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Weakly sp-0-closed functions and semipre-Hausdorff
spaces

MIGUEL CALDAS

ABSTRACT. For weakly sp-6-closed surjections between arbitrary topological spaces conditions are sought
which assure a semipre-Hausdorff range.

1. INTRODUCTION

The purpose of the present paper is find under what conditions on a weakly sp-0-closed
surjection f : (X,7) — (Y,0) between arbitrary topological spaces will Y be semipre-
Hausdorff and find other properties of weak sp-6-closedness.

Throughout this paper, (X, 7) and (Y, o) (or simply, X and Y) denote topological spaces
on which no separation axioms are assumed unless explicitly stated. If S is any subset
of a space X, then CI(S) and Int(S) denote the closure and the interior of S respectively.
A point z € X is called a 6-cluster [15] point of S if S N Cl(U) # 0 for each open set U
containing x. The set of all §-cluster points of S is called the §-closure of S and is denoted
by Cly(S). Hence, a subset S is called §-closed [15] if Cly(S) = S. Note that X is Haus-
dorff if and only if {z} is #-closed for each z € X [7]. A subset S C X is called S-open
[2] or semi-preopen [3], if S C Cl(Int(CI(S))). The complement of a S-open set is called
a -closed [2] or semi-preclosed [3] set. The family of all semi-preopen sets of a space X
is denoted by SPO(X, ) or SPO(X). We set SPO(X,z) = {U : z € U € SPO(X)}.
The intersection of all -closed sets containing S is called the semi-preclosure of S [3] or
B-closure and is denoted by spCi(S) or SCI(S). The union of all S-open sets contained in
S is called the semi-preinterior or S-interior of S and is denoted by spInt(S) or B-Int(S).
A subset S of X is said to be semipre-regular (briefly sp-regular) if it is both -open and
B-closed in X.

A point ¢ € X is called a semipre-#-cluster point of S [12] if spCI({U) NS # ¢ for ev-
ery p-open set U containing z. The set of all semipre-f-cluster points of S is called the
semipre-6-closure of S and is denoted by spCiy(S). A subset S is called semipre-6-closed
(briefly sp-6-closed) if spCly(S) = S. The complement of a semipre-6-closed set is called
a semipre-f-open set (briefly sp-6-open). The semipre-6-interior of a subset .S of X is the
union of all sp-f-open subsets of X contained in .S, and is denoted by spInty(S).

A space X is called extremally disconnected (E.D) [16] if the closure of each open set in X
is open.

Recall that, a function f : (X, 7) — (Y, o) is said to be:

(i) strongly continuous [9, 1] if for every subset A of X, f(Cl(A)) C f(A).

(ii) B-closed [2](resp. B-open [2]) if f(F') is S-closed (resp. B-open) in Y for each closed
(resp. open) set F' of X.
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(iii) contra-sp-6-open if f(F’) is sp-6-closed in Y for each S-open set F' of X.

(iv) sp-f-closed (resp. sp-f-open) if f(F') is sp-f-closed (resp. sp-f-open) in Y for each
closed (resp. open) set F' of X.

The following theorem is given by T. Noiri [12].

Theorem 1.1. For any subset A of X:

(1) spCly(spCly(A)) = spCly(A);

(2) spClg(A) is sp-0-closed;

(3) Intersection of arbitrary collection of sp-6-closed set in X is sp-6-closed;
(4) spCly(A) is the intersection of all sp-0-closed sets each containing A;
(5)If A e SPO(X, ), then spCIl(A) = spCly(A).

For other advances on topological spaces obtained by our research group we recom-
mend [12, 6, 5, 4].

2. WEAKLY sp-0-CLOSED FUNCTIONS AND SEMIPRE-HAUSDORFF

Recall that, a function f : (X,7) — (Y, 0) is said to be weakly-closed [14] if

CU(f(Int(F))) C f(F)
for each closed set F' of X.

Definition 2.1. A function f : (X, 1) — (Y, 0) is said to be weakly sp-6-closed if

spCly(f(spInt(F))) C f(F)
for each closed set F' of X.

Remark 2.1. In fact weak sp-6-closedness and weak-closedness are independent notions.

Example 2.1. (1) A weakly sp-0-closed function which is not weakly-closed.

Let X = {a,b,c}, 7 = {0, {a}, {b},{a,b}, X} and f : (X,7) = (X, 7) be a function defined
by f(a) = ¢, f(b) = a, f(c¢) = b. Then f is a weakly sp-0-closed, but it is not a weakly-
closed.

