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Methods to evaluate the relationship between survival times

N. TODOR, G. SĂPLĂCAN and M. RĂDULESCU

ABSTRACT.
For two groups of patients selected by the value of a prognostic factor from a larger set, the common practice is to evaluate the difference by
the logrank test with some variants. Now if we have a set of indexed rules that link the survival times of the two groups it is natural to choose
the rules which minimize the logrank test. To find this minimum is a difficult task in the general case because the functions are not analytical
ones. Our strategy is to transform the observations of one group by a set of predefined indexed rules to identify at least one rule that minimize
the log rank test. If T is survival time for one group, let say basic group, we solved the problem for the sets of rules as {aT |a real value},
{a + T |a real value}and {a + bT |a, b real value}. Mathematical foundations for an algorithm and a generalization for {ag(T )|a real value},
{a+ g(T )|a real value} and {a+ bg(T )|a, b real value} with g(.) an increasing function are presented. For breast cancer, some examples solved
by Mathematica programs are presented.

1. INTRODUCTION

In the clinical studies implying survival analysis there are two modalities to report survival [1, 2, 3, 4, 5]. The first
one supposes a report of the survival at an predefined fixed time. The values from Kaplan-Meier curves [1, 3, 4, 5, 7] or
variations of that are revealed if the object of the study has a mature history and the literature has enough information
about this fixed time when it exists. For example in the breast cancer studies on stages I-II which has generally a slow
evolution the unwritten recommendation is to report survival at more then 10 years. Anyway the studies reporting
survival at less then 10 years are generally not accepted [4, 5]. Of course all these recommendation have to be
connected with the numbers of patients at risk and the follow-up of the groups of patients. If the object of the study
is new enough and there is not yet a structured literature a good choice is to report at the median follow-up [2]. This
attitude in reporting give us a fast image of the results when we intend to compare many groups of patients. On the
other side to report survival at a fixed point could be unrealistic if the survival functions has large deviations from the
exponential model. The second attitude, more elaborated uses hazard ratio as a global estimation of the differences
between two groups [2]. Unfortunately this works well only on exponential survival times. In the present paper we
extend this view in the case when the groups of patients suppose more complex links. We think at links where one
can say that the new treatment or the favorable factor shifts, makes longer or do both shifts and makes longer the
survival times. Some generalizations are suggested. Our solution finds a minimum of logrank statistics for a set of
links transforming the observations of one group by the supposed link. We present the theoretical justification of the
algorithm and Mathematica programs. All this were used for cases of operable breast cancers recruited at Oncology
Institute “Ion Chiricuţă“ from Cluj-Napoca in 1995 and 1996.

2. NOTATIONS AND PREVIOUS RESULTS

Let index a set of p > 2 patients by 1, 2, . . . , p and define a selection criteria by which the patients are dichotomized.
Selection criteria could be any condition or variable that could be of medical interest. For example we could think
at stage, sex, treatment, etc. Our interest is to show a relationship between the group of patients which verifies a
selection criteria and the group which does not verify. For simplicity, in this paper, we denote by A and B the set of
indexes associated with these two groups. We are expecting a link between the survival times of group A and B. If
we denote by T the survival time for A group then for group B we are expecting one of the following forms:

bT : with b a real value
a+ T : with a a real value
a+ bT : with a, b real values.

Or with g(.) an increasing function
bg(T ): with b a real value
a+ g(T ): with a a real value
a+ bg(T ): with a, b real values.

The observation for a patient is a pair of numbers (δ, t) where t is survival time and δ the censor variable with
δ = 0 if the patient is alive at time t and δ = 1 if the death was noticed at time t. For groupsA andB, the observations
are denoted by {(δi, ti)|i ∈ A}, {(δj , tj)|j ∈ B} and from the times from both groups let be τ = 0 < τ1 < · · · < τn the
distinct death times. For i = 0, 1, . . . , n let denote by nAi , nBi and ni = nAi + nBi the numbers of patients exposed to
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the risk of death just before time τi for group A and B that is the numbers of patients alive just before τi; by dAi , dBi

the numbers of deaths exactly at time τi for group A,B with di = dAi + dBi .

The logrank test [2, 3, 6, 7] to evaluate the difference between the two groups is based on statistic χ2 =

[
n∑

i=1
(dBi

−di
nBi
ni

)

]2
n∑

i=1
di

ni−di
ni−1

nAi
nBi

n2
i

where the terms of sums are counted only if nAi
> 0 and nBi

> 0.

