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Weakly sp-θ-closed functions and semipre-Hausdorff
spaces

MIGUEL CALDAS

ABSTRACT. For weakly sp-θ-closed surjections between arbitrary topological spaces conditions are sought
which assure a semipre-Hausdorff range.

1. INTRODUCTION

The purpose of the present paper is find under what conditions on a weakly sp-θ-closed
surjection f : (X, τ) → (Y, σ) between arbitrary topological spaces will Y be semipre-
Hausdorff and find other properties of weak sp-θ-closedness.
Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y ) denote topological spaces
on which no separation axioms are assumed unless explicitly stated. If S is any subset
of a space X , then Cl(S) and Int(S) denote the closure and the interior of S respectively.
A point x ∈ X is called a θ-cluster [15] point of S if S ∩ Cl(U) 6= ∅ for each open set U
containing x. The set of all θ-cluster points of S is called the θ-closure of S and is denoted
by Clθ(S). Hence, a subset S is called θ-closed [15] if Clθ(S) = S. Note that X is Haus-
dorff if and only if {x} is θ-closed for each x ∈ X [7]. A subset S ⊂ X is called β-open
[2] or semi-preopen [3], if S ⊂ Cl(Int(Cl(S))). The complement of a β-open set is called
a β-closed [2] or semi-preclosed [3] set. The family of all semi-preopen sets of a space X
is denoted by SPO(X, τ) or SPO(X). We set SPO(X,x) = {U : x ∈ U ∈ SPO(X)}.
The intersection of all β-closed sets containing S is called the semi-preclosure of S [3] or
β-closure and is denoted by spCl(S) or βCl(S). The union of all β-open sets contained in
S is called the semi-preinterior or β-interior of S and is denoted by spInt(S) or β-Int(S).
A subset S of X is said to be semipre-regular (briefly sp-regular) if it is both β-open and
β-closed in X .
A point x ∈ X is called a semipre-θ-cluster point of S [12] if spCl(U) ∩ S 6= φ for ev-
ery β-open set U containing x. The set of all semipre-θ-cluster points of S is called the
semipre-θ-closure of S and is denoted by spClθ(S). A subset S is called semipre-θ-closed
(briefly sp-θ-closed) if spClθ(S) = S. The complement of a semipre-θ-closed set is called
a semipre-θ-open set (briefly sp-θ-open). The semipre-θ-interior of a subset S of X is the
union of all sp-θ-open subsets of X contained in S, and is denoted by spIntθ(S).
A space X is called extremally disconnected (E.D) [16] if the closure of each open set in X
is open.
Recall that, a function f : (X, τ)→ (Y, σ) is said to be:
(i) strongly continuous [9, 1] if for every subset A of X, f(Cl(A)) ⊂ f(A).
(ii) β-closed [2](resp. β-open [2]) if f(F ) is β-closed (resp. β-open) in Y for each closed
(resp. open) set F of X.
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(iii) contra-sp-θ-open if f(F ) is sp-θ-closed in Y for each β-open set F of X.
(iv) sp-θ-closed (resp. sp-θ-open) if f(F ) is sp-θ-closed (resp. sp-θ-open) in Y for each
closed (resp. open) set F of X.

The following theorem is given by T. Noiri [12].

Theorem 1.1. For any subset A of X :
(1) spClθ(spClθ(A)) = spClθ(A);
(2) spClθ(A) is sp-θ-closed;
(3) Intersection of arbitrary collection of sp-θ-closed set in X is sp-θ-closed;
(4) spClθ(A) is the intersection of all sp-θ-closed sets each containing A;
(5) If A ∈ SPO(X, τ), then spCl(A) = spClθ(A).

For other advances on topological spaces obtained by our research group we recom-
mend [12, 6, 5, 4].

2. WEAKLY sp-θ-CLOSED FUNCTIONS AND SEMIPRE-HAUSDORFF

Recall that, a function f : (X, τ)→ (Y, σ) is said to be weakly-closed [14] if

Cl(f(Int(F ))) ⊂ f(F )

for each closed set F of X.

