Weakly sp- θ -closed functions and semipre-Hausdorff spaces

MIGUEL CALDAS

ABSTRACT. For weakly sp- θ -closed surjections between arbitrary topological spaces conditions are sought which assure a semipre-Hausdorff range.

1. INTRODUCTION

The purpose of the present paper is find under what conditions on a weakly sp- θ -closed surjection $f : (X, \tau) \to (Y, \sigma)$ between arbitrary topological spaces will Y be semipre-Hausdorff and find other properties of weak sp- θ -closedness.

Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If S is any subset of a space X, then Cl(S) and Int(S) denote the closure and the interior of S respectively. A point $x \in X$ is called a θ -cluster [15] point of S if $S \cap Cl(U) \neq \emptyset$ for each open set Ucontaining x. The set of all θ -cluster points of S is called the θ -closure of S and is denoted by $Cl_{\theta}(S)$. Hence, a subset S is called θ -closed [15] if $Cl_{\theta}(S) = S$. Note that X is Hausdorff if and only if $\{x\}$ is θ -closed for each $x \in X$ [7]. A subset $S \subset X$ is called β -open [2] or semi-preopen [3], if $S \subset Cl(Int(Cl(S)))$. The complement of a β -open set is called a β -closed [2] or semi-preclosed [3] set. The family of all semi-preopen sets of a space Xis denoted by $SPO(X, \tau)$ or SPO(X). We set $SPO(X, x) = \{U : x \in U \in SPO(X)\}$. The intersection of all β -closed sets containing S is called the semi-preclosure of S [3] or β -closure and is denoted by spCl(S) or $\beta Cl(S)$. The union of all β -open sets contained in S is called the semi-preinterior or β -interior of S and is denoted by spInt(S) or β -Int(S). A subset S of X is said to be semipre-regular (briefly sp-regular) if it is both β -open and β -closed in X.

A point $x \in X$ is called a semipre- θ -cluster point of S [12] if $spCl(U) \cap S \neq \phi$ for every β -open set U containing x. The set of all semipre- θ -cluster points of S is called the semipre- θ -closure of S and is denoted by $spCl_{\theta}(S)$. A subset S is called semipre- θ -closed (briefly sp- θ -closed) if $spCl_{\theta}(S) = S$. The complement of a semipre- θ -closed set is called a semipre- θ -open set (briefly sp- θ -open). The semipre- θ -interior of a subset S of X is the union of all sp- θ -open subsets of X contained in S, and is denoted by $spInt_{\theta}(S)$.

A space *X* is called extremally disconnected (E.D) [16] if the closure of each open set in *X* is open.

Recall that, a function $f : (X, \tau) \to (Y, \sigma)$ is said to be:

(i) strongly continuous [9, 1] if for every subset A of X, $f(Cl(A)) \subset f(A)$.

(ii) β -closed [2](resp. β -open [2]) if f(F) is β -closed (resp. β -open) in Y for each closed (resp. open) set F of X.

Received: 08.07.2011. In revised form: 14.09.2011. Accepted: 30.09.2011.

²⁰⁰⁰ Mathematics Subject Classification. 54A05, 54C08.

Key words and phrases. β -closed sets, β -open sets, weakly sp- θ -closed functions, semipre-Hausdorff spaces.

(iii) contra-sp- θ -open if f(F) is sp- θ -closed in Y for each β -open set F of X.

(iv) sp- θ -closed (resp. sp- θ -open) if f(F) is sp- θ -closed (resp. sp- θ -open) in Y for each closed (resp. open) set F of X.

The following theorem is given by T. Noiri [12].

Theorem 1.1. For any subset A of X:

(1) $spCl_{\theta}(spCl_{\theta}(A)) = spCl_{\theta}(A);$

(2) $spCl_{\theta}(A)$ is sp- θ -closed;

(3) Intersection of arbitrary collection of $sp-\theta$ -closed set in X is $sp-\theta$ -closed;

(4) $spCl_{\theta}(A)$ is the intersection of all sp- θ -closed sets each containing A;

(5) If $A \in SPO(X, \tau)$, then $spCl(A) = spCl_{\theta}(A)$.