3. BASIC RESULTS

Let say for example that the group B contains the treated patients. We supposed that the effect of treatment is
improved by one of the relationships from above. If we apply the transformation to the observations of untreated
patients and compute the X2 statistic, the difference we expect to be not significant. We take one by one the relation-
ship: bT , a+ T , a+ bT with a, b real values. In the case when the survival time for group B is supposed to be linked
with the survival time of A by bT , we replace the observations for the group A : {ti|i ∈ A} by {bti|i ∈ A}. In this way
χ2 from the above definition is a function of b. We seek the b which minimize χ2 (b). The following theorem is the
key of the algorithm showed in the next sections.

Theorem 3.1. If the set
{
tj

ti

∣∣i ∈ A, j ∈ B}
has ν > 1 distinct values denoted by b1 < b2 < · · · < bν then χ2(b) is constant

on the intervals
(0, b1); (b1, b2); . . . ; (bν−1, bν); (bν ,∞).

Proof. Let be b so that none of the points of the set {ti |i ∈ A} is transformed by bT in a point from the set {tj |j ∈ B }.
If we modify continuously b to left and right on the real axis so that none of the points {ti |i ∈ A} is transformed
in a point from {tj |j ∈ B } then the death times preserve same order and nAi

, nBi
, dAi

, dBi
have same values for

i = 1, . . . , n. We have to identify the values b which give us a superposition between the sets {ati |i ∈ A} and
{tj |j ∈ B } that is equivalently with the solutions of the equations bti = tj for i ∈ A and j ∈ B. So we have to take

the distinct values for
tj

ti
with i ∈ A and j ∈ B which is equivalent with the statement of the theorem. �

Remark 3.1. b1 =
minj∈B tj

maxi∈A ti
;bν =

maxj∈B tj

mini∈A ti
.

Remark 3.2. In order to find the minimum value of χ2(b) we can compute χ2(b) on the points
{
b1

2
, b1,

b1 + b2

2
, . . . ,

bν−1 + bν

2
, bν , bν+

1

}
.

Remark 3.3. The confidence interval for b is the set
{
b
∣∣χ2(b) < χ2

1

}
where χ2

1 is the corresponding value of the χ2

distribution with zero degree of freedom. For example for the chosen level of significance of 0.05 the confidence inter-
val is the set

{
b
∣∣χ2(b) < 3.84

}
. The confidence interval is an union of intervals (0, b1); (b1, b2); . . . ; (bν−1, bν), (bν ,∞)

where the extremities of these intervals might be considered.

Remark 3.4. Switching the two set of patients the solution b obtained initially becomes 1
b omitting that the solutions

are in fact intervals

When the survival times T of the group A is linked to group A by relationship a + T , the problem makes sense
only if a+ ti > 0 for any i ∈ A that is a > −ti for any i ∈ A or a > −mini∈A ti. Now χ2 is a function of a and in order
to find the minimum of χ2(a) we have the following result.

Theorem 3.2. If the set {tj − ti |i ∈ A, j ∈ B, tj − ti > −mini∈A ti } has ν > 1 distinct values denoted by a1 < a2 < · · · <
aν then χ2(a) is constant on the intervals (−mini∈A ti, a1) ; (a1, a2) ; . . . ; (aν−1, aν) ; (aν ,∞).

Proof. The proof is similar with that from the Theorem 3.1 but the equations bti = tj for i ∈ A and j ∈ B have to be
replaced by equations a+ ti = tj for i ∈ A and j ∈ B and add the constraints a+ ti > 0 for any i ∈ A. �

Remark 3.5. aν = maxj∈B tj −mini∈A ti.

Remark 3.6. In order to find the minimum of χ2(a) we compute χ2(a) for a =

−mini∈A ti + a1
2

, a1,
a1 + a2

2
, . . . ,

aν−1 + aν
2

, aν , aν + 1.

Remark 3.7. The confidence interval is similar with that derived from Remark 3.3.

Remark 3.8. If in Theorem 3.1 we can switch the groups of patients for the model a+ T this is not true and we must
solve two problems: group A against group B and group B against group A.

We consider now a fixed real value b, b 6= 0. We have the following statement.
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Theorem 3.3. For a fixed real number b, if the set{
tj − bti

∣∣∣∣i ∈ A, j ∈ B, tj − bti > max
i∈A

(−bti)
}

has ν > 1 distinct values denoted by a1 < a2 < · · · < aν then χ2(a) is constant on the intervals(
max
i∈A

(−bti), a1
)
; (a1, a2) ; . . . ; (aν−1, aν) ; (aν ,∞) .