Definition 2.1. A function f : (X, τ)→ (Y, σ) is said to be weakly sp-θ-closed if

spClθ(f(spInt(F ))) ⊂ f(F )

for each closed set F of X.

Remark 2.1. In fact weak sp-θ-closedness and weak-closedness are independent notions.

Example 2.1. (1) A weakly sp-θ-closed function which is not weakly-closed.
Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and f : (X, τ)→ (X, τ) be a function defined
by f(a) = c, f(b) = a, f(c) = b. Then f is a weakly sp-θ-closed, but it is not a weakly-
closed.
(2) A weakly-closed function which is not weakly sp-θ-closed.
Let X = {a, b, c}, τ = {∅, X, {a}, {c}, {a, c}}, σ = {∅, X, {b}, {a, b}, {b, c}} and f : (X, τ)→
(X,σ) be the identity function. Then f is weakly-closed but it is not weakly sp-θ-closed
since spClθ(f(spInt({b, c}))) 6⊂ f({b, c}).

Theorem 2.2. For a function f : (X, τ)→ (Y, σ), the following conditions are equivalent:
(1) f is weakly sp-θ-closed;
(2) spClθ(f(U)) ⊂ f(Cl(U)) for each β-open set U of X.

Proof. (1) ⇒ (2): Let U be any β-open subset of X. Since Cl(U) is a closed and
U ⊂ spIn(Cl(U) by (1) we have spClθ(f(U) ⊂ spClθ(f(spInt(ClU))) ⊂ f(Cl(U)).
(2)⇒ (1): Let F be any closed subset of X. Then,
spClθ(f(spInt(F ))) ⊂ f(Cl(spInt(F ))) ⊂ f(Cl(F )) = f(F ). �

Theorem 2.3. For a function f : (X, τ) → (Y, σ) bijective, the following conditions are equiva-
lent:
(1) f is weakly sp-θ-closed;
(2) spClθ(f(U)) ⊂ f(Cl(U)) for each β-open subset U of X ;
(3) For each subset F in Y and each open set U in X with f−1(F ) ⊂ U , there exists a sp-θ-open
set A in Y with F ⊂ A and f−1(F ) ⊂ spCl(U);
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(4) For each point y in Y and each open set U in X with f−1(y) ⊂ U, there exists a sp-θ-open set
A in Y containing y and f−1(A) ⊂ spCl(U).

Proof. (1)⇒ (2): Theorem 2.2.
(2) ⇒ (3): Let F be a subset of Y and let U be open in X with f−1(F ) ⊂ U . Then
f−1(F ) ∩ Cl(X − spCl(U)) = φ and consequently, F ∩ f(Cl(X − spCl(U))) = φ. By (2),
F ∩spClθ(f(X−spCl(U))) = φ. LetA = Y −spClθ(f(X−spCl(U))). ThenA is sp-θ-open
with F ⊂ A and f−1(A) ⊂ X−f−1(spClθ(f(X−spCl(U)))) ⊂ X−f−1f(X−spCl(U)) ⊂
spCl(U).
(3)⇒ (4): Clear.
(4) ⇒ (1): Let F be closed in X and let y ∈ Y − f(F ). Since f−1(y) ⊂ X − F , there ex-
ists a sp-θ-open set A in Y with y ∈ A and f−1(A) ⊂ spCl(X − F ) = X − spInt(F )
by (4). Therefore A ∩ f(spInt(F )) = φ, so that y ∈ Y − spClθ(f(spInt(F ))). Thus
spClθ(f(spInt(F ))) ⊂ f(F ). �

A space X is said to be semipre-Hausdorff [11] (resp. sp-θ-T2) if for every pair of
distinct points x and y, there exist two β-open (resp. sp-θ-open) sets U and V such that
x ∈ U and y ∈ V and U ∩ V = ∅.

Lemma 2.1. X is semipre-Hausdorff if and only if {x} is sp-θ-closed.
(Thus the semipre-Hausdorff property can be viewed as a pointwise property).