For other advances on topological spaces obtained by our research group we recommend [12, 6, 5, 4].

2. Weakly sp- θ -closed functions and semipre-Hausdorff

Recall that, a function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly-closed [14] if

$$Cl(f(Int(F))) \subset f(F)$$

for each closed set F of X.

Definition 2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly sp- θ -closed if

 $spCl_{\theta}(f(spInt(F))) \subset f(F)$

for each closed set F of X.

Remark 2.1. In fact weak sp- θ -closedness and weak-closedness are independent notions.

Example 2.1. (1) A weakly sp- θ -closed function which is not weakly-closed.

Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $f : (X, \tau) \to (X, \tau)$ be a function defined by f(a) = c, f(b) = a, f(c) = b. Then f is a weakly sp- θ -closed, but it is not a weaklyclosed.

(2) A weakly-closed function which is not weakly sp- θ -closed.

Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}, \sigma = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$ and $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is weakly-closed but it is not weakly sp- θ -closed since $spCl_{\theta}(f(spInt(\{b, c\}))) \not\subset f(\{b, c\})$.

Theorem 2.2. For a function $f : (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent: (1) f is weakly sp- θ -closed;

(2) $spCl_{\theta}(f(U)) \subset f(Cl(U))$ for each β -open set U of X.

Proof. (1) \Rightarrow (2): Let *U* be any β -open subset of *X*. Since Cl(U) is a closed and $U \subset spIn(Cl(U)$ by (1) we have $spCl_{\theta}(f(U) \subset spCl_{\theta}(f(spInt(ClU))) \subset f(Cl(U))$. (2) \Rightarrow (1): Let *F* be any closed subset of *X*. Then, $spCl_{\theta}(f(spInt(F))) \subset f(Cl(spInt(F))) \subset f(Cl(F)) = f(F)$.

Theorem 2.3. For a function $f : (X, \tau) \to (Y, \sigma)$ bijective, the following conditions are equivalent:

(1) f is weakly sp- θ -closed;

(2) $spCl_{\theta}(f(U)) \subset f(Cl(U))$ for each β -open subset U of X;

(3) For each subset F in Y and each open set U in X with $f^{-1}(F) \subset U$, there exists a sp- θ -open set A in Y with $F \subset A$ and $f^{-1}(F) \subset spCl(U)$;

(4) For each point y in Y and each open set U in X with $f^{-1}(y) \subset U$, there exists a sp- θ -open set A in Y containing y and $f^{-1}(A) \subset spCl(U)$.

Proof. $(1) \Rightarrow (2)$: Theorem 2.2.

 $(2) \Rightarrow (3)$: Let *F* be a subset of *Y* and let *U* be open in *X* with $f^{-1}(F) \subset U$. Then $f^{-1}(F) \cap Cl(X - spCl(U)) = \phi$ and consequently, $F \cap f(Cl(X - spCl(U))) = \phi$. By (2), $F \cap spCl_{\theta}(f(X - spCl(U))) = \phi$. Let $A = Y - spCl_{\theta}(f(X - spCl(U)))$. Then *A* is sp- θ -open with $F \subset A$ and $f^{-1}(A) \subset X - f^{-1}(spCl_{\theta}(f(X - spCl(U)))) \subset X - f^{-1}f(X - spCl(U)) \subset spCl(U)$.

 $(3) \Rightarrow (4)$: Clear.

(4) \Rightarrow (1): Let *F* be closed in *X* and let $y \in Y - f(F)$. Since $f^{-1}(y) \subset X - F$, there exists a sp- θ -open set *A* in *Y* with $y \in A$ and $f^{-1}(A) \subset spCl(X - F) = X - spInt(F)$ by (4). Therefore $A \cap f(spInt(F)) = \phi$, so that $y \in Y - spCl_{\theta}(f(spInt(F)))$. Thus $spCl_{\theta}(f(spInt(F))) \subset f(F)$.