Proof. The proof is almost identical with that for Theorem 3.2. �

Remark 3.9. aν = maxj∈B tj −mini∈A bti.

Remark 3.10. In order to find the minimum of χ2(a) we compute χ2(a) for a =

maxi∈A (−bti) + a1
2

, a1,
a1 + a2

2
, . . . ,

aν−1 + aν
2

, aν , aν + 1.

Remark 3.11. For b = 1 we obtain again Theorem 3.2.

Remark 3.12. The confidence interval is similar with that derived from Remark 3.3.

For the general relationship a+ bT with a, b real values we describe an algorithm by which we find the minimum
of χ2(a, b). The algorithm is based on the following theorem.

Theorem 3.4. Let νb > 1 distinct values of the set{
tj2 − tj1
ti2 − ti1

|i1, i2 ∈ A, i1 < i2; j1, j2 ∈ B, j1 < j2

}
be denoted by b1 < b2 < · · · < bνb . Applying the results of Theorem 3.3 for

b =
b1
2
, b1,

b1 + b2
2

, . . . ,
bνb−1 + bνb

2
, bνb , bνb + 1

we obtain all values of χ2(a, b).

Proof. We are interested only with the points of the set {a+ bti |i ∈ A} which are identical with some points from
the set {tj |j ∈ B }. This can be expressed as the set of equations a + bti = tj for i ∈ A and j ∈ B. These equations
determine in the plane (b, a) a set of polygonal zones on which interior χ2(a, b) is constant because the order of death
times and the corresponding numbers of exposed and death patients are constant in the computation. The vertexes
of these polygons are computed solving a system formed with a pair of equations a+ bti = tj .

Let be i1, i2 ∈ A with i1 < i2 and j1, j2 ∈ B with j1 < j2. The equations a+ bti1 = tj1 and a+ bti2 = tj2 give us the
point

(b, a) =

(
tj2 − tj1
ti2 − ti1

,
ti2tj1 − ti1tj2
ti2 − ti1

)
.

We consider now the set of points {(
tj2 − tj1
ti2 − ti1

,
tj2tj1 − ti1tj2
ti2 − ti1

)}
with i1, i2 ∈ A, i1 < i2; j1, j2 ∈ B, j1 < j2 and let νb > 1 be the distinct values of the first coordinate in ascending
order b1 < b2 < · · · < bνb . Let fix two consecutive values bk, bk+1. The vertical band between bk and bk+1 contains
adjacent zones where χ2(a, b) is constant. Each zone has at most an upper and a lower neighbour zone.

For a b′ ∈ (bk, bk+1) we denote by a1 < a2 < · · · < aνa the coordinate a where a vertical line in b′ cut the lines
a+ b′ti = tj for i ∈ A and j ∈ B. As in Theorem 3.3 the values of χ2(a, b) are constant for all values of a from the set{(

max
i∈A

(−b′ti), a1
)
; (a1, a2) ; . . . ; (aνa−1, aνa)

}
.

Let observe that the values of χ2(a, b′) are same for any value of b′ in the interval (bk, bk+1). We adopt same strategy
as before so that we compute χ2(a, b′) for

a =
maxi∈A (−b′ti) + a1

2
, a1,

a1 + a2
2

, . . . ,
aνa−1 + aνa

2
, aνa , aνa + 1.

For simplicity, in the general case we take for b′ similar values as in Theorem 3.1 that is

b1
2
, b1,

b1 + b2
2

, . . . ,
bνb−1 + bνb

2
, bνb , bνb + 1

and we obtain all values for χ2(a, b). We have proved so the theorem.
�
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FIGURE 1. Model bT , graphic of χ2(b) and survival curves for a) A versus B (b = 2.0097) and b) B
versus A (b = 0.497424).

Remark 3.13. The algorithm emerging from Theorem 3.4 can be improved if we add the constraints a + bti > 0 for
i ∈ A. Also we are not interested with the zone where by transformation a + bt the set {ti |i ∈ A} is placed at left or
right of the set {tj |j ∈ B } because there χ2(a, b) is maximum. That can be written a+ bti < minj∈B tj for i ∈ A and
a+ bti > maxj∈B tj for i ∈ A.

Remark 3.14. All proofs of the stated theorems are maintained if we consider instead of the set {ti |i ∈ A} the set
{g(ti) |i ∈ A}where g(.)is an increasing positive function.

Remark 3.15. The confidence interval is almost similar with that derived for Theorems 3.1 and 3.2 but now we have
the set

{
(a, b)

∣∣χ2(a, b) < χ2
1

}
with χ2 distribution with one degree of freedom. Evidently the confidence interval in this

case is an union of zones as defined in Theorem 3.4.