Proof. Necessity. {x} ⊂ spClθ({x}) is always hold. We prove that spClθ({x}) ⊂ {x}. Let
y /∈ {x}. Then there exist U ∈ SPO(X,x) and V ∈ SPO(Y, y) such that U ∩ V = ∅. Hence
spCl(V )∩U = ∅. Therefore spCl(V )∩{x} = ∅. i.e., y /∈ spClθ({x}) and spClθ({x}) ⊂ {x}
and {x} is sp-θ-closed.
Sufficiency. Is clear since every sp-θ-open sets is β-open. �

Theorem 2.4. For a topological space (X, τ), the following properties are equivalent:
(1) For every pair of distinct points x, y ∈ X , there existU ∈ SPθO(X,x) and V ∈ SPθO(X, y)
such that spClθ(U) ∩ spClθ(V ) = ∅;
(2) (X, τ) is sp-θ-T2;
(3) (X, τ) is semipre-Hausdorff;
(4) For every pair of distinct points x, y ∈ X , there exist U, V ∈ SPO(X) such that x ∈ U ,
y ∈ V and spCl(U) ∩ spCl(V ) = ∅;
(5) For every pair of distinct points x, y ∈ X , there exist U, V ∈ SPR(X) such that x ∈ U ,
y ∈ V and U ∩ V = ∅.

Proof. (1)⇒ (2). This is obvious.
(2)⇒ (3). Since SPθO(X) ⊂ SPO(X), the proof is obvious.
(3)⇒ (4). This follows from Lemma 5.2 of [12].
(4) ⇒ (5). By ([12], Theorem 3.1), spCl(U) ∈ SPR(X) for every U ∈ SPO(X) and the
proof immediately follows.
(5)⇒ (1). By ([12], Theorem 3.5), every sp-regular set is sp-θ-open and sp-θ-closed. Hence
the proof is obvious. �

Definition 2.2. For a function f : (X, τ) → (Y, σ) we let G(f) = {(x, f(x)) : x ∈ X} ⊂
X × Y represent the graph of f and we say that G(f) is strongly β-closed (resp. β-closed)
if whenever (x, y) ∈ (X × Y )\G(f), there exist U ∈ SPO(X,x) and V ∈ SPO(Y, y) such
that [U × sPCl(V )] ∩G(f) = ∅ (resp. (U × V )) ∩G(f) = ∅).
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Lemma 2.2. A function f : (X, τ) → (Y, σ), has a strongly β-closed (resp. β-closed) graph if
for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ SPO(X,x) and V ∈ SPO(Y, y) such that
f(U) ∩ spCl(V ) = ∅ (resp. f(U) ∩ V = ∅).

Recall that, two non-empty subsets A and B in X are strongly separated [14], if there
exist open sets U and V in X with A ⊂ U and B ⊂ V such that Cl(U) ∩ Cl(V ) = ∅. If A
and B are singleton sets we may speak of points being strongly separated. We will use
the fact (see [8]) that in a normal space, disjoint closed sets are strongly separated.

Theorem 2.5. If the surjection f : (X, τ) → (Y, σ) has a strongly β-closed graph G(f) then Y
is semipre-Hausdorff.

Proof. We will show that Y is semipre-Hausdorff at each point in the image of f . i.e., each
{f(x)} is sp-θ-closed (Lemma 2.1). Let x ∈ X and let z ∈ Y − {f(x)}. Then (x, z) /∈ G(f)
and there exist U ∈ SPO(X,x) and V ∈ SPO(Y, z) such that [U × spCl(V )] ∩ G(f) = ∅.
Thus spCl(V ) ∩ {f(x)} = ∅ and z /∈ spClθ(V ). Hence {f(x)} is sp-θ-closed. Since f is
surjective, Y is semipre-Hausdorff. �

Definition 2.3. A function f : (X, τ)→ (Y, σ) is said to be (*)-semipreopen if spCl(f(U)) =
spClθ(f(U)) for all open sets U ⊂ X .

Theorem 2.6. If f : (X, τ)→ (Y, σ) is β-open then it is (*)-semipreopen.

Proof. Let U ⊂ X be open. Since f is β-open, f(U) ∈ SPO(Y ). By Theorem 1.1(5),
spCl(f(U)) = spClθ(f(U)) and so f is (*)-semipreopen. �

Theorem 2.7. If f : (X, τ) → (Y, σ) is (*)-semipreopen and G(f) is β-closed then G(f) is
strongly β-closed.