A space *X* is said to be semipre-Hausdorff [11] (resp. sp- θ -*T*₂) if for every pair of distinct points *x* and *y*, there exist two β -open (resp. sp- θ -open) sets *U* and *V* such that $x \in U$ and $y \in V$ and $U \cap V = \emptyset$.

Lemma 2.1. *X* is semipre-Hausdorff if and only if $\{x\}$ is sp- θ -closed. (Thus the semipre-Hausdorff property can be viewed as a pointwise property).

Proof. Necessity. $\{x\} \subset spCl_{\theta}(\{x\})$ is always hold. We prove that $spCl_{\theta}(\{x\}) \subset \{x\}$. Let $y \notin \{x\}$. Then there exist $U \in SPO(X, x)$ and $V \in SPO(Y, y)$ such that $U \cap V = \emptyset$. Hence $spCl(V) \cap U = \emptyset$. Therefore $spCl(V) \cap \{x\} = \emptyset$. i.e., $y \notin spCl_{\theta}(\{x\})$ and $spCl_{\theta}(\{x\}) \subset \{x\}$ and $\{x\}$ is sp- θ -closed.

Sufficiency. Is clear since every sp- θ -open sets is β -open.

Theorem 2.4. For a topological space (X, τ) , the following properties are equivalent: (1) For every pair of distinct points $x, y \in X$, there exist $U \in SP\theta O(X, x)$ and $V \in SP\theta O(X, y)$ such that $spCl_{\theta}(U) \cap spCl_{\theta}(V) = \emptyset$;

(2) (X, τ) is sp- θ - T_2 ;

(3) (X, τ) is semipre-Hausdorff;

(4) For every pair of distinct points $x, y \in X$, there exist $U, V \in SPO(X)$ such that $x \in U$, $y \in V$ and $spCl(U) \cap spCl(V) = \emptyset$;

(5) For every pair of distinct points $x, y \in X$, there exist $U, V \in SPR(X)$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Proof. $(1) \Rightarrow (2)$. This is obvious.

 $(2) \Rightarrow (3)$. Since $SP\theta O(X) \subset SPO(X)$, the proof is obvious.

 $(3) \Rightarrow (4)$. This follows from Lemma 5.2 of [12].

(4) \Rightarrow (5). By ([12], Theorem 3.1), $spCl(U) \in SPR(X)$ for every $U \in SPO(X)$ and the proof immediately follows.

 $(5) \Rightarrow (1)$. By ([12], Theorem 3.5), every sp-regular set is sp- θ -open and sp- θ -closed. Hence the proof is obvious.

Definition 2.2. For a function $f : (X, \tau) \to (Y, \sigma)$ we let $G(f) = \{(x, f(x)) : x \in X\} \subset X \times Y$ represent the graph of f and we say that G(f) is strongly β -closed (resp. β -closed) if whenever $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in SPO(X, x)$ and $V \in SPO(Y, y)$ such that $[U \times sPCl(V)] \cap G(f) = \emptyset$ (resp. $(U \times V)) \cap G(f) = \emptyset$).

Lemma 2.2. A function $f : (X, \tau) \to (Y, \sigma)$, has a strongly β -closed (resp. β -closed) graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist $U \in SPO(X, x)$ and $V \in SPO(Y, y)$ such that $f(U) \cap spCl(V) = \emptyset$ (resp. $f(U) \cap V = \emptyset$).

Recall that, two non-empty subsets A and B in X are strongly separated [14], if there exist open sets U and V in X with $A \subset U$ and $B \subset V$ such that $Cl(U) \cap Cl(V) = \emptyset$. If A and B are singleton sets we may speak of points being strongly separated. We will use the fact (see [8]) that in a normal space, disjoint closed sets are strongly separated.

Theorem 2.5. If the surjection $f : (X, \tau) \to (Y, \sigma)$ has a strongly β -closed graph G(f) then Y is semipre-Hausdorff.