(2) A weakly-closed function which is not weakly sp-6-closed.

Let X = {a,b,c}, 7 = {0, X, {a},{c},{a,c}}, o = {0, X, {b},{a,b},{b,c}} and [ : (X,7) —
(X, o) be the identity function. Then f is weakly-closed but it is not weakly sp-6-closed
since spCly(f(spInt({b,c}))) ¢ f({b,c}).

Theorem 2.2. For a function f : (X, 1) — (Y, 0), the following conditions are equivalent:
(1) f is weakly sp-6-closed;
(2) spClo(f(U)) C f(CUU)) for each B-open set U of X.

Proof. (1) = (2): Let U be any j-open subset of X. Since CIl(U) is a closed and
U C spIn(Cl(U) by (1) we have spCly(f(U) C spCly(f(spInt(CIU))) C f(CIT)).

(2) = (1): Let F be any closed subset of X. Then,

spCly(f(spInt(F))) C f(Cl(spInt(F))) C f(CU(F)) = f(F). A

Theorem 2.3. For a function f : (X, 7) — (Y, o) bijective, the following conditions are equiva-
lent:

(1) f is weakly sp-6-closed;

(2) spClo(f(U)) C f(CUU)) for each B-open subset U of X;

(3) For each subset F in'Y and each open set U in X with f~(F) C U, there exists a sp-6-open
set AinY with F C Aand f~Y(F) C spCl(U);
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(4) For each point y in'Y and each open set U in X with f~*(y) C U, there exists a sp-6-open set
AinY containing y and f~(A) C spCI(U).

Proof. (1) = (2): Theorem 2.2.

(2) = (3): Let F be a subset of Y and let U be open in X with f~'(F) C U. Then
F~HF)NCUX — spCl(U)) = ¢ and consequently, F N f(CI(X — spCl(U))) = ¢. By (2),
FnspClg(f(X —spCl(U))) = ¢. Let A=Y —spCly(f(X —spCl(U))). Then A is sp-§-open
with F € Aand f~1(A) € X — f~}(spCla(f(X —spClL(V)))) C X — f~Lf(X —spClU)) C
spCLU).

(3) = (4): Clear.

(4) = (1): Let F be closed in X and lety € Y — f(F). Since f~!(y) C X — F, there ex-
ists a sp-f-open set Ain Y withy € A and f~'(A) C spCl(X — F) = X — spInt(F)
by (4). Therefore A N f(spInt(F)) = ¢, so that y € Y — spCly(f(spInt(F'))). Thus
spClo(f(spInt(F))  f(F). O

A space X is said to be semipre-Hausdorff [11] (resp. sp-0-13) if for every pair of
distinct points = and y, there exist two $-open (resp. sp-0-open) sets U and V such that
ze€UandyeVandUNV = 0.

Lemma 2.1. X is semipre-Hausdorff if and only if {x} is sp-6-closed.
(Thus the semipre-Hausdorff property can be viewed as a pointwise property).

Proof. Necessity. {z} C spClg({x}) is always hold. We prove that spClyg({z}) C {x}. Let
y ¢ {z}. Then there exist U € SPO(X,z) and V € SPO(Y,y) such that U NV = (). Hence
spClL(V)NU = (. Therefore spCl(V)N{z} = 0. ie.,y ¢ spCly({z}) and spCly({z}) C {z}
and {z} is sp-6-closed.

Sufficiency. Is clear since every sp-8-open sets is S-open. O

Theorem 2.4. For a topological space (X, T), the following properties are equivalent:

(1) For every pair of distinct points x,y € X, thereexist U € SPOO(X,xz)and V € SPOO(X,y)
such that spCly(U) N spCly(V) = 0;

(2) (X, 7) is sp-0-T5;

(3) (X, 7) is semipre-Hausdorff;

(4) For every pair of distinct points x,y € X, there exist U,V € SPO(X) such that x € U,
y € Vand spClL({U) N spCUV) = ;

(5) For every pair of distinct points x,y € X, there exist U,V € SPR(X) such that x € U,
yeVandUNV = 0.

Proof. (1) = (2). This is obvious.

(2) = (3). Since SPAO(X) C SPO(X), the proof is obvious.

(3) = (4). This follows from Lemma 5.2 of [12].

(4) = (5). By ([12], Theorem 3.1), spCl(U) € SPR(X) for every U € SPO(X) and the
proof immediately follows.