Proof. Let (x, y) ∈ (X × Y )\G(f). Since G(f) is β-closed there exist U ∈ SPO(X,x) and
V ∈ SPO(Y, y) such that (U × V ) ∩ G(f) = ∅. Then spCl(f(U)) ∩ V = ∅. Therefore
spClθ(f(U))∩V = ∅. Thus, there is a β-open setW ⊂ Y with y ∈W and spCl(W )∩f(U) =
∅. Then, (x, y) ∈ U×W and (U×spCl(W ))∩G(f) = ∅ so thatG(f) is strongly β-closed. �

Corollary 2.1. If f : (X, τ) → (Y, σ) is a (*)-semipreopen surjection with β-closed graph G(f),
then Y is semipre-Hausdorff.

Proof. It follows from Theorem 2.7 and 2.5. �

Theorem 2.8. If f : (X, τ) → (Y, σ) is weakly sp-θ-closed with all fibers f−1(y) θ-closed, then
G(f) is β-closed.

Proof. Let (x, y) ∈ (X × Y )\G(f). Since f−1(y) is θ-closed, There are disjoint open sets W
and U with x ∈ W and f−1(y) ⊂ U . By Theorem 2.3 and weak sp-θ-closedness of f there
is a sp-θ-open set V ⊂ Y with y ∈ V and f−1(y) ⊂ spCl(U) ⊂ Cl(U) ⊂ X −W . Thus
(x, y) ∈W × V and (W × V ) ∩G(f) = ∅. �

Corollary 2.2. If f : (X, τ) → (Y, σ) is (*)-semipreopen weakly sp-θ-closed surjection with all
fibers θ-closed, then Y is semipre-Hausdorff.

Proof. It is suffices to apply Theorem 2.8 and Corollary 2.1. �

Theorem 2.9. If f : (X, τ) → (Y, σ) is weakly sp-θ-closed surjection and all pairs of disjoint
fibers are strongly separated then f is semipre-Hausdorff.
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Proof. Let y and z be two distinct points in Y . Let G and H be open sets in X such that
f−1(y) ∈ G and f−1(z) ∈ H with Cl(G) ∩ Cl(H) = ∅. By weak sp-θ-closedness there are
sp-θ-open sets U and V in Y such that y ∈ U and z ∈ V , f−1(U) ⊂ spCl(G) ⊂ Cl(G) and
f−1(V ) ⊂ spCl(H) ⊂ Cl(H). Therefore U ∩ V = ∅ because Cl(G) ∩ Cl(H) = ∅ and f
surjective. Then by Theorem 2.4, Y is semipre-Hausdorff. �

Corollary 2.3. If f : (X, τ)→ (Y, σ) is a weakly sp-θ-closed surjection with all fibers closed and
X is normal, then Y is semipre-Hausdorff.

The next result follows from Corollary 2.3.

Corollary 2.4. If f : (X, τ) → (Y, σ) is continuous weakly sp-θ-closed surjection with X a
compact Hausdorff space and Y a T1 space, then Y is a compact semipre-Hausdorff space.

Proof. Since f is a continuous surjection and Y is a T1 space, Y is a compact and all fibers
are closed. Since X is normal, Y is also semipre-Hausdorff. �

3. OTHER PROPERTIES OF WEAK SP-θ-CLOSEDNESS

Recall that, a function f : (X, τ) → (Y, σ) is called sp-θ-closed if f(F ) is sp-θ-closed in
Y for every closed set F of X .

Clearly, every sp-θ-closed function is weakly sp-θ-closed, but the converse is not true.

Example 3.2. Let X = Y = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and f : (X, τ) → (Y, τ) be
a function defined by f(a) = c, f(b) = a, f(c) = b. Then f is a weakly sp-θ-closed, but it
is not a sp-θ-closed function since for F = {b, c}, f(F ) is not sp-θ-closed in Y .