Proof. We will show that *Y* is semipre-Hausdorff at each point in the image of *f*. i.e., each $\{f(x)\}$ is sp- θ -closed (Lemma 2.1). Let $x \in X$ and let $z \in Y - \{f(x)\}$. Then $(x, z) \notin G(f)$ and there exist $U \in SPO(X, x)$ and $V \in SPO(Y, z)$ such that $[U \times spCl(V)] \cap G(f) = \emptyset$. Thus $spCl(V) \cap \{f(x)\} = \emptyset$ and $z \notin spCl_{\theta}(V)$. Hence $\{f(x)\}$ is sp- θ -closed. Since *f* is surjective, *Y* is semipre-Hausdorff.

Definition 2.3. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be (*)-semipreopen if $spCl(f(U)) = spCl_{\theta}(f(U))$ for all open sets $U \subset X$.

Theorem 2.6. If $f : (X, \tau) \to (Y, \sigma)$ is β -open then it is (*)-semipreopen.

Proof. Let $U \subset X$ be open. Since f is β -open, $f(U) \in SPO(Y)$. By Theorem 1.1(5), $spCl(f(U)) = spCl_{\theta}(f(U))$ and so f is (*)-semipreopen.

Theorem 2.7. If $f : (X, \tau) \to (Y, \sigma)$ is (*)-semipreopen and G(f) is β -closed then G(f) is strongly β -closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Since G(f) is β -closed there exist $U \in SPO(X, x)$ and $V \in SPO(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$. Then $spCl(f(U)) \cap V = \emptyset$. Therefore $spCl_{\theta}(f(U)) \cap V = \emptyset$. Thus, there is a β -open set $W \subset Y$ with $y \in W$ and $spCl(W) \cap f(U) = \emptyset$. Then, $(x, y) \in U \times W$ and $(U \times spCl(W)) \cap G(f) = \emptyset$ so that G(f) is strongly β -closed. \Box

Corollary 2.1. If $f : (X, \tau) \to (Y, \sigma)$ is a (*)-semipreopen surjection with β -closed graph G(f), then Y is semipre-Hausdorff.

Proof. It follows from Theorem 2.7 and 2.5.

Theorem 2.8. If $f : (X, \tau) \to (Y, \sigma)$ is weakly sp- θ -closed with all fibers $f^{-1}(y) \theta$ -closed, then G(f) is β -closed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Since $f^{-1}(y)$ is θ -closed, There are disjoint open sets W and U with $x \in W$ and $f^{-1}(y) \subset U$. By Theorem 2.3 and weak sp- θ -closedness of f there is a sp- θ -open set $V \subset Y$ with $y \in V$ and $f^{-1}(y) \subset spCl(U) \subset Cl(U) \subset X - W$. Thus $(x, y) \in W \times V$ and $(W \times V) \cap G(f) = \emptyset$.

Corollary 2.2. If $f : (X, \tau) \to (Y, \sigma)$ is (*)-semipreopen weakly sp- θ -closed surjection with all fibers θ -closed, then Y is semipre-Hausdorff.

Proof. It is suffices to apply Theorem 2.8 and Corollary 2.1.

Theorem 2.9. If $f : (X, \tau) \to (Y, \sigma)$ is weakly sp- θ -closed surjection and all pairs of disjoint fibers are strongly separated then f is semipre-Hausdorff.

 \Box

Proof. Let *y* and *z* be two distinct points in *Y*. Let *G* and *H* be open sets in *X* such that $f^{-1}(y) \in G$ and $f^{-1}(z) \in H$ with $Cl(G) \cap Cl(H) = \emptyset$. By weak sp- θ -closedness there are sp- θ -open sets *U* and *V* in *Y* such that $y \in U$ and $z \in V$, $f^{-1}(U) \subset spCl(G) \subset Cl(G)$ and $f^{-1}(V) \subset spCl(H) \subset Cl(H)$. Therefore $U \cap V = \emptyset$ because $Cl(G) \cap Cl(H) = \emptyset$ and *f* surjective. Then by Theorem 2.4, *Y* is semipre-Hausdorff.

Corollary 2.3. If $f : (X, \tau) \to (Y, \sigma)$ is a weakly sp- θ -closed surjection with all fibers closed and *X* is normal, then *Y* is semipre-Hausdorff.

The next result follows from Corollary 2.3.

