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Some results on integrals computation and applications to logsine and
loggamma integrals

CRISTINEL MORTICI

ABSTRACT.
We describe here some methods for computing of some special integrals. The results are applied to the logsine and the loggamma integrals.

1. INTRODUCTION

In this paper we shall give some methods for computing integrals of functions satisfying certain functional equa-
tions. Then we will show how we can we use these abstract results to compute some integrals involving the gamma
function.

More precisely, we use our formulas for direct computations of loggamma and logsine integrals, which are of great
interest in many branches, such as probabilities, statistical physics, or business and economics. See, e.g., [3]-[6].

2. THE RESULTS

We start with the theorem

Theorem 2.1. Let f : [0, a]→ R be continuous and such that

f(2z) = b+ f(z) + f(a− z) , for every z ∈
[
0,
a

2

]
.

Then
∫ a

0

f(z) d z = −ab.

Proof. With z = 2t, we have∫ a

0

f(z) d z = 2

∫ a/2

0

f(2t) d t = 2

∫ a/2

0

[b+ f(t) + f(a− t)] d t =

= ab+ 2

[∫ a/2

0

f(t) d t+

∫ a/2

0

f(a− t) d t

]
.

Then by the change of variable u = a− t in the last integral, we obtain∫ a

0

f(z) d z = ab+ 2

[∫ a/2

0

f(t) d t+

∫ a

a/2

f(u) du

]
or ∫ a

0

f(z) d z = ab+ 2

∫ a

0

f(t) d t, thus
∫ a

0

f(z) d z = −ab.

�

This result can be obviously applied in case of improper integrals when the respective function is defined on a
semiclosed interval. Let us consider now the function

f :
(

0,
π

2

]
→ R , f(z) = ln sin z.

We have
f(2z) = ln sin 2z = ln(2 sin z cos z) = ln 2 + ln sin z + ln cos z =

= ln 2 + ln sin z + ln sin
(π

2
− z
)
.

Now we can apply Theorem 2.1 with a =
π

2
and α = ln 2 to obtain the known integral∫ π/2

0

ln sin z d z = −π
2

ln 2.
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Next we can use the relation ∫ π/2

0

f(sin z) d z =

∫ π/2

0

f(cos z) d z

(which can be obtained by the change of variable z =
π

2
− t) to derive∫ π/2

0

ln sin z d z =

∫ π/2

0

ln cos z d z = −π
2

ln 2. (2.1)

This result can be obtained in a different way and on this occasion we establish the following abstract result:

Theorem 2.2. Let f, g : [−a, a]→ R be continuous and such that

f(x) = f

(
a+ x

2

)
+ f

(
a− x

2

)
− g(x) , for every x ∈ [−a, a] .

Then
∫ a

0

f(x) dx =

∫ a

0

g(x) dx.

Proof. By integration from 0 to a we obtain∫ a

0

f(x) dx =

∫ a

0

f

(
a+ x

2

)
dx+

∫ a

0

f

(
a− x

2

)
dx−

∫ a

0

g(x) dx.

In the right hand we make change of variable
a+ x

2
= t, respective

a− x
2

= z, so∫ a

0

f(x) dx = 2

∫ a

a/2

f (t) d t+ 2

∫ a/2

0

f (z) d z −
∫ a

0

g(x) dx

or ∫ a

0

f(x) dx = 2

∫ a

0

f (t) d t−
∫ a

0

g(x) dx⇔
∫ a

0

f(x) dx =

∫ a

0

g(x) dx.

�

As a consequence, let us give the following

Corollary 2.1. Let f :
[
−π

2
,
π

2

]
→ R be given by f(x) = −

∫ x

0

ln cos td t. Then

f(x) = 2f
(π

4
+
x

2

)
− 2f

(π
4
− x

2

)
− x ln 2 , for all x ∈

[
−π

2
,
π

2

]
,

and then ∫ π/2

0

ln sin z d z =

∫ π/2

0

ln cos z d z = −π
2

ln 2.

Proof. Let us start from the elementary identity

1

2
cos t =

1

2

(
cos2

t

2
− sin2 t

2

)
=

=

√
2

2

(
cos

t

2
− sin

t

2

)
·
√

2

2

(
cos

t

2
+ sin

t

2

)
,

so

cos t = 2 cos

(
π

4
+
t

2

)
cos

(
π

4
− t

2

)
.

Hence

− ln cos t = − ln cos

(
π

4
+
t

2

)
− ln cos

(
π

4
− t

2

)
− ln 2

or

f ′(t) = f ′
(
π

4
+
t

2

)
+ f ′

(
π

4
+
t

2

)
− ln 2. (2.2)

Now let us define φ :
[
−π

2
,
π

2

]
→ R by

φ(x) = f(x)− 2f
(π

4
+
x

2

)
+ 2f

(π
4
− x

2

)
+ x ln 2 , for all x ∈

[
−π

2
,
π

2

]
.

With (2.2), we have

φ′(x) = f ′(x)− f ′
(π

4
+
x

2

)
− f ′

(
π

4
+
t

2

)
+ ln 2 = 0,
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so φ is constant. But φ(0) = 0, so φ ≡ 0. Now relation (2.2) for f allows us to use Theorem 2.2, with a =
π

2
, g(t) = ln 2.

We obtain ∫ π/2

0

f ′(t) d t =

∫ π/2

0

ln 2 d t⇔ f
(π

2

)
=
π

2
ln 2,

which is (2.1). �

Further, the integrals in (2.1) are related with the integral∫ 1

0

ln Γ(x) dx =
1

2
ln 2π (2.3)

(Γ(x) is the gamma function) for which we prepare the following abstract result:

Theorem 2.3. Let f, g : [0, a]→ R be continuous and such that

f(x) + f(a− x) = g(x) , for all x ∈ [0, a] .