Theorem 3.10. Let f : (X, τ) → (Y, σ) be weakly sp-θ-closed. If for each closed subset F of X
and each fiber f−1(y) ⊂ X−F there exists an open set U ofX such that f−1(y) ⊂ U ⊂ Cl(U) ⊂
X − F , then f is sp-θ-closed.

Proof. Let F be any closed subset of X and y ∈ Y − f(F ). Then f−1(y) ∩ F = ∅ and
hence f−1(y) ⊂ X −F . By hypothesis, there exists an open set U of X such that f−1(y) ⊂
U ⊂ Cl(U) ⊂ X − F . Since f is weakly sp-θ-closed, there exists a sp-θ-open V in Y with
y ∈ V and f−1(V ) ⊂ spCl(U) ⊂ Cl(U). Therefore , we obtain f−1(V ) ∩ F = ∅ and hence
V ∩ f(F ) = ∅. This shows that y /∈ spClθ(f(F )). Therefore, f(F ) is sp-θ-closed in Y and
f is a sp-θ-closed function. �

Theorem 3.11. Let f : (X, τ) → (Y, σ) be weakly sp-θ-closed. If for each closed subset F of
X and each fiber f−1(y) ⊂ X − F there exists an open set U of X for which F ⊂ U and
f−1(y) ∩ U = ∅, then f is sp-θ-closed.

Proof. Let F be any closed subset of X and y ∈ Y − f(F ), thus f−1(y) ⊂ X − F and
hence there exists an open subset U of X for which F ⊂ U and f−1(y) ∩ U = ∅. Then
y ∈ Y − f(U) ⊂ Y − f(F ). Since f is weakly sp-θ-closed, spClθ(f(spInt(F ))) ⊂ f(F ).
Hence, we obtain y ∈ spIntθ(Y − f(spInt(F ))). Let Hy = spIntθ(Y − f(spInt(F ))). Then
Hy is a sp-θ-open subset of Y containing y. Hence Y − f(F ) = ∪{Hy : y ∈ Y − f(F )} is
sp-θ-open and hence f(F ) is sp-θ-closed. �

Corollary 3.5. If f : (X, τ) → (Y, σ) is weakly sp-θ-closed with all closed fibers, then f is
sp-θ-closed.

Proof. For any closed subset F and any fiber f−1(y) ⊂ X − F , let U = X − f−1(y). Then
U is open set with F ⊂ U and f−1(y) ∩ U = ∅. �
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Theorem 3.12. If f : (X, τ)→ (Y, σ) is contra sp-θ-open , then f is weakly sp-θ-closed.

Proof. Let F be a closed subset of X. Then, spClθ(f(spInt(F ))) = f(spInt(F )) ⊂ f(F ).
�

Theorem 3.13. If f : (X, τ)→ (Y, σ) is strongly continuous, then the following are equivalent:
(1) f is weakly sp-θ-closed;
(2) f is contra sp-θ-open.

Proof. (1) ⇒ (2): Let U be an β-open subset of X . By hypothesis and Theorem 2.2, we
have spClθ(f(U)) ⊂ f(Cl(U)) ⊂ f(U). Hence f(U) is sp-θ-closed.
(2)⇒ (1): It follows from Theorem 3.12. �

Theorem 3.14. Every weakly sp-θ-closed strongly continuous bijection f : (X, τ) → (Y, σ) is
sp-θ-open (and sp-θ-closed).

Proof. Let U be an open subset of X . Since f is weakly sp-θ-closed spClθ(f(spInt(X −
U))) ⊂ f(X − U). Hence and since f is bijective, we obtain f(U) ⊂ spIntθ(f(Cl(U))) =
spIntθ(f((U))) ⊂ f(U). Therefore f(U) is sp-θ-open.
By other hand, by Theorem 3.13 f is contra sp-θ-open so, f(U) is also sp-θ-closed.
In particular by ([12], Theorem 3.5), f(U) is sp-regular for each open U ⊂ X. �

Theorem 3.15. If f : (X, τ)→ (Y, σ) is weakly sp-θ-closed bijection, then for every subset F in
Y and every open set U in X with f−1(F ) ⊂ U , there exists a sp-θ-closed set B in Y such that
F ⊂ B and f−1(B) ⊂ Cl(U).