(5) = (1). By ([12], Theorem 3.5), every sp-regular set is sp-6-open and sp-f-closed. Hence
the proof is obvious. U

Definition 2.2. For a function f : (X,7) — (Y,0) we let G(f) = {(z, f(z)) : x € X} C
X x Y represent the graph of f and we say that G(f) is strongly 5-closed (resp. 5-closed)
if whenever (z,y) € (X x Y)\G(f), there exist U € SPO(X,z) and V € SPO(Y,y) such
that [U x sPCU(V)|NG(f) =0 (resp. (U x V))NG(f) = 0).



120 Miguel Caldas

Lemma 2.2. A function f : (X,7) — (Y, 0), has a strongly (-closed (resp. [-closed) graph if
for each (z,y) € (X x Y)\G(f), there exist U € SPO(X,x) and V € SPO(Y,y) such that
FU)NspCUV) =0 (resp. f(U)NV = D).

Recall that, two non-empty subsets A and B in X are strongly separated [14], if there
exist open sets U and V in X with A C U and B C V such that Cl(U)NCI(V) = 0. If A
and B are singleton sets we may speak of points being strongly separated. We will use
the fact (see [8]) that in a normal space, disjoint closed sets are strongly separated.

Theorem 2.5. If the surjection f : (X,7) — (Y, 0) has a strongly [3-closed graph G(f) then Y
is semipre-Hausdorff.

Proof. We will show that Y is semipre-Hausdorff at each point in the image of f. i.e., each
{f(x)} is sp-8-closed (Lemma 2.1). Let x € X and let z € Y — {f(x)}. Then (z, z) ¢ G(f)
and there exist U € SPO(X,xz) and V € SPO(Y, z) such that [U x spCIl(V)]NG(f) = 0.
Thus spClU(V) N {f(z)} = 0 and z ¢ spCly(V). Hence {f(z)} is sp-6-closed. Since f is
surjective, Y is semipre-Hausdorff. O

Definition 2.3. A function f : (X, 7) — (Y, o) is said to be (*)-semipreopen if spCI(f(U)) =
spCly(f(U)) for all open sets U C X.

Theorem 2.6. If f : (X, 7) — (Y, 0) is B-open then it is (*)-semipreopen.

Proof. Let U C X be open. Since f is f-open, f(U) € SPO(Y). By Theorem 1.1(5),
spCl(f(U)) = spCly(f(U)) and so f is (*)-semipreopen. O

Theorem 2.7. If f : (X,7) — (Y,0) is (*)-semipreopen and G(f) is B-closed then G(f) is
strongly S-closed.

Proof. Let (x,y) € (X x Y)\G(f). Since G(f) is B-closed there exist U € SPO(X,z) and
V € SPO(Y,y) such that (U x V)N G(f) = 0. Then spCI(f(U)) NV = (). Therefore
spClo(f(U))NV = (. Thus, thereisa S-openset W C Y withy € W and spCl(W)Nf(U) =
(. Then, (z,y) € UxW and (U xspCl(W))NG(f) = 0 so that G(f) is strongly S-closed. O

Corollary 2.1. If f : (X, 7) — (Y, 0) is a (*)-semipreopen surjection with $-closed graph G(f),
then'Y is semipre-Hausdorff.

Proof. It follows from Theorem 2.7 and 2.5. O

Theorem 2.8. If f : (X, 7) — (Y, 0) is weakly sp-0-closed with all fibers f~1(y) 6-closed, then
G(f) is B-closed.

Proof. Let (z,y) € (X x Y)\G(f). Since f~!(y) is 6-closed, There are disjoint open sets W
and U with z € W and f~!(y) C U. By Theorem 2.3 and weak sp-6-closedness of f there
is a sp-f-open set V C Y withy € V and f~!(y) C spCl(U) C Cl(U) C X — W. Thus
(z,y) e W x Vand (W x V)NG(f) =0. O

Corollary 2.2. If f : (X,7) — (Y, 0) is (*)-semipreopen weakly sp-6-closed surjection with all
fibers O-closed, then Y is semipre-Hausdorff.