Corollary 2.4. If $f : (X, \tau) \to (Y, \sigma)$ is continuous weakly sp- θ -closed surjection with X a compact Hausdorff space and Y a T_1 space, then Y is a compact semipre-Hausdorff space.

Proof. Since f is a continuous surjection and Y is a T_1 space, Y is a compact and all fibers are closed. Since X is normal, Y is also semipre-Hausdorff.

3. Other properties of weak sp- θ -closedness

Recall that, a function $f : (X, \tau) \to (Y, \sigma)$ is called sp- θ -closed if f(F) is sp- θ -closed in Y for every closed set F of X.

Clearly, every sp- θ -closed function is weakly sp- θ -closed, but the converse is not true.

Example 3.2. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $f : (X, \tau) \to (Y, \tau)$ be a function defined by f(a) = c, f(b) = a, f(c) = b. Then f is a weakly sp- θ -closed, but it is not a sp- θ -closed function since for $F = \{b, c\}, f(F)$ is not sp- θ -closed in Y.

Theorem 3.10. Let $f : (X, \tau) \to (Y, \sigma)$ be weakly sp- θ -closed. If for each closed subset F of X and each fiber $f^{-1}(y) \subset X - F$ there exists an open set U of X such that $f^{-1}(y) \subset U \subset Cl(U) \subset X - F$, then f is sp- θ -closed.

Proof. Let *F* be any closed subset of *X* and $y \in Y - f(F)$. Then $f^{-1}(y) \cap F = \emptyset$ and hence $f^{-1}(y) \subset X - F$. By hypothesis, there exists an open set *U* of *X* such that $f^{-1}(y) \subset U \subset Cl(U) \subset X - F$. Since *f* is weakly sp- θ -closed, there exists a sp- θ -open *V* in *Y* with $y \in V$ and $f^{-1}(V) \subset spCl(U) \subset Cl(U)$. Therefore, we obtain $f^{-1}(V) \cap F = \emptyset$ and hence $V \cap f(F) = \emptyset$. This shows that $y \notin spCl_{\theta}(f(F))$. Therefore, f(F) is sp- θ -closed in *Y* and *f* is a sp- θ -closed function.

Theorem 3.11. Let $f : (X, \tau) \to (Y, \sigma)$ be weakly sp- θ -closed. If for each closed subset F of X and each fiber $f^{-1}(y) \subset X - F$ there exists an open set U of X for which $F \subset U$ and $f^{-1}(y) \cap U = \emptyset$, then f is sp- θ -closed.

Proof. Let *F* be any closed subset of *X* and $y \in Y - f(F)$, thus $f^{-1}(y) \subset X - F$ and hence there exists an open subset *U* of *X* for which $F \subset U$ and $f^{-1}(y) \cap U = \emptyset$. Then $y \in Y - f(U) \subset Y - f(F)$. Since *f* is weakly sp- θ -closed, $spCl_{\theta}(f(spInt(F))) \subset f(F)$. Hence, we obtain $y \in spInt_{\theta}(Y - f(spInt(F)))$. Let $H_y = spInt_{\theta}(Y - f(spInt(F)))$. Then H_y is a sp- θ -open subset of *Y* containing *y*. Hence $Y - f(F) = \bigcup \{H_y : y \in Y - f(F)\}$ is sp- θ -open and hence f(F) is sp- θ -closed.

Corollary 3.5. If $f : (X, \tau) \to (Y, \sigma)$ is weakly sp- θ -closed with all closed fibers, then f is sp- θ -closed.

Proof. For any closed subset *F* and any fiber $f^{-1}(y) \subset X - F$, let $U = X - f^{-1}(y)$. Then *U* is open set with $F \subset U$ and $f^{-1}(y) \cap U = \emptyset$.

Theorem 3.12. If $f : (X, \tau) \to (Y, \sigma)$ is contras p- θ -open, then f is weakly sp- θ -closed.

Proof. Let *F* be a closed subset of *X*. Then, $spCl_{\theta}(f(spInt(F))) = f(spInt(F)) \subset f(F)$.