Proof. Let F be a subset of Y and U be an open subset of X with f−1(F ) ⊂ U . Put
B = spClθ(f(spInt(Cl(U)))), then B is a sp-θ-closed set of Y such that F ⊂ B since
F ⊂ f(U) ⊂ f(spInt(Cl(U))) ⊂ spClθ(f(spInt(Cl(U)))) = B. And since f is weakly
sp-θ-closed, we have f−1(B) ⊂ Cl(U). �

Recall that, a set F in a topological space X is θ-compact [14] if for each cover Ω of F
by open sets U in X , there is a finite family U1, ..., Un in Ω such that F ⊂ Int(∪{Cl(Ui) :
i = 1, 2, ..., n}).

Every compact space is θ-compact, but the converse does not hold as we can see in the
following example.

Example 3.3. In the real line with the usual topology, consider the A = {1/n : n ∈ N}. it
is easy to see that A is θ-compact but does not is compact.

Theorem 3.16. If f : (X, τ) → (Y, σ) is weakly sp-θ-closed bijection with all fibers θ-closed in
X , then f(F ) is sp-θ-closed for each θ-compact set F in X .

Proof. Let F be θ-compact and y ∈ Y −f(F ). Then f−1(y)∩F = ∅ and for each x ∈ F there
is an open Ux in X containing x such that Cl(Ux) ∩ f−1(y) = ∅. Clearly Ω = {Ux : x ∈ F}
is an open cover of F and since F is θ-compact, there is a finite family {Ux1 , ..., Uxn} in Ω
such that F ⊂ Int(A) , where A = ∪{Cl(Uxi

) : i = 1, ..., n}. Since f is weakly sp-θ-closed,
there exists a sp-θ-open B in Y with f−1(y) ⊂ f−1(B) ⊂ spCl(X − A) ⊂ Cl(X − A) =
X − Int(A) ⊂ X − F . Therefore y ∈ B and B ∩ f(F ) = ∅. Thus y ∈ Y − pClθ(f(F )). This
shows that f(F ) is sp-θ-closed. �

Definition 3.4. A topological space X is said to be:
(i) quasi H-closed [13] if every open cover of X has a finite subfamily whose closures
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cover X. A subset A of a space X is quasi H-closed relative to X if every cover of A by
open sets of X has a finite subfamily whose closures cover A.
(ii) almost β-θ-compact space if every cover ofX with sp-θ-open sets has a finite subfamily
of members whose closures cover X . And a subset A of a space X is almost β-θ-compact
relative to X if every cover of A with sp-θ-open subsets has a finite subfamily of members
whose closures cover A.

Lemma 3.3. [10] A function f : (X, τ) → (Y, σ) is open if and only if for each B ⊂ Y ,
f−1(Cl(B)) ⊂ Cl(f−1(B)).

Theorem 3.17. Let (X, τ) be an extremally disconnected space and f : (X, τ) → (Y, σ) be an
open and weakly sp-θ-closed function with quasi H-closed fibers. Then f−1(G) is quasi H-closed
for each almost β-θ-compact set G ⊂ Y .

Proof. Let {Vα : α ∈ I} be an open cover of f−1(G). Then for each y ∈ G, f−1(y) ⊂
∪{Cl(Vα) : α ∈ I(y)} = Hy for some finite I(y) ⊂ I. Then Hy is closed and open since X
is extremally disconnected. So, by weak sp-θ-closedness, there exists a sp-θ-open set Uy
containing y such that f−1(Uy) ⊂ spCl(Hy) ⊂ Cl(Hy) = Hy . Then, {Uy : y ∈ G} is a cover
of G by sp-θ-open sets and G ⊂ ∪{Cl(Uy) : y ∈ K} for some finite subset K of G. Hence,
by Lemma 3.3, f−1(G) ⊂ ∪{Cl(f−1(Uy)) : y ∈ K}. Thus f−1(G) ⊂ ∪{Cl(Vα) : α ∈ I(y)
and y ∈ K}. Therefore f−1(G) is quasi H-closed. �
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