Proof. It is suffices to apply Theorem 2.8 and Corollary 2.1. O

Theorem 2.9. If f : (X,7) — (Y, 0) is weakly sp-8-closed surjection and all pairs of disjoint
fibers are strongly separated then f is semipre-Hausdorff.
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Proof. Let y and z be two distinct points in Y. Let G and H be open sets in X such that
[~ (y) € Gand f~'(z) € H with CI(G) N CI(H) = (0. By weak sp--closedness there are
sp-0-open sets U and V in Y such thaty € U and 2z € V, f~}(U) C spCl(G) C Cl(G) and
f~Y(V) c spCI(H) C CI(H). Therefore U NV = ) because CI(G) N CI(H) = ) and f
surjective. Then by Theorem 2.4, Y is semipre-Hausdorff. O

Corollary 2.3. If f : (X, 1) — (Y, 0) is a weakly sp-0-closed surjection with all fibers closed and
X is normal, then Y is semipre-Hausdorff.

The next result follows from Corollary 2.3.

Corollary 24. If f : (X,7) — (Y,0) is continuous weakly sp-6-closed surjection with X a
compact Hausdorff space and Y a T} space, then Y is a compact semipre-Hausdorff space.

Proof. Since f is a continuous surjection and Y is a T} space, Y is a compact and all fibers
are closed. Since X is normal, Y is also semipre-Hausdorff. O

3. OTHER PROPERTIES OF WEAK SP-0-CLOSEDNESS

Recall that, a function f : (X, 7) — (Y, 0) is called sp-§-closed if f(F') is sp-f-closed in
Y for every closed set F' of X.

Clearly, every sp-f-closed function is weakly sp-6-closed, but the converse is not true.

Example 3.2. Let X =Y = {a,b,c}, 7 = {0, {a}, {b},{a,b},X}and f: (X,7) — (Y,7) be
a function defined by f(a) = ¢, f(b) = a, f(c) = b. Then f is a weakly sp-6-closed, but it
is not a sp-f-closed function since for F' = {b, ¢}, f(F) is not sp-6-closed in Y.

Theorem 3.10. Let f : (X,7) — (Y, 0) be weakly sp-0-closed. If for each closed subset F of X
and each fiber f~'(y) C X — F there exists an open set U of X such that f~(y) c U C Cl(U) C
X — F, then f is sp-6-closed.

Proof. Let F be any closed subset of X and y € Y — f(F). Then f~!(y) N F = 0 and
hence f~!(y) C X — F. By hypothesis, there exists an open set U of X such that f~!(y) C
U CCIl(U) C X — F. Since f is weakly sp-6-closed, there exists a sp-f-open V in Y with
y € Vand f~1(V) C spCI(U) C CI(U). Therefore , we obtain f~1(V) N F = () and hence
V' N f(F) = 0. This shows that y ¢ spCly(f(F)). Therefore, f(F) is sp-6-closed in Y and
f is a sp-f-closed function. O

Theorem 3.11. Let f : (X,7) — (Y, 0) be weakly sp-6-closed. If for each closed subset F' of
X and each fiber f~'(y) C X — F there exists an open set U of X for which F C U and
Y y)NU =0, then f is sp-6-closed.

Proof. Let F be any closed subset of X and y € Y — f(F), thus f~'(y) € X — F and
hence there exists an open subset U of X for which F C U and f~!(y) N U = (. Then
yeY — f(U) CY — f(F). Since f is weakly sp-6-closed, spCly(f(spInt(F))) C f(F).
Hence, we obtain y € spInty(Y — f(spInt(F))). Let H, = spInto(Y — f(spInt(F))). Then
H, is a sp-6-open subset of Y containing y. Hence Y — f(F) = U{H, : y € Y — f(F)}is
sp-6-open and hence f(F) is sp-6-closed. O
Corollary 3.5. If f : (X,7) — (Y, 0) is weakly sp-0-closed with all closed fibers, then f is
sp-0-closed.

Proof. For any closed subset F and any fiber f~(y) C X — F,letU = X — f~!(y). Then
U is open set with F C U and f~!(y) N U = 0. O
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Theorem 3.12. If f : (X,7) — (Y, 0) is contra sp-6-open , then f is weakly sp-6-closed.

Proof. Let F be a closed subset of X. Then, spCly(f(spInt(F))) = f(spInt(F)) C f(F).
0

Theorem 3.13. If f : (X, 7) — (Y, 0) is strongly continuous, then the following are equivalent:
(1) f is weakly sp-0-closed;
(2) f is contra sp-0-open.

Proof. (1) = (2): Let U be an -open subset of X. By hypothesis and Theorem 2.2, we
have spCly(f(U)) C f(CI(U)) C f(U). Hence f(U) is sp-6-closed.
(2) = (1): It follows from Theorem 3.12. O

Theorem 3.14. Every weakly sp-0-closed strongly continuous bijection f : (X,7) — (Y,0) is
sp-0-open (and sp-6-closed).