4. EXAMPLES AND PRACTICAL CONSIDERATIONS

The idea of the present algorithm with the results from below has occurred in 2005 when one started to analyze the
data from Oncology Institute concerning the operable breast cancer. In [8] we can see detailed medical conclusions
of this report. The algorithms derived from the presented theorems are simple to program. At each iterations we
compute the values of χ2(b), χ2(a), or χ2(a, b) as the theorems ask. We have chosen Mathematica [9] as programming
media for his graphic and mathematical capabilities. The authors can send you all the programs they used on these
examples. The examples are related to data from [8] where the two groups are coming from our patients which
after surgery were investigated for positive nodes. Group A contains 175 patients with positive nodes and group
B 193 patients with negative nodes. For the model bT treated in Theorem 3.1 we obtain b = 2.0097 with χ2(b) =
3.42169 × 10−9. We can say that the survival times for the patients with negative nodes are two times longer. The
graphic of χ2(b) and the survival curves are presented in Figure 1a where black line is for group A, gray line for
group B and dotted line for the result of transformation of group A.

If we switch the groups of patients the results are presented in Figure 1b. The value of b = 0.497424 is very close

of
1

2.0097
. We can say that the survival times for the group with positive nodes is half of those with negative nodes.

When we take the observation times in days we need 56273 iterations. Naturally we ask ourselves if we alter the
solution when we take an actuarial approximation for example on one month, 3 months, 6 months or 12 months with
the objective to lower the number of iterations. Using the Mathematica program of the authors to minimize χ2(b)
we obtain for b the values: 2., 2.02174, 2, 2. The Figure 2 represents the graphical results similar to Figure 1a but for
length of intervals of one month, 3, 6 and 12 months.

One can say that the solutions did not change much but the number of iterations did from 56273 iterations when
the observation times are in days at 7075 for one month, at 1943 for 3 months interval length, at 563 for 6 months
interval length and at 159 for 12 months interval length.

For the model a + T with the observations times in days we have 12331 iterations with solution a = 1856 days
that is 61.9 months; for observations on interval of length one month 797 iterations with solution a = 62 months; for
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FIGURE 2. Model bT , graphic of χ2(b) and survival curves with actuarial approximation for one,
three, six and twelve months.

observations on intervals of length 3 months 167 iterations with solution a = 21 × 3 = 63 months; for observations
on intervals of length 6 months 85 iterations with a = 10.5 × 6 = 63 months; for observations on intervals of length
12 months 43 iterations with a = 5.5 × 12 = 66 months. Figure 3 presents the graphical results for χ2(a) and the
corresponding survival curves.

We have also for this model a powerful stability near 62 months that is near 5 years and the number of iterations
was lowered. We can conclude that the patients with negative node status has an extra 5 years in survival time. Other
three important factors for breast cancer are listed in the table 1. We took as base the most favorable factor and we
estimate the gain or loss in survival. For example stage IIa is 1.65 times worst than stage I; stage IIb 2.75 times; stage
IIIa in the case of multiplicative model bT. Additive model a+T produces a loss of 51.5 months for stage IIa; 84 for
stage IIb and 84.5 for IIIa comparing with stage I.

The algorithm from Theorem 3.4 has no practical problems for few tenth of patients on each group. Even here
for values moderately higher we need 1000 iterations for b and further to each b we have to find all values of a
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FIGURE 3. Model a+ T , graphic of χ2(a) and survival curves with actuarial approximation for one,
three, six and twelve months.

as in Theorem 3.3 and so the total number is up to 1 000 000. If we have on average 3-4 seconds for an itera-
tions on a Pentium IV at 3000 Mhz we obtain the solution in 100 hours that is 4 days. We need other methods
to identify the solution. The first is suggested by the previous examples where we worked with intervals of one
month, 3, 6 and 12 months. For intervals of 12 months the solution of the pairs (a, b) derived from Theorem 3.4 is
{{0.76, 6.47}, {0.78, 6.44}, {0.79, 6.42}, {0.80, 6.40}, {0.80, 6.4}, {0.80, 6.40}} and for the intervals of length 6 the solu-
tions {{0.45, 0.75}, {0.45, 0.73}, {0.45, 0.70}, {0.45, 0.68}, {0.46, 0.65}}. Unfortunately χ2(a, b) for all these values give
us large values. The explanation resides perhaps in the fact that we can accept the two models from above and a+ bT
is not the best option.
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