Then
∫ a

0

f(x) dx =
1

2

∫ a

0

g(x) dx.

Proof. By integration from 0 to a we obtain∫ a

0

f(x) dx+

∫ a

0

f(a− x) dx =

∫ a

0

g(x) dx.

By change of variable a− x = t in the second integral we obtain

2

∫ a

0

f(x) dx =

∫ a

0

g(x) dx,

which is the conclusion. �

In order to use Theorem 2.3, we also use the following relation

Γ(x)Γ(1− x) =
π

sinπx
, for all x ∈ (0, 1) .

Thus
ln Γ(x) + ln Γ(1− x) = ln

π

sinπx
,

so we can apply Theorem 2.3 with a = 1, f(x) = ln Γ(x), g(x) =
π

sinπx
. Indeed,∫ 1

0

ln Γ(x) dx =
1

2

∫ 1

0

ln
π

sinπx
dx =

1

2
lnπ − 1

2

∫ 1

0

ln sinπxdx (2.4)

where we are focused to compute the integral

J =

∫ 1

0

ln sinπxdx.

By change of variable x =
y

π
we obtain

πJ =

∫ π

0

ln sin y d y =

∫ π/2

0

ln sin y d y +

∫ π

π/2

ln sin y d y,

then by change of variable y = x+
π

2
in the last integral we derive

πJ =

∫ π/2

0

ln sin y d y +

∫ π/2

0

ln cos y d y = −π ln 2

(according with (2.1)). We established the relations∫ 1

0

ln sinπxdx =

∫ 1

0

ln cosπxdx = − ln 2.

Now, by substitute in (2.4) we obtain∫ 1

0

ln Γ(x) dx =
1

2
lnπ − 1

2
(− ln 2) =

1

2
ln 2π, as we wanted.

The integral (2.3) can be also calculated in a different way. We give the following result:



Some results on integrals computation 175

Theorem 2.4. Let f, g : [0, 1]→ R be continuous and such that

f(2x) = f(x) + f

(
x+

1

2

)
+ g(x) , for every x ∈

[
0,

1

2

]
. (2.5)

Then
∫ 1

0

f(x) dx = −2

∫ 1/2

0

g(x) dx.

Proof. By integration from 0 to 1/2, we obtain∫ 1/2

0

f(2x) dx =

∫ 1/2

0

f(x) dx+

∫ 1/2

0

f

(
x+

1

2

)
dx+

∫ 1/2

0

g(x) dx.

By evidently change of variables, we get∫ 1/2

0

f(2x) dx =
1

2

∫ 1

0

f(x) dx and

1/2∫
0

f

(
x+

1

2

)
dx =

∫ 1

1/2

f(x) dx, so

1

2

∫ 1

0

f(x) dx =

∫ 1

0

f(x) dx+

∫ 1/2

0

g(x) dx⇔
∫ 1

0

f(x) dx = −2

∫ 1/2

0

g(x) dx.

�

In order to apply this result we use the following multiplication formula for gamma function:

Γ(2x) =
22x−1√

π
· Γ(x)Γ

(
x+

1

2

)
, for all x ∈ (0,∞) . (2.6)

By applying the logarithm, we deduce

ln Γ(2x) = ln Γ(x) + ln Γ

(
x+

1

2

)
+ (2x− 1) ln 2− 1

2
lnπ,

which is relation (2.5) from Theorem 2.4 with

f(x) = ln Γ(x) and g(x) = (2x− 1) ln 2− 1

2
lnπ.

According to Theorem 2.4, we have∫ 1

0

ln Γ(x) dx = −2 ln 2

∫ 1/2

0

(2x− 1) dx+

∫ 1/2

0

lnπ dx =
1

2
ln 2π,

so we are done.
A more general form of the multiplication formula (2.6) is

Γ(x)Γ

(
x+

1

n

)
· ... · Γ

(
x+

n− 1

n

)
= (2π)

n−1
2 · n 1

2−nx · Γ(nx), (2.7)

for every n ∈ N, n ≥ 2 and x ∈ (0,∞). This formula is also called the Gauss multiplication formula. We will use it to
obtain two new results.

Theorem 2.5. For every n ∈ N, n ≥ 2 and a ∈ (0,∞), we have

lim
n→∞

n
√

Γ(na)

na
=

1√
2π
· exp

(∫ a+1

a

ln Γ(x) dx

)
. (2.8)

Proof. By using the characterization of the Riemann integral as a limit, we have∫ a+1

a

ln Γ(x) dx = lim
n→∞

1

n

n−1∑
k=0

ln Γ

(
a+

k

n

)
= lim
n→∞

ln n

√√√√n−1∏
k=0

Γ

(
a+

k

n

)
=

= ln

(
lim
n→∞

n

√
(2π)

n−1
2 · n 1

2−na · Γ(na)

)
= ln

(√
2π · lim

n→∞

(
n−a · n

√
Γ(na)

))
.

By considering the exponential we deduce that

√
2π · lim

n→∞

(
n−a · n

√
Γ(na)

)
= exp

(∫ a+1

a

ln Γ(x) dx

)
,

then the conclusion follows by dividing both sides by
√

2π. �

Finally, we give the following interesting relation:
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Theorem 2.6. For every n ∈ N, n ≥ 2 and a ∈ (0,∞), we have

lim
a→0

(
lim
n→∞

n
√

Γ(na)

na

)
= 1.

Proof. By taking the limit as a→ 0 in (2.8) and using (2.3), we obtain

lim
a→0

(
lim
n→∞

n
√

Γ(na)

na

)
=

1√
2π
· exp

(
1

2
ln 2π

)
= 1.

�
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