Proof. Let U be an open subset of X. Since f is weakly sp-6-closed spClg(f(spInt(X —
U))) C f(X — U). Hence and since f is bijective, we obtain f(U) C spInty(f(CI(U))) =
spIntg(f((U))) C f(U). Therefore f(U) is sp-0-open.

By other hand, by Theorem 3.13 f is contra sp-§-open so, f(U) is also sp-6-closed.

In particular by ([12], Theorem 3.5), f(U) is sp-regular for each open U C X. a

Theorem 3.15. If f : (X, 7) — (Y, 0) is weakly sp-6-closed bijection, then for every subset F in
Y and every open set U in X with f~Y(F) C U, there exists a sp-O-closed set B in'Y such that
F C Band f~Y(B) c Cl(U).

Proof. Let F be a subset of Y and U be an open subset of X with f~}(F) c U. Put
B = spClo(f(spInt(Cl(V)))), then B is a sp-f-closed set of ¥ such that F C B since
F C f(U) C f(spInt(CLU))) C spCly(f(spInt(Cl(U)))) = B. And since f is weakly
sp-0-closed, we have f~1(B) c CI(U). O

Recall that, a set F' in a topological space X is #-compact [14] if for each cover (2 of F
by open sets U in X, there is a finite family Uy, ..., U,, in Q such that F' C Int(U{CI(T;) :
i=1,2,...,n}).

Every compact space is #-compact, but the converse does not hold as we can see in the
following example.

Example 3.3. In the real line with the usual topology, consider the A = {1/n : n € N}. it
is easy to see that A is #-compact but does not is compact.

Theorem 3.16. If f : (X,7) — (Y, 0) is weakly sp-6-closed bijection with all fibers 0-closed in
X, then f(F) is sp-6-closed for each §-compact set F' in X.

Proof. Let F be §-compactand y € Y — f(F). Then f~!(y)NF = () and for each x € F there
is an open U, in X containing x such that C{(U,) N f~*(y) = 0. Clearly Q = {U, : z € F'}
is an open cover of F' and since F' is §-compact, there is a finite family {U,, , ..., U, } in Q
such that F C Int(A) , where A = U{CIl(Uy,) : i = 1, ...,n}. Since f is weakly sp-6-closed,
there exists a sp-f-open B in Y with f~1(y) c f~}(B) C spCl(X — A) C CI(X — A) =
X — Int(A) C X — F. Thereforey € Band BN f(F) = 0. Thusy € Y — pCly(f(F)). This
shows that f(F') is sp-6-closed. O

Definition 3.4. A topological space X is said to be:
(i) quasi H-closed [13] if every open cover of X has a finite subfamily whose closures
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cover X. A subset A of a space X is quasi H-closed relative to X if every cover of A by
open sets of X has a finite subfamily whose closures cover A.

(ii) almost S-6-compact space if every cover of X with sp-6-open sets has a finite subfamily
of members whose closures cover X. And a subset A of a space X is almost 8-6-compact
relative to X if every cover of A with sp-6-open subsets has a finite subfamily of members
whose closures cover A.

Lemma 3.3. [10] A function f : (X,7) — (Y,0) is open if and only if for each B C Y,
f7HCUB)) C CU(fH(B)).

Theorem 3.17. Let (X, 7) be an extremally disconnected space and f : (X,7) — (Y,0) be an
open and weakly sp-0-closed function with quasi H-closed fibers. Then f~1(G) is quasi H-closed
for each almost 3-8-compact set G C Y.

Proof. Let {V,, : a € I} be an open cover of f~1(G). Then for each y € G, f~1(y) C
U{Cl(V,) : a € I(y)} = H, for some finite I(y) C I. Then H, is closed and open since X
is extremally disconnected. So, by weak sp-6-closedness, there exists a sp-§-open set U,
containing y such that f~!(U,) C spCl(H,) C Cl(H,) = H,. Then, {U, : y € G} is a cover
of G by sp-8-open sets and G C U{CI(U,) : y € K} for some finite subset K of G. Hence,
by Lemma 3.3, f~1(G) c U{CI(f~*(U,)) : y € K}. Thus f~}(G) C U{CI(V4,) : a € I(y)
and y € K}. Therefore f~!(G) is quasi H-closed. O
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