of Gautschi-Kershaw inequality.

1. INTRODUCTION

The first Gautschi-Kershaw inequality states that(
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(x ≥ 1, 0 < s < 1) , (1.1)

where Γ denotes the Euler gamma function. For more informations on the background of this inequality and its
applications, see [2]-[23] and all references therein.

The starting point of the history of this inequality can be considered the work of Wendel [24] who proved(
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≤ Γ (x + a)

xaΓ (x)
≤ 1 (0 < a < 1, x > 0) , (1.2)

when he was preoccupied to establish the classical asymptotic relation [1, p. 257, Rel. 6.1.46],

lim
n→∞

ns−t Γ (n + t)
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= 1. (1.3)

The inequality (1.2) was rediscovered by Gautschi [3] in the form
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≤ (x + a)
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,

then Kershaw [7] among other things, established the double inequality (1.1), now known as the first Gautschi-
Kershaw inequality. Different proofs of this inequality employ the convolution theorem of Laplace transforms, as-
ymptotic formulas and integral representations of the gamma, psi and polygamma functions, and other analytic
methods.

We give here an elementary proof for the case x = n positive integer, using only the variation of some differentiable
functions.

2. THE NEW PROOF

In order to prove (1.1), we define the sequences
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then remark that (1.1) is equivalent to an > 0 and bn < 0. By (1.3), the sequences an and bn converge to zero. In
consequence, it suffices to show that an is strictly decreasing and bn is strictly increasing.

First, we have an+1 − an = f (n) , where

f (x) = ln (x + 1)− ln (x + s)− (1− s) ln
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and we prove that f < 0. As

f ′ (x) =
s (1− s) (2− s)

(x + 1) (x + s) (2x + s) (2x + s + 2)
> 0,

it results that f is strictly increasing. Moreover, f (∞) = 0, so f < 0.
Now let us denote bn+1 − bn = g (n) , where

g (x) = ln (x + 1)− ln
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(x + 1) (4x + 4t2 − 1) (2x + 2t− 1) (2x + 2t + 1)
< 0,

so g′ < 0. Finally, g is strictly decreasing with g (∞) = 0, so g > 0 and the conclusion follows.

REFERENCES

[1] Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publica-
tions, 1972
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