Theorem 3.13. If $f : (X, \tau) \to (Y, \sigma)$ is strongly continuous, then the following are equivalent: (1) f is weakly sp- θ -closed; (2) f is contra sp- θ -open.

Proof. (1) \Rightarrow (2): Let *U* be an β -open subset of *X*. By hypothesis and Theorem 2.2, we have $spCl_{\theta}(f(U)) \subset f(Cl(U)) \subset f(U)$. Hence f(U) is sp- θ -closed. (2) \Rightarrow (1): It follows from Theorem 3.12.

Theorem 3.14. Every weakly sp- θ -closed strongly continuous bijection $f : (X, \tau) \to (Y, \sigma)$ is sp- θ -open (and sp- θ -closed).

Proof. Let *U* be an open subset of *X*. Since *f* is weakly sp- θ -closed $spCl_{\theta}(f(spInt(X - U))) \subset f(X - U)$. Hence and since *f* is bijective, we obtain $f(U) \subset spInt_{\theta}(f(Cl(U))) = spInt_{\theta}(f(U)) \subset f(U)$. Therefore f(U) is sp- θ -open.

By other hand, by Theorem 3.13 f is contra sp- θ -open so, f(U) is also sp- θ -closed. In particular by ([12], Theorem 3.5), f(U) is sp-regular for each open $U \subset X$.

Theorem 3.15. If $f : (X, \tau) \to (Y, \sigma)$ is weakly sp- θ -closed bijection, then for every subset F in Y and every open set U in X with $f^{-1}(F) \subset U$, there exists a sp- θ -closed set B in Y such that $F \subset B$ and $f^{-1}(B) \subset Cl(U)$.

 \square

Proof. Let *F* be a subset of *Y* and *U* be an open subset of *X* with $f^{-1}(F) \subset U$. Put $B = spCl_{\theta}(f(spInt(Cl(U))))$, then *B* is a sp- θ -closed set of *Y* such that $F \subset B$ since $F \subset f(U) \subset f(spInt(Cl(U))) \subset spCl_{\theta}(f(spInt(Cl(U)))) = B$. And since *f* is weakly sp- θ -closed, we have $f^{-1}(B) \subset Cl(U)$.

Recall that, a set *F* in a topological space *X* is θ -compact [14] if for each cover Ω of *F* by open sets *U* in *X*, there is a finite family $U_1, ..., U_n$ in Ω such that $F \subset Int(\cup \{Cl(U_i) : i = 1, 2, ..., n\})$.

Every compact space is θ -compact, but the converse does not hold as we can see in the following example.

Example 3.3. In the real line with the usual topology, consider the $A = \{1/n : n \in N\}$. it is easy to see that A is θ -compact but does not is compact.

Theorem 3.16. If $f : (X, \tau) \to (Y, \sigma)$ is weakly sp- θ -closed bijection with all fibers θ -closed in X, then f(F) is sp- θ -closed for each θ -compact set F in X.

Proof. Let F be θ -compact and $y \in Y - f(F)$. Then $f^{-1}(y) \cap F = \emptyset$ and for each $x \in F$ there is an open U_x in X containing x such that $Cl(U_x) \cap f^{-1}(y) = \emptyset$. Clearly $\Omega = \{U_x : x \in F\}$ is an open cover of F and since F is θ -compact, there is a finite family $\{U_{x_1}, ..., U_{x_n}\}$ in Ω such that $F \subset Int(A)$, where $A = \cup \{Cl(U_{x_i}) : i = 1, ..., n\}$. Since f is weakly sp- θ -closed, there exists a sp- θ -open B in Y with $f^{-1}(y) \subset f^{-1}(B) \subset spCl(X - A) \subset Cl(X - A) =$ $X - Int(A) \subset X - F$. Therefore $y \in B$ and $B \cap f(F) = \emptyset$. Thus $y \in Y - pCl_{\theta}(f(F))$. This shows that f(F) is sp- θ -closed.

Definition 3.4. A topological space *X* is said to be:

(i) quasi H-closed [13] if every open cover of X has a finite subfamily whose closures

cover *X*. A subset *A* of a space *X* is quasi *H*-closed relative to *X* if every cover of *A* by open sets of *X* has a finite subfamily whose closures cover *A*.

(ii) almost β - θ -compact space if every cover of X with sp- θ -open sets has a finite subfamily of members whose closures cover X. And a subset A of a space X is almost β - θ -compact relative to X if every cover of A with sp- θ -open subsets has a finite subfamily of members whose closures cover A.

Lemma 3.3. [10] A function $f : (X, \tau) \to (Y, \sigma)$ is open if and only if for each $B \subset Y$, $f^{-1}(Cl(B)) \subset Cl(f^{-1}(B))$.

Theorem 3.17. Let (X, τ) be an extremally disconnected space and $f : (X, \tau) \to (Y, \sigma)$ be an open and weakly sp- θ -closed function with quasi *H*-closed fibers. Then $f^{-1}(G)$ is quasi *H*-closed for each almost β - θ -compact set $G \subset Y$.

Proof. Let $\{V_{\alpha} : \alpha \in I\}$ be an open cover of $f^{-1}(G)$. Then for each $y \in G$, $f^{-1}(y) \subset \cup \{Cl(V_{\alpha}) : \alpha \in I(y)\} = H_y$ for some finite $I(y) \subset I$. Then H_y is closed and open since X is extremally disconnected. So, by weak sp- θ -closedness, there exists a sp- θ -open set U_y containing y such that $f^{-1}(U_y) \subset spCl(H_y) \subset Cl(H_y) = H_y$. Then, $\{U_y : y \in G\}$ is a cover of G by sp- θ -open sets and $G \subset \cup \{Cl(U_y) : y \in K\}$ for some finite subset K of G. Hence, by Lemma 3.3, $f^{-1}(G) \subset \cup \{Cl(f^{-1}(U_y)) : y \in K\}$. Thus $f^{-1}(G) \subset \cup \{Cl(V_{\alpha}) : \alpha \in I(y) \text{ and } y \in K\}$. Therefore $f^{-1}(G)$ is quasi H-closed.

REFERENCES

- [1] Arya, S. P. and Gupta, R., Strongly continuous mappings, Kyungpook Math. J. 14 (1974), 131–143
- [2] M. E. Abd. El-Monsef, M. E. EL-Deeb, S. N. and Mahmoud, R. A., β-open and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90
- [3] Andrijević, D., Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32
- [4] Caldas, M. and Jafari, S., Weak and strong forms of β -irresoluteness, Arab. J. Sci. Eng. **31** (2006), 31–39
- [5] Caldas, M., On θ - β -generalized closed sets snd θ - β -generalized continuity in topolological spaces, J. Adv. Math. Studies 4 (2011), 13–24
- [6] Caldas, M., On characterizations of weak θ - β -openness (to appear in Antartica J. Math.)
- [7] Dickman Jr., R. F. and Porter, J. R., θ-perfect and θ-absolutely closed functions, Illinois J. Math. 21 (1977), 42–60
- [8] Dugundji, J., Topology, Allyn and Bacon, 1966
- [9] Levine, N., Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269
- [10] Long, P. E. and Carnahan, D. A., Comparing almost continuous functions, Proc. Amer. Math. Soc. 38 (1973), 413–418
- [11] Mahmoud, R. A. and Abd. El-Monsef, M. E., β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci. 27 (1990), 285–296
- [12] Noiri, T., Weak and strong forms of β -irresolute functions, Acta Math. Hungar. 99 (2003), 315–328
- [13] Porter, J. and Thomas, J., On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159–170
- [14] Rose, D. A. and Jankovic, D. S., Weakly closed functions and Hausdorff spaces, Math. Nachr. 130 (1987), 105-110
- [15] Velicko, N. V., H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103–118
- [16] Willard, S., General topology, Addition Wesley Publishing Company, 1970

UNIVERSIDADE FEDERAL FLUMINENSE DEPARTAMENTO DE MATEMATICA APLICADA RUA MARIO SANTOS BRAGA, S/N; 24020-140, NITEROI, RJ BRASIL *E-mail address*: gmamccs@vm.uff.br